
Pan-Cancer DNAMethylation Analysis
and Tumor Origin Identification of
Carcinoma of Unknown Primary Site
Based on Multi-Omics
Pengfei Liu1,2*

1State Key Laboratory of Genetic Engineering, Collaborative Innovation Center For Genetics and Development, School of Life
Sciences, Fudan University, Shanghai, China, 2Department of Biostatistics and Computational Biology, School of Life Sciences,
Fudan University, Shanghai, China

The metastatic cancer of unknown primary (CUP) sites remains a leading cause of cancer
death with few therapeutic options. The aberrant DNA methylation (DNAm) is the most
important risk factor for cancer, which has certain tissue specificity. However, how DNAm
alterations in tumors differ among the regulatory network of multi-omics remains largely
unexplored. Therefore, there is room for improvement in our accuracy in the prediction of
tumor origin sites and a need for better understanding of the underlying mechanisms. In
our study, an integrative analysis based on multi-omics data and molecular regulatory
network uncovered genome-wide methylation mechanism and identified 23 epi-driver
genes. Apart from the promoter region, we also found that the aberrant methylation within
the gene body or intergenic region was significantly associated with gene expression.
Significant enrichment analysis of the epi-driver genes indicated that these genes were
highly related to cellular mechanisms of tumorigenesis, including T-cell differentiation, cell
proliferation, and signal transduction. Based on the ensemble algorithm, six CpG sites
located in five epi-driver genes were selected to construct a tissue-specific classifier with a
better accuracy (>95%) using TCGA datasets. In the independent datasets and the
metastatic cancer datasets from GEO, the accuracy of distinguishing tumor subtypes or
original sites wasmore than 90%, showing better robustness and stability. In summary, the
integration analysis of large-scale omics data revealed complex regulation of DNAm across
various cancer types and identified the epi-driver genes participating in tumorigenesis.
Based on the aberrant methylation status located in epi-driver genes, a classifier that
provided the highest accuracy in tracing back to the primary sites of metastatic cancer was
established. Our study provides a comprehensive and multi-omics view of DNAm-
associated changes across cancer types and has potential for clinical application.

Keywords: multi-omics, DNA methylation, cancer of unknown primary, metastasis, tissue-specific classifier

Edited by:
Trygve Tollefsbol,

University of Alabama at Birmingham,
United States

Reviewed by:
Wubin Ding,

Children’s Hospital of Philadelphia,
United States

Justin Adam Colacino,
University of Michigan, United States

*Correspondence:
Pengfei Liu

xiaofeiido@126.com

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal
Frontiers in Genetics

Received: 20 October 2021
Accepted: 02 December 2021
Published: 06 January 2022

Citation:
Liu P (2022) Pan-Cancer DNA

Methylation Analysis and Tumor Origin
Identification of Carcinoma of

Unknown Primary Site Based on Multi-
Omics.

Front. Genet. 12:798748.
doi: 10.3389/fgene.2021.798748

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7987481

ORIGINAL RESEARCH
published: 06 January 2022

doi: 10.3389/fgene.2021.798748

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.798748&domain=pdf&date_stamp=2022-01-06
https://www.frontiersin.org/articles/10.3389/fgene.2021.798748/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.798748/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.798748/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.798748/full
http://creativecommons.org/licenses/by/4.0/
mailto:xiaofeiido@126.com
https://doi.org/10.3389/fgene.2021.798748
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.798748


INTRODUCTION

Although most cancer patients are defined as having primary
tumors at the early stage of cancer diagnosis, 10%–15% of cancer
patients are still diagnosed with cancer cell metastasis (Greco
2013). Among them, about one-third of patients may be
diagnosed with the primary site of the tumor (Sokilde et al.,
2014). Therefore, metastatic cancer with CUP accounts for
30%–60% of all cancer diagnoses, and is considered the
seventh most common cancer subtype (Sokilde et al., 2014).
Since effective cancer treatment relies on the early
identification of the tumor original sites, patients with CUP
have a poor prognosis, a median survival time of 9 months
(95% CI: 8.3–10.0), and a 1-year survival rate of less than 25%
(Massard et al., 2011). In clinical medicine, the cancers of
unknown primary site are a molecularly heterogeneous cancer,
which makes interpretation of histomorphology and
immunohistochemistry difficult (Moran et al., 2016).
Therefore, we need to screen a set of cancer tissue-specific
biomarkers to identify the primary site of metastatic cancer
and improve the treatment and prognosis of patients with CUP.

Epi-driver gene refers to the abnormal changes of gene
expression or cell phenotype caused by mechanisms other
than changes in the DNA sequence, which are changed
through changes in DNAm or chromatin modification, and
persist with the division of tumor cells (Vogelstein et al.,
2013). DNAm is one of the most common epigenetic events.
In the past few years, abnormal DNA methylation has been
shown to play a key role in a variety of diseases (Liu & Shi
2017; Sui et al., 2021; Wang et al., 2017; Wu et al., 2017). In terms
of tumors, abnormal methylation can be used as a biomarker for
clinical decision-making, diagnosis, and prognosis of different
cancers (Rajaraman et al., 2015; Wei et al., 2015; Hao et al., 2017;
Kirby et al., 2017). However, research on DNA methylation
mainly focuses on the promoter region and CpG islands. The
anomalous changes of DNA methylation located in non-CpG
islands or gene body region may also play an important role in
gene expression regulation (Jjingo et al., 2012; Rao et al., 2013). In
addition, tissue-specific gene expression is also related to
differences in DNA methylation along the shelf/shore of CpG
islands in different tissues (Irizarry et al., 2009b). Although some
studies have investigated the DNA methylation profile of human
pan-carcinoma (Irizarry et al., 2009b; Yang et al., 2017), there are
still no biomarkers for the diagnosis of cancer subtype or the
determination of the primary sites of metastatic cancer. On the
other hand, cancer cells undergo significant metabolic changes to
adapt to the growth characteristics of cancer cells or the tissue
environment, such as the “Warburg” effect. This metabolic
reprogramming promotes the invasion and metastasis of
cancer cells, and causes the immunosuppression of cancer
cells. One of the most important reasons leading to the
metabolic reprogramming is the abnormal expression of a
large number of enzyme-coding genes involved in a variety of
metabolic pathways (Chen et al., 2013). However, it is precisely
because of this significant metabolic reprogramming that gene
expression analysis based on known pathways is insufficient to
detect abnormal gene expression patterns. Therefore, we would

integrate gene expression and biological networks (including
metabolic networks and protein–protein interaction networks),
comprehensively explore the DNA methylation pattern of pan-
cancer tissues, deeply understand the methylation mechanism of
cancer cells, and screen potential molecular markers for the
identification of cancer subtypes and the tumor original sites
of metastatic cancer.

In this study, we first explored and screened the epi-driver
CpG sites that had a strong correlation between DNA
methylation and gene expression based on the genome-wide
DNA methylation profile and mRNA expression profile. These
epi-driver CpG sites in cancer cells lead to abnormal gene
expression, making them unable to control the cell cycle, cell
apoptosis, and/or DNA repair. Based on multi-omics strategies,
we further integrate gene co-expression network (Langfelder &
Horvath 2008), enzyme metabolism (https://www.gemome.jp)
and protein–protein interaction network (https://string-db.org)
to screen the epi-driver genes that cause metabolic
reprogramming, and abnormal gene expression. Based on
XGBoost and SHAP algorithms, the six epi-driver CpG sites
located in five genes were identified as the best biomarkers. The
random forest model was constructed to identify cancer
subtypes and trace the tumor original site with high tissue
specificity (AUC > 95%). This will provide clinical evidence
for the identification of primary tumor subtypes and cancer
tissue-specific treatment, and contribute to improving patient
survival.

