Skip to main content

METHODS article

Front. Genet., 21 October 2021
Sec. Computational Genomics
This article is part of the Research Topic Methods and Applications: Computational Genomics View all 43 articles

A Novel Collaborative Filtering Model-Based Method for Identifying Essential Proteins

Xianyou Zhu,
&#x;Xianyou Zhu1,2*Xin He
&#x;Xin He3*Linai KuangLinai Kuang3Zhiping ChenZhiping Chen4Camara LancineCamara Lancine5
  • 1College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
  • 2Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang, China
  • 3College of Computer, Xiangtan University, Xiangtan, China
  • 4College of Computer Engineering and Applied Mathematics, Changsha University, Changsha, China
  • 5The Social Sciences and Management University of Bamako, Bamako, Mali

Considering that traditional biological experiments are expensive and time consuming, it is important to develop effective computational models to infer potential essential proteins. In this manuscript, a novel collaborative filtering model-based method called CFMM was proposed, in which, an updated protein–domain interaction (PDI) network was constructed first by applying collaborative filtering algorithm on the original PDI network, and then, through integrating topological features of PDI networks with biological features of proteins, a calculative method was designed to infer potential essential proteins based on an improved PageRank algorithm. The novelties of CFMM lie in construction of an updated PDI network, application of the commodity-customer-based collaborative filtering algorithm, and introduction of the calculation method based on an improved PageRank algorithm, which ensured that CFMM can be applied to predict essential proteins without relying entirely on known protein–domain associations. Simulation results showed that CFMM can achieve reliable prediction accuracies of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database, which are remarkably higher than 14 competitive state-of-the-art predictive models as a whole, and in addition, CFMM can achieve satisfactory predictive performances based on different databases with various evaluation measurements, which further indicated that CFMM may be a useful tool for the identification of essential proteins in the future.

Introduction

Researches show that essential proteins are not only important for survival of organisms but also play critical roles in the development of life processes. Hence, it is of practical significance to identify potential essential proteins (Meng et al., 2021). With the development of biotechnologies, some essential proteins have been identified successively by traditional biological experiments such as single gene knockouts (Giaever et al., 2002), RNA interference (Cullen and Arndt, 2005), and so on. However, since these traditional biological experiments are quite time consuming and expensive, it has become a hot topic to predict essential proteins by developing computational models (Wang et al., 2013). Up to now, a large number of computational models have been developed to detect essential proteins based on protein–protein interaction (PPI) networks, which can be roughly classified into two major categories. Among them, the first category of models focuses on adopting only topological features of PPI networks to predict essential proteins. For instance, based on the rule of centrality–lethality proposed (Jeong et al., 2001), a series of models, such as DC (Degree Centrality) (Hahn and Kern, 2005), SC (Subgraph Centrality) (Estrada and Rodríguez-Velázquez, 2005), BC (Betweenness Centrality) (Joy et al., 2005), EC (Eigenvector Centrality) (Bonacich, 1987), IC (Information Centrality) (Stephenson and Zelen, 1989), CC (Closeness Centrality) (Wuchty and Stadler, 2003), and NC (Neighbor Centrality) (J. Wang et al., 2012), have been designed in succession for inferring essential proteins based on topological features of PPI networks. Except for these models, Li et al., 2011) proposed a novel model called LAC to predict potential essential proteins based on neighborhoods of protein nodes in PPI networks. B. Xu et al. (2019) developed a model to detect essential proteins by applying random walks on PPI networks. Wang et al. (2011) presented a model called SoECC based on edge clustering coefficients to infer essential proteins. Qin et al. (2016) designed a method called LBCC based on characteristics of PPI networks to predict essential proteins. However, due to the incompleteness of PPI networks, all these first category of models cannot achieve satisfactory prediction accuracies of potential essential proteins.

In order to overcome the incompleteness of PPI networks, in recent years, another category of models have been proposed by integrating topological features of PPI networks and some biological information of proteins to infer essential proteins. For example, Chen et al. (2017) developed a computational model to infer essential proteins by combining PPI networks with gene ontology and KEGG pathway. Zhang X. et al. (2018) presented a prediction model by combing gene expression data with PPI networks to predict essential proteins. W. Peng et al. (2015a) proposed a prediction model called UDoNC by integrating protein domains with PPI networks to infer essential proteins. Jiang et al. (2015) developed a method called IEW to detect key essentials by combining domain interactions and topological features of PPI networks. Zhao et al. (2019) put forward a prediction model called RWHN to infer key proteins by integrating PPI networks with protein domains and some other biological information. Lei et al. (2018) put forward a prediction model named RSG by integrating subcellular localization and GO data of proteins with PPI networks to infer key proteins. Y. Fan et al. (2016) proposed a novel prediction model by adopting Pearson correlation coefficients and subcellular localization to update the PPI network Qin et al. (2017) put forward a method for recognizing essential proteins based on the topological information of PPI networks and orthologous information of proteins. Peng et al. (2012) proposed an advanced iterative algorithm named ION for identifying key proteins based on the topological information of PPI networks and homologous information of proteins. Li et al. (2012) put forward a novel prediction method called Pec through integrating the PPI network with the gene expression of proteins to improve the accuracy of the prediction model. Zhang et al. (2013) presented a novel calculation model named CoEWC by combining PPI networks with the gene expression profiles of proteins to recognize potential key proteins. Liu et al. (2020) proposed a novel prediction model named DEP-MSB by integrating biological features of proteins and topological features of PPI networks. Zhao et al. (2014) put forward an advanced iterative algorithm named POEM for detecting key proteins through combining gene expression data of proteins and topological properties of PPI networks to infer key proteins. Fang et al. (2018) proposed a novel feature selection model named ESFPA by adopting improved swarm intelligence to identify key proteins. Liu et al. (2018) developed an advanced model named EPPSO to recognize key proteins through utilizing improved particle swarm optimization. Zhang W. et al. (2018) presented a computational model called TEGS to recognize key proteins by combining biological information of proteins and topological features of PPI networks. S. Li et al. (2020) developed a novel prediction model called CVIM by combining PPI networks and orthologous information of proteins for inferring essential proteins. Z. Chen et al. (2020) presented a novel strategy named NPRI by combining various biological data of proteins and the topological features of PPI networks to infer key proteins. Although the second category of methods can greatly improve the predictive accuracy of potential essential proteins, it remains to be a challenging work to scientifically integrate topological features of PPI networks and biological features of proteins to effectively improve the accuracy of essential protein prediction.

Inspired by the above methods, in this paper, a novel Collaborative Filtering Model-based Method (CFMM) was proposed to predict potential essential proteins, in which, an original protein–domain interaction (PDI) network was constructed first, and then, considering that the number of known interactions between domains and proteins was quite limited, an updated PDI network was built by applying the collaborative filtering algorithm on the original PDI network. Next, based on the updated PDI network, some key topological features and biological features of proteins were extracted, which would be further integrated together to infer potential essential proteins based on an improved PageRank algorithm. Finally, in order to estimate the performance of CFMM, it was compared with 14 competitive prediction models such as DC (Hahn and Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005), BC (Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson and Zelen, 1989), CC (Wuchty and Stadler, 2003), NC (J. Wang et al., 2012), ION (Peng et al., 2012), Pec (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM ((Zhao et al., 2014), TEGS (Zhang W. et al., 2018), CVIM (S. Li et al., 2020), and NPRI (Z. Chen et al., 2020) based on three kinds of well-known public databases. And as a result, CFMM can achieve better prediction accuracies than all these competing methods.