MATERIALS AND METHODS

Workflow Chart and Samples Preparation
Figure 1 shows the study workflow chart, including the algorithm
flow. Those tumor tissues and adjacent normal tissues were
acquired from The Cancer Genome Atlas pilot (TCGA)
project (https://tcga-data.nci.nih.gov/tcga/) for this study,
which were divided into two subgroups. One subgroup of
these datasets was used as the training sets to filter features
and construct classifier, and the testing sets used another
subgroup of these datasets to assess the performance of the
classifier.

In order to screen the effective biomarkers, the strict review
was performed to only filter those datasets that met the specific
rules for our research. The criteria included that the datasets have
both DNAm and mRNA profiles, a sufficient number of samples
for tumor tissue andmatched adjacent normal tissue (≥10 pairs of
samples), and completely similar clinical information (Table 1;
Supplementary Table S1). After filtering, 5,600 samples for
DNAm-based profiles, namely, 4,956 tumor samples and 644
normal samples, and 6,351 samples for mRNA-based profiles,
namely, 5,776 tumor samples and 575 normal samples, were
selected from TCGA project. Of which, 342 pairs of samples have
both DNAm-based profiles and mRNA-based profiles with both
tumor and matched adjacent normal tissues. DNAm profiles
based on the Illumina InfiniumHumanMethylation450 (HM450)
BeadChips were obtained, which were involved in more than
480,000 CpG sites in the human genome. Gene expression
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profiles (RNA-seq datasets) were generated using the HTSeq
pipeline from TCGA and were quantified using HTSseq-Counts.

In addition, the human KEGG Markup Language (KGML)
data were generated by KEGG project (http://www.genome.jp/
kegg/) to filter the key enzyme-coding genes. The protein–protein
interaction network was collected from the human protein
reference database (STRING database, http://www.hprd.org/)
to select the hub genes.

Differential Analysis Based on DNA
Methylation and Gene Expression Profiles
For DNA methylation profiles, the Mann–Whitney U test (called
Wilcoxon Rank Sum Test) was used to select the significant

differentially methylated CpG sites between tumor tissues and
matched adjacent normal tissues (Selamat et al., 2012). Prior to
analysis, data preprocessing was executed to remove the invalid or
ambiguous CpG sites. The CpG sites located in chromosomes X
and Y, identified as non-unique in the genome and known as
single-nucleotide polymorphisms, were eliminated (Cai et al.,
2020; Noushmehr et al., 2010; Selamat et al., 2012). The CpG sites
with more than 50% missing values were excluded, and the
remaining missing values were imputed based on K-Nearest
Neighbor algorithm (Wu et al., 2020). The CpG sites were
identified as statistically significantly different between tumor
tissues and matched adjacent normal tissues with adjusted
p-value < 0.05, and the absolute value of the mean β value

FIGURE 1 | Schematic overview of the workflow of data analysis and the development of classifier based on tissue-specific DNAmethylationmarkers. DNAm, DNA
methylation; One vs. Rest, a given tumor tissue and other tumor tissue types; FDR and SD, the differential analyses were performed between a given tumor tissue and
other tumor tissue types, and the significant difference was defined: the FDR (Bonferroni-adjusted p-value) was less than 0.05 and standard deviation (SD) was greater
than 0.2. Integrated methylation signatures on tumor tissues and matched adjacent normal tumor tissues was used to identify the epi-driver genes. Potential
biomarkers: One vs. Rest method was applied to identify the potential candidate methylation biomarkers. Predictive model by biomarkers: XGBoost and SHAP
algorithms was used to a training cohort to identify a final selection of six biomarkers. These six biomarkers were used to construct the classifier, and the independent
datasets (GEO datasets and metastatic datasets) were used to evaluate performance.
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difference between groups was greater than 0.2 (adjusted p-value
< 0.05 and |△β| > 0.2) (Bjerre et al., 2020).

For gene expression profiles, the differential analysis was
performed between tumor tissues and matched adjacent normal
tissues. The read counts of genes were used as an input
expression matrix to “limma” package in Bioconductor 3.10.
Genes were identified as statistically significantly different
between tumor tissues and matched adjacent normal tissues
with adjusted p-value < 0.05, and the absolute value of mean
log2 fold-change was greater than 2 (adjusted p-value < 0.05 and
|log2FC| > 2).

DNA Methylation Patterns Through
Integrating Gene Expression
For each of a number of specified genomic region windows in
relation to genes, we constructed a DNAmethylation (β-values of
CpG sites) matrix by annotating for every CpG site within the
given gene region (including 0–1,500 up-/downstream of TSS
sites and gene body region in the GRCh38). When a CpG existed
in a given gene region, we defined that the CpG was associated
with the gene. For the set of CpG sites associated with a given gene
within a specified region in proximity to the gene (e.g., 0–1500 bp
upstream of TSS sites, 0–1500 bp downstream of TSS sites or
within the gene body), correlation between DNA methylation
status and gene expression profiles for each CpG sites or genes
was calculated using linear regression model in all the samples. In
addition to modeling expression as a function of methylation
event, models incorporating cancer type as a factor in addition to
methylation event were also considered. Genes for which
methylation event were significant (adjusted p-value <0.05)
after correcting for cancer type were explored.

Identification of Epi-Driver Genes Based on
Multi-Omics
Epi-driver genes have two important characters: aberrant
expression of gene in the cancer cells and selective advantage

in terms of the growth of tumor cells (Vogelstein et al., 2013). The
former can be easily obtained by analyzing the difference of
transcriptome, while the latter is more complex, and there is no
direct method to calculate and evaluate. In our previous research,
we developed a bioinformatics method based on the integration
of multi-omics data, and namely Met-express (Chen et al., 2013).
In this method, a cancer gene co-expression network was
constructed by using transcriptome data of tumor tissue and
matched adjacent normal tissue, and then a tumor-specific co-
expression module was obtained through module division. Then,
based on the relationship between products and substrates of
enzyme in the metabolic reactions, the directed network of
enzyme genes was constructed, which connected the enzyme
genes of upstream metabolic reactions to the enzyme genes of
downstream metabolic reactions directionally, and calculated the
connection degree between each enzyme gene and downstream
enzyme genes. Through computing an importance score (ScoreA)
for a given enzyme-coding gene (Chen et al., 2013), Met-express
can obtain upstream enzyme genes that had significant co-
expression pattern with downstream enzyme genes in the
tumor-specific co-expression module, and these genes were
identified as the key enzyme genes with significant abnormal
expression in the metabolic reprogramming. It has been proven
that the abnormal expression of key enzyme genes played an
important role in the abnormal growth of tumor cells (Chen et al.,
2013). Therefore, the method developed by us provided a new
way to search for tumor driver genes. Because of the universality
of integration method, we replaced enzyme metabolism network
with protein–protein interaction network (STRING, http://www.
hprd.org/) to predict the new driver genes/proteins based on the
protein–protein interaction network.