Materials

In this section, in order to construct the original PPI network, we first downloaded known PPI data from the DIP database (Xenarios et al., 2002), the Krogan database (Krogan et al., 2006) and the Gavin database (Gavin et al., 2006) separately. After removing self-interactions and repeated interactions, we finally obtained 1,167 essential proteins, 3,926 nonessential proteins, and 24,743 known interactions between 5,093 proteins from the DIP database, 14,317 known interactions between 3,672 proteins from the Krogan database, and 7,669 known interactions between 1855 proteins from the Gavin database, respectively. Moreover, we downloaded the dataset of 1,107 different domains from the Pfam database (Bateman et al., 2004). The subcellular localization data from the COMPARTMENTS databases (X. Peng et al., 2015b), (Binder et al., 2014), which consists of 4,865 proteins involved in 11 kinds of subcellular localizations, including the cytoskeleton, mitochondrion, nucleus, peroxisome, plasma, extracellular, endosome, vacuole, endoplasmic, cytosol, and Golgi. Additionally, The gene expression data were provided by Tu et al. (2005), which include 6,777 gene expressions products and 36 samples. The dataset of orthologous information of proteins are from the InParanoid database (Östlund et al., 2010), which includes a collection of pairwise comparisons between 100 whole genomes. Finally, in order to verify the accuracy of CFMM, we further downloaded a set of 1,293 essential genes from four diverse databases such as MIPS (Mewes et al., 2004), DEG (Zhang and Lin, 2009), SGD (Cherry et al., 1998), and SGDP (Saccharomyces Genome Deletion Project, 2012) separately. The detailed information of datasets downloaded from the DIP, Krogan, and Gavin databases are shown in the following Table 1.

TABLE 1
www.frontiersin.org

TABLE 1. Detailed information of datasets downloaded from the DIP, Krogan, and Gavin databases.

3 Method

As illustrated in Figure 1, CFMM consists of the following three major steps:

FIGURE 1
www.frontiersin.org

FIGURE 1. Flowchart of collaborative filtering model-based method (CFMM).

Step 1: First, an original PDI network will be constructed based on known protein–domain interactions downloaded from given public databases, and then, a recommendation matrix will be obtained by applying the collaborative filtering algorithm on the original PDI network.

Step 2: Next, based on known PPI data and biological information of proteins downloaded from public databases, key topological features and biological features of proteins will be extracted separately, and then, an improved entropy weight method will be applied to effectively integrate all these features.

Step 3: Finally, based on a newly designed distribution rate matrix, an iterative algorithm will be proposed to infer potential essential proteins based on an improved PageRank algorithm.

Construction of Protein–Domain Interaction

Based on known protein–domain interactions downloaded above, we can first construct an original network PDI as follows: for any given protein node pi  and domain node  dj, if and only if there is a known interaction between them, there is an edge between pi and  dj in PDI. Then we can further obtain an adjacency matrix  AMpd as follows: for any given protein pi and domain  dj, if and only if there is a known interaction between pi and  dj, there is AMpd(pi,dj) = 1; otherwise, there is AMpd(pi,dj) =0. Due to limited known PDI, obviously, AMpd is a sparse matrix. Hence, in order to improve the density of AMpd, we will apply the collaborative filtering algorithm on AMpd according to the following steps:

Step 1: Applying the protein-based collaborative filtering algorithm on PDI as follows:

First, based on AMpd and PDI, we will construct a novel co-occurrence matrix CMPP as follows: for any two given proteins pi and pj, there is  CMPP(pi,pj) = 1, if and only if there is at least one common domain node existing between them; otherwise, there is  CMPP(pi,pj)=0. Hence, a similarity matrix SMPP between protein and protein can be calculated after normalizing CMPP as follows:

SMPP(pi,pj)={|N(pi)N(pj)||N(pi)|×|N(pj)|:if ij0:Otherwise(1)

Here, |N(pi)| denotes the number of known domains associated to pi in PDI; in other words, it denotes the sum of elements equaling to one in the ith row of AMpd. |N(pi)N(pj)| represents the number of known domains related to both pi and pj simultaneously.

Based on matrices  AMpd and SMPP, we can further obtain a novel recommendation matrix RMPD as follows:

RMPD=SMPP×AMpd(2)

Next, for any given protein node pi and domain node dj in PDI, if the interaction between pi and dj is associated already, then for a protein node pk other than pi, it is no doubt that the higher the similarity between pk and pi, the more possibility that there may exist a potential association between  pk and dj. Thereafter, we can define the recommendation standard between protein pk and dj  based on the similarities between proteins as follows:

Stdpk dj=1N×i=1NRMPD(pi,dj)(3)

Here, N denotes the number of proteins in PDI. Based on the above Eq. 3, for any given domain node dj, if there is a protein node  pk  satisfying RMPD( pk,dj)>Std pk dj, then we will further recommend the protein pk to the domain dj. Thereafter, we will add a new association edge between pk and dj in AMpd and obtain an update protein–domain adjacency matrix UAMpd.