ScoreA � |AUCROC − 0.5| × log2(Cin/Call

Nin/Nall
)

Here, ScoreA refers to the importance score of a given enzyme-
coding gene A. Cin and Call refer to the number of within-module
genes and the number of all genes that are connected from A in

TABLE 1 | Summary of TCGA cancer type and number of samples used in each analysis.

Cancer type TCGA
project

RNA-seq Illumina human methylation 450 RNA-seq vs.
Methylation

Unpaired Paired Unpaired Paired Paireda

Normal Tumor Normal Tumor Normal Tumor Normal Tumor Normal Tumor

Bladder urothelial carcinoma BLCA 0 393 19 19 0 396 21 21 17 17
Breast-invasive carcinoma BRCA 1 989 112 112 6 702 90 90 76 76
Colon adenocarcinoma COAD 0 434 41 41 0 275 38 38 19 19
Head and neck squamous cell carcinoma HNSC 1 459 43 43 0 480 50 50 20 20
Kidney clear cell renal cell carcinoma KIRC 0 467 72 72 0 165 160 160 24 24
Kidney renal papillary cell carcinoma KIRP 1 258 31 31 0 231 45 45 22 22
Liver hepatocellular carcinoma LIHC 0 324 50 50 0 330 50 50 41 41
Lung adenocarcinoma LUAD 2 468 57 57 3 437 29 29 18 18
Prostate adenocarcinoma PRAD 0 445 52 52 0 453 50 50 35 35
Thyroid carcinoma THCA 0 452 58 58 0 459 56 56 49 49
Uterine corpus endometrial carcinoma UCEC 12 529 23 23 13 406 33 33 21 21
Total 17 5218 558 558 22 4334 622 622 342 342

aNoteThe patients have both gene expression profiles and methylation profiles.
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the metabolic network or protein–protein interaction network,
respectively. Nin and Nall refer to the number of within-module
genes, and the number of all genes in the co-expression network,
respectively.

In the discovery, we would overlap the driver genes predicted
by two biological networks with the abnormally expressed genes
from difference analysis to obtain all possible cancer driver genes.
Based on linear regression model after correcting for cancer type,
the correlation analysis between methylation status and gene
expression level in the same gene was performed to select the
significantly methylated genes with the abnormal gene
expression. Finally, we performed overlap analysis between
those driver genes, and the significantly methylated genes with
the abnormal gene expression to identify tissue-specific epi-driver
genes with abnormal expression.

Screening of Candidate Tissue-specific
Diagnostic Biomarkers
For DNAm-based profiles, the primary feature selection was
conducted by Mann–Whitney U test and Met-express
algorithm. Some significant differentially methylated CpG sites
located within epi-driver genes were identified to reduce
redundant methylation sites of original datasets. Subsequently,
we conducted a second feature screening to select tissue-specific
CpG sites. The significantly methylated CpG sites between the
given tumor tissue and other tumor tissue types [one versus all,
Student’s t-test] were obtained, and the significant difference was
defined: the FDR-value was less than 0.05 and the standard
deviation (SD) was greater than 0.2 (Ding et al., 2019). Finally,
the tissue-specific CpG sites located within epi-driver genes were
selected, which played an important role in tumor progression,
such as causing metabolic reprogramming.

DNAmethylation profiles included more than 1,600 CpG sites
after the preprocessing procedure. Consequently, those CpG sites
selected by second-level feature selection were still large in
number and redundant. Therefore, we further performed
feature selection to identify tissue-specific CpG sites by
XGBoost and SHAP algorithm. Apart from that, the reason
why the second-level feature selection is used is to make the
model easier to explain, delete redundant variables without
improving performance, and reduce the complexity of the
model to avoid over-fitting.

Classifier Construction and Performance
Evaluation
The best CpG sites obtained from the secondary feature selection
were regarded as biomarkers specific to each type of tissue. In
order to construct the tissue-specific random forest model, all
classes were integrated. Because selecting the related biomarkers
(such as SNPs, gene expression profiles, and methylation profiles)
for sample classification (such as distinguishing cancer patients
from non-cancer patients) is a common goal of most omics
studies, another main goal of our research is to identify a
smaller set of biomarkers that could be used for clinical
diagnosis. Therefore, we need to minimize the number of

biomarkers to exclude “redundant” biomarkers, and at the
same time, we need to have higher prediction performance
(Díaz-Uriarte & Alvarez de Andrés 2006). In view of the
uniqueness of this study and the dimension of epigenome
data, those classification algorithms, which are used for two-
class and multi-class tasks, or when the number of features is
more than the observations, and which avoid over-fitting, would
be very interesting. Random forest has been proven to have a
better performance in many classification cases (Breiman 2001;
Statnikov et al., 2008). Therefore, the random forest algorithm
was used to construct a multi-class classifier for identifying cancer
subtypes.

We divided the cancer datasets into a training set and a testing
set according to a ratio of 7:3, which were used to build a classifier
model and evaluate performance. In addition, because the
number of samples of one subtype (given tissue class) was
smaller compared with samples of other subtypes (other tissue
classes), it would lead to imbalance. In order to solve this
problem, which seriously affects the performance of the
classifier, the under-sampling (Al-Shahib et al., 2005)
algorithm was used, which randomly selected a subset from
the multi-class samples to form a balanced dataset with the
corresponding single tissue class. Based on the balanced
datasets, a multi-class classifier was trained to distinguish
cancer subtypes (one versus all). Tenfold cross-validation was
used in the training process of multi-class classifier, and the
performance of the multi-class classifier was evaluated based on
the area under the ROC curve (AUC).

Classifier Validation Based on Metastatic
Cancer and Independent GEO Datasets
For the further validation of the performance of the classifier, the
Illumina HumanMethylation450 BeadChip data were
comprehensively queried from GEO (Gene Expression
Omnibus, https://www.ncbi.nlm.nih.gov/geo/). In the process
of data retrieval, the following conditions should be met as
much as possible which the patients without receive
neoadjuvant therapy. GSE69914 (Breast Invasive carcinoma,
305 tumor tissues without metastases), GSE48684 (Colon
Adenocarcinoma, 88 tumor tissues without metastases),
GSE89582 (Liver Hepatocellular Carcinoma, 37 tumor tissues
without metastases), GSE66836 (Lung Adenocarcinoma, 164
tumor tissues without metastases), and GSE73549 (Pancreatic
Adenocarcinoma, 57 tumor tissues without metastases) were for
the tissue-specific classifier. The validation datasets for tumor
with metastases were obtained, which were GSE58999 (43 breast
cancers with lymph node metastases) and GSE73549 and
GSE38240 (26 prostate cancers with lymph node metastases),
to evaluate the performance of identifying primary tumor sites.

Functional Enrichment Analyses
To investigate the functions of CpG sites or genes, Gene Ontology
(GO) enrichment analysis was performed using “clusterProfiler”
package (R version 4.0.2), including identification of terms in the
biological process (BP). In enrichment analysis, all the detected
genes were used as background gene sets, and the selected genes
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of interest were used as query gene sets. The GO-terms with BH-
adjusted p-value < 0.05 were considered as statistical significance.
The online database GeneMANIA (http://genemania.org, version
3.6) was used to explore biological function at the protein level
with an interaction score >0.4 as the cutoff value. Afterward, the
network was visualized in software Cytoscape (version 3.6.1).

Statistical Analysis
The Mann–Whitney U test was used to identify the significantly
methylated CpG sites between tumor tissues and matched
adjacent normal tissues (adjusted p-value < 0.05 and |△β| >
0.2), and the Bayesian algorithm based on “limma” package was
used to identify significantly expressed genes between tumor
tissues and matched adjacent normal tissues (adjusted p-value <
0.05 and |log2FC| > 2). For all cancers, the linear regression
models corrected by cancer subtypes were used to associate the
gene expression with nearby CpG sites. Genes for CpG sites
were considered as significant when the adjusted p-value was
less than 0.05. The permutation testing was used to verify the
non-random associations between methylation events and gene
expression. For the numbers of overlapping epi-driver genes
between any two cancer subtypes, the significance of overlap was
calculated using one-sided Fisher’s extract test. All p-values
were adjusted using the Benjamini/Hochberg method (BH), and
the significance was defined when the p-value after adjustment is
less than 0.05. The classifier was constructed in scikit-learn
framework (version 0.20.3) with the
“sklearn.ensemble.RandomForestClassifier” algorithm. The
hyper-parameters in random forest algorithm were optimized
based on Out of Bag (OOB) score, which were the number of
trees (10–100) and the criterion (Gini coefficient and Entropy).
The unsupervised hierarchical clustering was carried out using
Euclidean distance matrix and complete-linkage method. The
default values were used when other parameters were not
provided in functions. All statistical analyses were performed
with R version 4.0.2 and Python 3.8.

RESULTS

DNA Methylation Patterns Associated With
Cancer Progression Across Cancer Types
A locus-by-locus differential DNA methylation analysis was
performed to define differentially methylated CpG sites between
tumor tissues and matched adjacent normal tissues for each
cancer type. The enzyme network from the KEGG database and
the protein–protein interaction network from the STRING
database were integrated using the Met-express algorithm to
identify the hub genes within the regulatory network. For each
cancer type, the significant differentially methylated CpG sites
located in the hub genes have greatly changed, in which the epi-
driver genes were defined as the genes with significant
methylation (Supplementary Figure S1). The result shows
that the numbers of significant CpG sites located in epi-
driver genes ranged from 104 for THCA to 13,770 for
UCEC, with other cancer types having between 302 and
6,810 CpG sites (Supplementary Table S2). The exploratory

two-dimensional (2D) hierarchical clustering was analyzed
based on these CpG sites. The DNA methylation profiles of
tumors and matched adjacent normal tissues resulted in
separate clusters, indicating a substantial difference in DNA
methylation profiles between tumor, and non-tumor samples
(Figure 2). For the differentially methylated CpG sites, we also
investigated whether or not they corresponded to genes with
associated CpG islands (including Island, N_Shore/Shelf, and
S_Shore/Shelf). In the promoter regions (defined as the region
1.5 kb upstream or downstream of the nearest transcription
start site), the significant differentially methylated CpG sites in
all cancer types were located in CpG islands remarkably. On the
contrary, the significant methylated CpG sites across various
cancer types were located within the open-sea regions in the
gene body (Fisher’s exact test, p < 2.2 × 10−16) (Supplementary
Figure S2). Furthermore, the distribution of CpG sites showing
different methylation was significantly enriched within high
CpG island density regions, such as Island regions.

To better understand the pan-cancer DNA methylation
patterns, the abnormally methylated CpG sites for each
cancer type were integrated to explore the methylation
profiles. Although it was found that some differential
methylation patterns related to cancer progression were
shared among various cancer subtypes, each cancer subtype
showed different cancer progression characteristics from other
cancer subtypes. When comparing the methylation
characteristics of cancer subtypes, some overlapping CpG
sites were observed (Figures 3A,B). In many cases, the
overlap of methylation characteristics between any two
cancer subtypes was significant, even though the overlap
itself involved a small number of CpG sites (e.g., on the
order of 25%). In addition, we also found that a set of 730
CpG sites located within the epi-driver genes had the same
direction of change for three or more cancer subtypes,
including genes that had previously proved to have
biological functions in cancer progression such as EGFR
(Forloni et al., 2016; Apicella et al., 2018), NCOR2 (Bhasin
et al., 2015), MAML3 (Sanchez-Vega et al., 2018), TSC2 (Papp
et al., 2018), and FGFR2 (Roy et al., 2021) (Supplementary
Table S3). We further examined whether any of the CpG sites
located in epi-driver genes would be significantly enriched in
tumor tissue-specific gene markers associated with the given
cancer subtype [as obtained using The Network of Cancer
Genes (NCG)] (Repana et al., 2019). Of 2,372 tissue-specific
driver gene sets identified by Repana, only some statistically
significant association (p-value < 0.001, one-side
Hypergeometric test) was obtained. Function categories of
CpG sites located in epi-driver genes were evaluated by
using the Gene Ontology (GO) database (Supplementary
Table S4). The remarkably enriched GO terms (FDR <5%,
Fisher’s exact test) obtained with the cancer hyper-methylated
genes for at least three cancer subtypes included “T cell
differentiation”, “Leukocyte cell-cell adhesion”,
“Intracellular receptor signaling pathway”, “Vascular
endothelial growth factor receptor signaling pathway”, and
“Glutamate receptor signaling pathway”. The significantly
enriched GO terms based on the hypo-methylated genes for
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at least three cancer types included “Cell-substrate adhesion”,
“Regulation of MAP kinase activity”, “G protein-coupled
receptor signaling pathway, coupled to cyclic nucleotide
second messenger”, “Stem cell development”, “Stem cell
development”, and “Response to oxygen levels” (Figures
3C,D). We also integrated protein–protein interactions with
these abnormal methylation genes based on the STRING
database, which allowed us to explore the potential
relationships. The top 10 genes based on degree within the
interaction network involved EGFR, NOTCH1, VEGFA, ALB,
SRC, AKT1, MYC, EGF, MAPK3, and FN1, which were in
three or more cancer types. Based on the GeneMANIAmethod,
the protein–protein interaction network was constructed,
involving genes related to leukocyte migration, immune
response-regulating cell surface receptor signaling pathway,

and regulation of vascular endothelial growth factor receptor
signaling pathway (Figure 4).