Step 2: Applying the domain-based collaborative filtering algorithm

Similarly, we can also obtain an original adjacency matrix AMdp and a co-occurrence matrix CMdd. Obviously, as for the matrix AMdp, there is AMdp=AMpdT. However, as for the matrix CMdd, for any two given domains di and dj, there is  CMdd(di,dj)=1, if and only if there is at least one common protein node existing between them; otherwise, there is  CMdd(di,dj)=0. After normalizing CMdd, we can calculate the similarity between di and dj as follows:

SMDD(di , dj)={|N(di)N(dj)||N(di)|×|N(dj)|,if kr0,Otherwise,(4)

where |N(di)| represents the number of known proteins associated with di in PDI, and |N(di)N(dj)| represents the number of known proteins related to di and dj simultaneously.

We can as well define the recommended standard and recommendation matrix as follows:

RMDP=SMDD×AMdp(5)
Stddkpj=1M×i=1MRMDP(di,pj)(6)

Here, M means the number of domains in PDI. In particular, if there exists a domain node dk in the ith column of RMDP satisfying RMDP(dk,pj)>Stddk pj, then we further recommend the protein dk to domain pj. Thereafter, we also add a new association edge between dk and pj in AMdp and obtain an update association UAMdp.

Step 3: Mutual recommendation between proteins and domains

Based on the updated matrix  UAMpd and UAMdp, the UAMpd is N×M dimension matrix, and UAMdp is M×N matrix. By transposing the matrix AMdp, it is obvious that we can construct the mutual recommendation matrix MRM as follows:

MRM(pi , dj)={UAMpd(pi , dj)+ UAMdpT(pi , dj),otherwise1,if  UAMpd(pi , dj)=1 and  UAMdpT(pi , dj)=1(7)

For instance, according to Figure 1 and the given matrix  AMpd=[11100010010010000011], we can obtain its corresponding matrices CMPP, SMPP, and  RMPD as follows:

CMPP=[0111010000100101010100010],SMPP=[00.50.710.500.500000.7100100.500.7100.710000.710],RMPD=[0.51.210.50.50.50.5000.711.4100.710.51.2100.7100.7100.71]

To be specific, as illustrated in Figure 1, if tanking the domain node d1 as an instance, then it is obvious that there are two protein nodes p1 and p2 associated with d1 from the matrix AMpd. In addition, according to Eq. 2, we can as well obtain the recommended standard RMPD (p3,d1)=0.71 >Stdp3 d1=0.44. Hence, we will recommend the protein node p3 to d1. In the same way, the protein node p4  will be recommended to d1 as well. On the contrary, RMPD (p2,d2)=0.5 and RMPD (p5,d2)=0.5 are less than the recommended standard  Stdp2 d2 = Stdp5 d2 = 1.01. So there is no need to recommend the protein node p2  and p5 to d2. In addition, according to a previous description, it is obvious that these novel edges between p3 and d1, p4 and d1, p1 and d3, p3 and d4 will be added to the original protein–domain association matrix AMpd in the same time. Similarly, we can apply the domain-based collaborative filtering algorithm. Thereafter, we can obtain a recommendation protein–domain adjacency matrix based on PDI. Finally, as shown in Figure 2. We can get the mutual recommendation matrix MRM.

FIGURE 2
www.frontiersin.org

FIGURE 2. Flowchart of mutual recommendation.

Construction of the Weighted Protein–Protein Interaction Network

For any two given protein pi and pj, we estimate the relationship between pi and pj by applying the Gaussian kernel interaction profile (van Laarhoven et al., 2011) and further obtain an N×N dimensional weight matrix between proteins WBP based on the mutual recommendation matrix MRM.  WBP(pi , pj)  represents the relationship between protein pi and pj, and it can be defined as follows:

WBP(pi, pj)=exp(δpIP(di)IP(dj))2(8)

where

δp=δp1Ni=1NIP(di)2(9)

Here, IP(di) and IP(dj) represents the vector at the ith and jthcolumn of the mutual recommendation matrix MRM separately. δp is an adjustment coefficient, which controls kernel bandwidth based on normalizing the new bandwidth parameter  δp.