Widespread Impact of DNA Methylation on
Gene Expression Patterns
As may have been expected (Zhang et al., 2020; Zhang et al.,
2018), the significantly methylated CpG sites could be related to
gene expression patterns, while DNA methylation patterns
associated with gene expression may be balanced or
unbalanced within the up-/downstream of TSS sites or
intergenic region. Therefore, a systematic pan-cancer analysis
of all epi-driver genes was performed to explore gene expression
patterns affected by abnormal DNA methylation. We aimed to
identify some genes whose abnormal expression patterns were

FIGURE 2 | The methylation profiles in tumor tissues versus the adjacent-match normal tissues for each of the 11 cancer types in The Cancer Genome Atlas
(TCGA). The Hierachical Clustering was executed by means of Euclidean distance based on the methylation status of various cancer types. Z-score was calculated
based on the methylation levels of each cancer type. The red color represents hyper-methylation and the blue color represents hypo-methylation. The letters represent
the different cancer types: (A) Bladder Urothelial Carcinoma; (B) Breast invasive carcinoma; (C) Colon adenocarcinoma; (D) Head and Neck squamous cell
carcinoma; (E) Kidney renal clear cell carcinoma; (F) Kidney renal papillary cell carcinoma; (G) Liver hepatocellular carcinoma; (H) Lung adenocarcinoma; (I) Prostate
adenocarcinoma; (J) Thyroid carcinoma; (K) Uterine Corpus Endometrial Carcinoma.
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significantly related to abnormal DNA methylation near those
genes (based on an analysis of 1,180 cases with both DNA
methylation and RNA-seq data available). Because the DNA
hyper-methylation sites in the nearby region of TSS sites were
previously associated with its downregulation of gene expression
in cancers (Gkountela et al., 2019; Zhao et al., 2020), we also
explored the fixed windows at different positions away from CpG
sites in the genome. Particularly, we have taken into
consideration CpG sites occurring 0–1,500 bp upstream of TSS
sites, 0–1,500 bp downstream of TSS sites, an intergenic region
(IGR or Open-Sea), and within the gene body (Figure 5A). As
compared to all CpG sites, CpG sites within 1,500 bp up-/
downstream of TSS sites were significantly enriched for CpG
islands involving Island, Shelf, or Shore, while CpG sites within
the gene body were significantly enriched for the intergenic
region (Open-Sea). For each of these regions, we evaluated the

correlation between DNA methylation status and the expression
patterns of genes associated with those CpG sites. Because each
cancer subtype as a group would have a unique molecular
characteristic (Hoadley et al., 2014), the cancer subtypes were
regarded as a covariant factor and used in our analysis using
linear models.

For each genomic region associated with the gene under
consideration (i.e., genes with at least three samples related to
CpG site in a given region), the widespread associations between
DNA methylation event and gene expression were found
(Figure 5B; Supplementary Table S5). For gene body,
0–1,500 bp upstream, and 0–1,500 bp downstream regions, the
numbers of significantly associated genes (Storey & Tibshirani
2003) (correcting for cancer type) were 539, 518, and 512,
respectively. Considering each of the above gene sets, there
were more genes negatively correlated with DNA methylation

FIGURE 3 | The significantly methylated CpG sites and Gene Ontology (GO) terms shared among the cancer type-specific DNA methylation signatures. For both
the CpG sites hyper-methylated in tumor tissues for at least one cancer type (A) and the CpG sites hypo-methylated in tumor tissues for at least one cancer type (B), the
numbers of overlapping CpG sites between any two cancer types are shown, along with the significance of overlap (using colorgram, and by one-sided Fisher`s exact
test); (C)GO terms significantly enriched for at least three cancer types (enrichment for cancer type defined as FDR <5% using one-sided Fisher`s exact test) within
the respective sets of the key enzyme genes hyper-methylated in tumor tissues; (D) GO terms significantly enriched for at least three cancer types within the respective
sets of the key-enzyme genes hypo-methylated in tumor tissues. Some GO terms significantly associated with tumorigenesis were enriched at least ten cancer types,
such as T-cell differentiation, Glutamate receptor signaling pathway, Cellular response to reactive oxygen species, G protein-coupled receptor signaling pathway, and
Glycogen metabolic process.
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events (i.e., when hyper-methylation events existed, the gene
expression was downregulated) than positively correlated
genes, except for the abnormal DNA methylation occurring
within the gene body, in which more genes were positively
correlated (1,697 CpG sites located within 333 genes)
compared with negatively correlated genes (851 CpG sites
located within 346 genes). On the other hand, we found more
genes related to DNAmethylation when cancer subtypes were not
used for correction (Figure 5B), reflecting DNA methylation
events as being strongly associated with cancer type. Based on the
comprehensive analysis, we also found that the abnormal
expression of a given gene was affected by multiple CpG sites
with different degrees of methylation (Figure 5C), which revealed
the complex regulation mechanism of DNA methylation.

In order to further prove the non-random correlation between
DNA methylation events and gene expression, the permutation
testing was carried out. For the entire window 0–1,500 up-/
downstream of TSS sites to gene body associated with genes,
the DNA methylation matrix was established by annotating the

methylation level related to the given region for each sample. In
each of the 1,000 tests, the DNA methylation profiles were
randomly shuffled and the correlations associated with gene
expression were computed. In the real dataset, 862 genes were
found to have significant correlation (FDR < 0.05) after
correcting for cancer subtypes. However, the permutation
results obtained an average of 0.047 “significant” genes with
an SD of 0.012 (Figure 5D). These results confirmed that
although each of the two data platforms involved the
biological and technical noise, a lot of the significant genes
observed using the actual datasets would be unexplainable by
multiple testing or noise.

Key Epi-Driver Genes in Cancer Affected by
DNA Methylation
The abnormally expressed genes related to nearby CpG sites
included many previously reported cancer-related genes
(Figure 5C). The downregulated genes associated with the

FIGURE 4 | The protein–protein interaction of the top 10 genes based on degree within interaction network by means of the GeneMANA method. The weight of
each edge was multiplied by the weight of the containing network. The size of the circle was defined as the score attribute, which indicated the relevance of each gene to
the original list based on the selected networks. Higher scores suggested genes that were more likely to be functionally related. The shaded circles represented the key-
enzyme genes significantly methylated.
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FIGURE 5 | The significantly methylated CpG sites associated with altered expression of nearby genes. (A)Numbers of significantly methylated CpG sites identified
as occurring within a gene body, 0–1.5 kb upstream of transcription start sites, 0–1.5 kb downstream of transcription start sites. (B) For each of the CpG site sets from
part (A), numbers of significant genes (FDR <5%), showing correlation between expression and associated methylation event. Numbers above and below zero point of
y-axis denote positively and negatively correlated genes, respectively. Linear regression models also evaluated significant associations when correcting for cancer
type (red). (C) Bar and pie plot of significance patterns for genes from part (B) (from the model correcting for cancer type). Bar plot shows a cumulative number of genes
containing more than a specific number of CpG sites; pie plot shows significance patterns of correlation within the different regions of partial genes (red, positive
correlation; blue, negative correlation). (D) Permutation testing (randomly shuffling the methylation event profiles and computing correlation with expression 1,000 times).
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abnormal methylation included GATA3 (participates in
activating the Th1 and Th2 cell differentiation), IGF2 (within
the PI3K–Akt signaling pathway), CACNA1H (within theMAPK
signaling pathway), WT1 (within chaperones that modulate the
interferon signaling pathway), and ADH1B (participate in
Glycolysis/Gluconeogenesis). Those results showed that the
abnormal DNA methylation events would presumably have a
role in disrupting expression of the important epi-driver genes;
for other genes, the abnormal DNAmethylation events associated
with genes could affect genomic regulatory elements. By
analyzing the biological functions of 862 genes that were
significantly related to abnormal DNA methylation located in
0–1,500 bp up-/downstream of TSS sites or within gene body
(significant for any of the promoter regions in Figures 5A–C),
gene functions by GO analysis included regulation of
angiogenesis (71 genes), epithelial cell proliferation (71 genes),
positive regulation of cell adhesion (63 genes), cell growth (50
genes), protein kinase B signaling (38 genes), and so on
(Supplementary Figure S3; Supplementary Table S6). GO
analysis showed that abnormal methylation events located

within the epi-driver genes played an important role in the
migration and deterioration of tumor cells. At the same time,
DNA methylation, as a reversible event that did not change DNA
sequence, provided the possibility for finding reliable therapeutic
targets.

As another approach to identify cancer-related genes affected
by DNA methylation events, we focused on genes in the specific
tumor-associated functional pathways. Previously, pathway-level
alterations—according to somatic mutation, CAN, or epigenetic
silencing—were investigated on the TCGA database, including
chromatin modification, the mammalian target of rapamycin
(mTOR), the SWI/SNF complex, receptor tyrosine kinase
(RTK) signaling, p53-related (e.g., TP53, RB1), Wnt/β-catenin,
andMYC (Chen et al., 2017; Zhang et al., 2017; Chen et al., 2018).
We have identified numerous tumor-associated alterations in
cancer epi-driver genes both at the level of DNAmethylation and
gene expression. Subsequently, we also asked whether there were
significant changes in the tumor-associated patterns also in
particular oncogenic signaling pathways. Using one-sided
Fisher’s exact test, we identified seven out of 10 signaling

FIGURE 6 | Significantly methylated CpG sites associated with key oncogenic or tumor-suppressive pathways. (A) For selected predefined pathways, significantly
enriched oncogenic or tumor-suppressive pathways for genes significantly correlated with occurrence of 0–1.5 kb upstream of transcription start sites, 0–1.5 kb
downstream of transcription start sites, and gene body. p-value by one-sided Fisher`s exact test. (B, C) Patterns of methylation event for selected genes from part (A).Δβ
was the differential methylation patterns (Δβ > 0, hyper-methylation in tumor tissues; Δβ < 0, hypo-methylation in the tumor tissues). In part (C), the patterns of
methylation event located within different regions for selected genes are shown (upward arrows, hyper-methylation in tumor tissues; downward arrows, hypo-
methylation in tumor tissues).
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pathways, highlighting differences in oncogenic pathways that
may be imported in cancer initiation and progression (Figure 6A;
Supplementary Table S7). Nineteen genes within three cancer-
associated pathways showed statistical significance (p-value <
0.05), with the genes involving more CpG sites (Figure 6B). At
the same time, we found that these DNA methylation sites not
only were located in the promoter regions, but also exist in the
gene body. Furthermore, most methylation sites were located in
the promoter regions and gene body in the same genes, such as

MET gene involving six abnormal methylation sites. For MET
gene, one CpG site was located in the promoter region, and five
CpG sites were located in the gene body. Those CpG sites with
abnormal methylation in the same genes affected gene expression
together (Figure 6C; Supplementary Table S8). Thus, results
have shown that the regulatory mechanism of methylation has
high complexity, and the abnormal methylation of the non-
promoter region will also provide a novel stratification strategy
and perspectives for cancers.

FIGURE 7 | Construction and validation of tumor-specific classifier based on CpG sites. (A) Features were selected using SHAP and XGBoost algorithm. The
features were ordered based on SHAP values, and the number of best features (biomarkers) was determined using accuracy based on XGBoost algorithm. (B) The
hierarchical clustering was executed by means of Euclidean distance based on the biomarkers. Z-score was calculated based on the methylation levels of the
biomarkers. (C, D) ROC of tumor-specific classifier with methylation biomarkers in the TCGA datasets and GEO datasets, respectively. (E) Two independent
datasets with metastatic cancers were used, which involved GSE58999, GSE73549, and GSE38240. The original sites of these samples were breast and prostate
tissues, which are located in lymph node tissue.
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Feature Selection and Tissue-specific DNA
Methylation Biomarkers
In order to obtain a classifier with better performance at
distinguishing the primary sites of cancer, it is crucial to screen
out the true tissue-specific features. Therefore, various strategies were
used to filter out the highly tissue-specific biomarkers from omics
datasets. Another factor to be considered in feature selection was the
feature size of different omics datasets. For DNAm-based datasets,
we used the primary feature selection to ensure that the optimal
tissue-specific CpG sites (52 CpG sites within 23 genes) were
identified, and these CpG sites showed an important influence on
the occurrence or deterioration of tumors (Supplementary Table
S7, S8). However, because the number of features obtained based on
primary feature selection was still large, the secondary feature
selection strategies (XGBoost and SHAP) were used to exclude
redundant CpG sites. Based on the XGBoost and SHAP
algorithms, we ranked each candidate biomarker. The higher the
weight, the greater the contribution to the performance of classifier.
Subsequently, each candidate biomarker was added to build classifier
in turn, and the accuracy was calculated.When the top six CpG sites
were combined to construct the classifier, the performance of the
classifier reached a plateau. Finally, the optimal number of features
(six CpG sites) was obtained using the automatic searching model of
XGBoost and SHAP algorithms, because more features would lead
to more complex model, but the performance of the classifier would
not improve correspondingly, and even lead to over-fitting
(Figure 7A). In order to verify the rationality of our feature
selection method, we constructed a heatmap for the top six CpG
sites of 11 tumor tissues of selected tissue-specific CpG sites for the
DNAm-based profiles (Figure 7B). The figure showed that some
tissues could be easily distinguished from other tissues, reflecting
strong tissue specificity.

Classifier Performance Evaluation
Actually, the performance of the classifier depended on the
quality and quantity of the selected features. In this study, we
used the balanced datasets and random forest algorithm to train

classifier based on the best features (six CpG sites). In order to
evaluate the performance of the classifier comprehensively, the
random forest algorithm was compared with the other two
benchmark classifiers (SVM and logistic regression
algorithms). After optimizing the super parameters of each
algorithm, we only recorded the best prediction results of
three classifiers (random forest, SVM, and logistic regression
classifiers). Apart from AUC, we also calculated the accuracy to
provide more useful information about cancer subtype diagnosis
(Table 2). The results showed that the random forest classifier
had the best performance compared with the other two classifiers
(SVM and logistic regression classifiers). Therefore, the
subsequent analysis was based on the random forest classifier.
We found that almost all the original tissues or cancer subtypes
were correctly identified by the random forest classifier, and the
overall testing accuracy reached 96.23% (CI 94.29%–98.17%)
(Table 2; Figure 7C).

As far as biological bias was concerned, the primary feature
selection was mainly based on the integrated analysis of multi-
omics datasets, which selected some potential biomarkers that
have an important impact on tumor progression. However, the
secondary feature selection based on XGBoost and SHAP
algorithms was explained mathematically. In the actual scene,
the datasets for detailed analysis are divided into two types: the
first is that the dimension (D) of the data is smaller than the
sample size (n); the second is that the dimension (D) of the data
may be the same as or larger than the sample size (n). With the
rapid development of biotechnology, biological data belonging to
the second data model (D > n) have appeared and accumulated in
large quantities (Negahban et al., 2010). Among them, epigenome
data (such as DNA methylation data) are a typical biological data
belonging to the second pattern. In order to use these data more
effectively, two machine learning algorithms (XGBoost and
SHAP) were used as a secondary feature selection to identify
tissue-specific CpG sites from the primary feature selection
(integration analysis of transcriptome, epigenome, and
biological regulatory network). The random forest classifier
constructed based on the secondary feature selection was

TABLE 2 | Comparison of tissue-specific classifier based on the different algorithm.

Primary site Testing dataset

SVM RF LR

ACC (%;
95% CI)

AUC (%;
95% CI)

ACC (%;
95% CI)

AUC (%;
95% CI)

ACC (%;
95% CI)

AUC (%;
95% CI)

BLCA 94.38 (93.71–95.06) 88.61 (85.79–91.44) 93.76 (93.00–94.51) 90.66 (88.45–92.86) 92.86 (91.83–93.89) 85.90 (84.49–87.31)
BRCA 94.34 (93.58–95.10) 93.40 (91.96–94.85) 94.46 (93.96–94.96) 95.33 (94.26–96.39) 91.73 (91.04–92.41) 87.02 (84.70–89.35)
COAD 99.10 (98.53–99.68) 99.52 (99.03–100.01) 98.75 (98.23–99.27) 99.34 (98.66–100.02) 98.05 (97.34–98.75) 99.44 (99.10–99.79)
HNSC 92.71 (91.88–93.53) 94.69 (93.81–95.57) 93.13 (92.03–94.23) 93.74 (92.28–95.20) 90.99 (90.42–91.55) 87.42 (86.13–88.72)
KIRC 96.84 (96.27–97.41) 96.77 (95.34–98.19) 96.33 (95.52–97.14) 97.55 (96.47–98.63) 91.81 (91.25–92.37) 92.77 (91.25–94.28)
KIRP 96.76 (96.15–97.38) 94.87 (93.71–96.02) 97.39 (96.94–97.83) 96.09 (94.56–97.62) 95.98 (95.38–96.58) 96.66 (95.22–98.09)
LIHC 99.06 (98.52–99.60) 98.17 (96.19–100.15) 98.44 (97.98–98.90) 97.96 (96.02–99.89) 99.06 (98.63–99.49) 99.13 (97.90–100.36)
LUAD 94.97 (94.54–95.40) 94.94 (93.27–96.61) 94.58 (93.79–95.37) 92.51 (90.36–94.66) 90.87 (90.11–91.63) 88.00 (85.83–90.17)
PRAD 98.52 (97.96–99.08) 99.74 (99.56–99.92) 98.21 (97.35–99.06) 99.33 (98.62–100.03) 97.50 (96.54–98.46) 99.11 (98.62–99.61)
THCA 96.80 (96.17–97.43) 98.04 (96.77–99.32) 97.11 (96.59–97.64) 98.79 (98.40–99.18) 96.25 (95.56–96.94) 98.64 (98.20–99.08)
UCEC 96.22 (95.37–97.06) 96.90 (95.39–98.41) 96.29 (95.50–97.09) 97.23 (95.30–99.16) 93.95 (93.03–94.88) 94.58 (92.19–96.98)
Average 96.34 (94.94–97.73) 95.57 (93.82–98.12) 96.22 (94.90–97.55) 96.23 (94.29–98.17) 94.46 (92.23–96.49) 93.52 (89.81–97.22)

Note: SVM, support vector machines; RF, random forest algorithm; LR, logistic regression algorithm.
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shown to have much higher accuracy within most tissues,
including those tissues that were difficult to be characterized
by miRNA expression profiles. For example, Rolf et al. (Sokilde
et al., 2014) constructed a tissue-specific classifier based on
LASSO algorithm, which has relatively lower overall prediction
accuracy (88% accuracy; CI 75%–94%) on 15 tissues. Especially
for the colorectal tissue, the overall accuracy of LASSO classifier
was 76.47%, while our six-CpG-based classifier had a higher
performance on distinguishing cancer subtypes (99.29%)
(Table 2). Similarly, the accuracy of our six-CpG-based
classifier on distinguishing bladder tissue was 95.83%, while
Rosenfeld et al.(2008) reported that the sensitivity of a
miRNA-based classifier using K nearest-neighbor algorithm
was zero. However, the testing samples and training samples
were collected from the same public database (TCGA), which
might lead to the technical illusion of such high prediction
accuracy. If we collected other independent samples from a
completely different public database, we might get a lower
prediction accuracy. In fact, this possibility has also been
considered. Our classifier was evaluated on five independent
datasets collected from the GEO database, which is completely
different from the TCGA database, and the results showed that
our algorithm still had a higher performance on these testing
samples.

We used five independent datasets coming from GEO to test
the repeatability or generalization of the classifier, and the
performances of our classifier based on GEO datasets are also
shown in Table 3. The performance of our six-CpG-based
classifier showed that those samples were correctly identified
with an AUC of more than 95% (except for BRCA: 92.89%)
(Figure 7D). This result had further demonstrated that our
integration method and algorithm had a very efficient prediction.

Tumor Origin Detection on Metastatic
Cancer Based on Multi-Omics
Although most cancer patients are primary tumors, 10%–15% of
all cancers are diagnosed as metastatic tumors. Even after a
comprehensive radiation tumor physics (B-ultrasound, CT,
MRI, and x-ray) examination, blood test, and histological
evaluation, only one-third of the tumor tissue might be
diagnosed as having a primary site (Greco 2013). Therefore,
metastatic cancers with CUP account for 30%–60% of all
cancer diagnoses, and were the seventh most common type of

cancer, ranking lower than lung cancer, prostate cancer, breast
cancer, cervical cancer, colon cancer, and stomach cancer. Since
effective metastatic cancer treatment relies on the early
identification of primary sites, patients with CUP have a poor
prognosis, with a median survival time of 3–6 months and a 1-
year survival rate of less than 25% (Geirsson et al., 2017). In
addition, many patients with CUP are diagnosed as poorly
differentiated adenocarcinoma, which makes morphological
and immunohistochemical interpretation difficult (Sokilde
et al., 2014). Therefore, the identification of primary sites is
crucial for choosing the best treatment strategy for patients
with CUP. In order to further confirm whether the cancer
tissue-specific model constructed based on the integration
strategy can be used to predict the primary site of metastatic
cancer, we used some cancer samples that have already
metastasized for testing. Due to the limited amount of
methylation chip datasets with metastatic cancer, it was
impossible to test all metastatic tumor subtypes. In our
research, we used three independent GEO datasets, which
involved GSE58999, GSE73549, and GSE38240. The original
sites of these samples were breast and prostate tissues, which
are located in lymph node tissue. The results showed that the
AUC of the six-CpG-based classifier was greater than 97%
(Table 3; Figure 7E), while Ding et al.(2019) reported that the
AUC of the 12-CpG-site-based classifier using logistic regression
algorithm was from 70% to 90%. The results proved that the
classifier constructed based on an integration strategy of multi-
omics datasets can better identify tumor original sites. These
findings provide greater potential for improving the diagnosis
and treatment of patients with CUP other than the primary
cancer.

DISCUSSION

The metastatic cancers of unknown primary (CUP) sites usually
have relatively low survival rate and survival time, because the
best treatment largely depends on the correct identification of the
primary sites. Therefore, there have been many methods to
improve the diagnostic pathology of CUP, including the
immunohistochemical method originally used for tumor
subtype analysis (Oien 2009), proteomic analysis (Bloom et al.,
2007), reverse transcription PCR strategy (Horlings et al., 2008),
and large-scale mRNA chip (Horlings et al., 2008). However,

TABLE 3 | Evaluation of tissue-specific classifier based on the independent datasets.

Tissues Testing sets—01 Testing sets—02

GEO datasets ACC (%;
95% CI)

AUC (%;
95% CI)

GEO datasets ACC (%;
95% CI)

AUC (%;
95% CI)

BRCA GSE69914 87.80 (86.74–88.87) 92.95 (91.59–94.31) GSE58999 91.85 (90.70–93.01) 97.08 (96.72–97.45)
COAD GSE48684 99.15 (98.34–99.95) 99.95 (99.89–100.00)
LIHC GSE89582 95.28 (94.29–96.27) 98.40 (97.48–99.32)
LUAD GSE66836 90.75 (89.70–91.80) 96.04 (95.01–97.07)
PRAD GSE73549 95.47 (94.63–96.32) 98.73 (98.07–99.40) GSE38240 91.39 (89.84–92.93) 97.02 (96.70–97.34)

Note: Testing dataset 1 from the GEO database was used to evaluate the performance of tissue-specific classifier; testing dataset 2 from the GEO database was applied to evaluate the
performance distinguishing the primary sites of metastatic cancers.
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these methods have low sensitivity, have s complicated
experimental operation, and have difficulty in identifying
highly differentiated metastatic cancers (Ramaswamy et al.,
2001; Rosenfeld et al., 2008; Sokilde et al., 2014; Tothill et al.,
2005). DNA methylation is highly tissue-specific and can be used
to classify tumor subtypes, such as adrenocortical carcinoma
(Assie et al., 2014), acute myeloid leukemia (Cancer Genome
Atlas Research et al., 2013), hepatocellular carcinoma (Xu et al.,
2017), and other cancer of unknown primary sites (Moran et al.,
2016). In addition, because the changes of epigenome (such as
DNA methylation) are often reflected at the transcriptome level,
integrating epigenome and transcriptome can broaden our
understanding of the molecular mechanism of biomarkers.
The integration of gene co-expression network and biological
network (including the metabolic regulation network and
protein–protein interaction network) further provides
systematic insights into the changes in metabolic network
strictly regulated by transcription network. These
interconnected networks can potentially be used to identify the
new therapeutic targets and biomarkers (Chakraborty et al.,
2018). Based on the integration strategy of multi-omics data,
we found that these significant differentially methylated CpG sites
located within epi-driver genes have certain tissue specificity
(Figures 3A,B). As we all know, DNA methylation on CpG
islands located in the promoter region is related to gene silencing,
but genome-wide research using large-scale parallel sequencing
has been able to detect methylation sites other than CpG islands,
thus extending the mechanism of epigenetics-mediated
transcription regulation to interested genome regions. For
example, Jones (2012) has shown that abnormal DNA
methylation in the gene body was closely related to the
occurrence of diseases and was often positively related to gene
expression. Arechederra and other researchers found a large
number of hyper-methylated and highly expressed genes
located in CpG islands in the mouse hepatocyte model, and
these significantly hyper-methylated CpG sites existed in 5′-UTR
or gene body. It was worth noting that the epigenetic events of
upregulation of gene expression caused by hyper-methylation
also occurred in 56% of HCC patients, who belong to cell
proliferation subtypes (Arechederra et al., 2018). In a study of
prostate cancer, Zhao et al. found the significant association
between abnormal DNA methylation located in intergenic
regions and carcinogenesis based on an integrated study of
whole-genome, whole-methylome, and whole-transcriptome
sequencing (Zhao et al., 2020). In addition, abnormal DNA
methylation located in the Shelf/Shore regions extending from
CpG islands to 2 kb has been identified as the key element of gene
regulation (Irizarry et al., 2009a), including enhancer region and
alternative transcription sites (Heyn et al., 2016). In our study,
some significant differentially methylated CpG sites also existed
in gene body and intergenic regions, which led to the abnormal
expression in the epi-driver genes (Figures 5, 6). Function
enrichment analysis further showed that genes with abnormal
methylation located in gene body or intergenic regions were also
significantly associated with tumor progression (Supplementary
Figure S3). Therefore, these epigenetic changes would be also the
most attractive targets for cancer treatment or intervention.

Based on multi-omics data, we found some abnormal
methylation sites (Supplementary Table S7, S8) in epi-driver
genes that are closely related to cancer progression. However, in
order to build a model with strong generalization performance for
identifying cancer subtypes, we need to further screen meaningful
molecular features. After filtering by multi-omics strategy, the
ensemble strategies (XGBoost and SHAP) were used to filter the
important molecular markers. Ensemble strategies have the
performance of complex machine learning algorithms and the
intuitive understanding of simple classifiers, and they are
powerful and easy to train (Sokilde et al., 2014). Subsequently,
we obtained the six aberrant methylation sites located in the five
epi-driver genes (Figure 7A). These genes are closely related to
the occurrence and progression of cancer, such as EGFR and
CBLC genes related to cancer cell proliferation and
differentiation, and intercellular signal transduction and
ubiquitination modification; DLL4 and ERRFI1 genes related
to cell adhesion, cell migration, and angiogenesis; and MET
gene associated with apoptosis and cell invasion. Then, based
on the random forest algorithm, the average accuracy in the
training datasets and testing datasets from TCGAwere more than
96%. However, the accuracy of breast cancer in the independent
datasets (GEO database) was 87.80%, which was lower than that
of other malignant cancers. It might be caused by the differences
in processing methods of different datasets and the
morphological polymorphism, dedifferentiation, or poor
differentiation of cancer tissues. In addition, the accuracy of
colorectal cancer was 99.15% in independent datasets from the
GEO database. However, Tang et al. constructed a random forest
classifier based on miRNA features, while the accuracy of
colorectal cancer was only 83.44% (Tang et al., 2018). Rolf
et al. constructed a LASSO classifier based on miRNA features
from 15 cancer subtypes, and its accuracy of colorectal cancer was
lower (76.74%) (Sokilde et al., 2014). Finally, we also tested based
on two independent metastatic datasets from GEO, and the AUC
and accuracy of determining the primary sites of metastatic
cancer were more than 97% and 90% (Figure 7E),
respectively. To sum up, the multi-omics strategy can find the
abnormal methylation sites located in the epi-driver genes and
identify the primary sites of metastatic cancer with a higher
accuracy or distinguish the subtypes of cancer tissues.

In summary, based on genome-wide methylation profile,
we identified six CpG sites that can effectively identify the
origin sites of metastatic cancers and distinguish the
subtypes of cancer tissues with the help of multi-omics
strategy, and constructed a diagnostic model with a better
performance. Interestingly, six significantly abnormal
methylation sites were located in different regions of the
epi-driver genes, which indicated the complexity of
epigenetic mechanism. Enrichment analysis showed that
these genes were associated with the growth, proliferation,
migration, and signal transduction of tumor cells.
Furthermore, it was worth noting that the AUC of the six-
CpG-based classifier was greater than 97% when identifying
the primary sites of metastatic cancers. Altogether, our six-
CpG-based model has shown good performance in both
training and validation datasets and has shown great
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potential in the diagnosis of pan-cancer or metastatic
cancers.
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