Calculate the Score of Multiple Features of Protein

Previous research has indicated that with similar functions, co-expressed and complex topologies are more likely to be essential proteins. Inspired by them, in this paper, we combine biological and topological features to detect potential proteins by subcellular localizations, gene expression data, and orthologous information and PPI networks.

It is obvious that the location information of a protein in a cell is an important characteristic of essential proteins. First, we analyze the 11 kinds of subcellular location relationship between the known essential proteins, and the Figure 3 statistical distribution of each subcellular location is shown in Figure 4. We can find that essential proteins are not randomly distributed in different subcellular locations, and essential proteins appear more often in the nucleus and mitochondrion, which means that proteins in the nucleus and mitochondrion are more possible to be essential proteins. What is more, from Figure 4, there are more essential proteins in the nucleus and mitochondrion and a few essential proteins in the peroxisome and extracellular, which provides us with convenience.

FIGURE 3
www.frontiersin.org

FIGURE 3. Statics of localization for known key proteins.

FIGURE 4
www.frontiersin.org

FIGURE 4. The number of proteins in each subcellular locations based on the DIP and Krogan protein databases.

In order to distinguish the importance of different subcellular locations, let Nsub means the number of all subcellular localizations and  Nsub(i) represent the number of proteins associated with the ith subcellular localization. Then Avesub denotes the average number of proteins related to each subcellular localization. The score of the ith subcellular localization Evesub(i) can be expressed as follows:

Avesub=i=1NsubNsub(i)Nsub(10)
Evesub(i)=Nsub(i)Avesub(11)

Let Sub(pk) represent the set of subcellular localizations associated with the protein pk. Therefore, for a given protein pk, its subcellular localization score Prosub(pk) is computed as the sum of the scores of all subcellular locations where it appears.

ProSub(pk)=iεSub(pk)Evesub(i)(12)

Similar to describing subcellular scores, for any given protein pk, let Proort(pk) mean the score of orthologous information. Hence, we can define its feature of orthology information score for pk as follows:

ProOrt(pk)=Ort(pk)maxpiεPPI{Ort(pi)}(13)

We use the Pearson correlation coefficient (Priness et al., 2007) as a similarity measure of gene expression profiles to calculate the expression intensity of two genes.

PCC(pk,pr)=1n1i=1n(Exp(pk,i)Exp(pk)¯σ(pk))(Exp(pr,i)Exp(pr)¯σ(pr))(14)

Here Exp(pk,i) represents the expression level of pk at the ith time node. Exp( pk)¯ is the average gene expression value of protein  pk, and σ(pk) is the standard deviation of protein  pk. Thereafter, let  NG(pk) denote the set of neighbors of protein  pk. So we can compute its new functional score of protein pk as follows:

ProExp(pk)=exp(pk)maxpiεPPI{exp(pi)}(15)

where

exp(pk)=prεNG(pk)PCC(pk,pr)(16)

It is a fact that essential proteins are more likely products of complex functions (Dezso et al., 2003). In addition, it is obvious that triangles have stable characteristics. Inspired by this, we further utilize the major triangle topological feature calculated by the original PPI network for obtaining each protein topological feature score. Therefore, for a given protein pk, we can calculate the topological feature score as follows:

ProTri(pk)=prεNG(pk)NG(pk)NG(pr)NG(pk)(17)

Based on the above formulas for any given protein pk, we can obtain the main topological and biological feature scores.

In order to effectively solve the problem of multifeature integration, we apply an improved entropy weight method (Dastbaz et al., 2018) to automatically generate the best parameters to integrate biological features. Based on the protein characteristics we have normalized, let {BFi1,BFi2,...BFiM} represent all features; then we can further construct an N×M dimensional matrix BF and an M×1 dimensional matrix PM as follows:

BF=[BF11BF1MBFN1BFNM](18)
PM=[p1pM](19)

Next, based on our normalized biological features, we can obtain the entropy value of each feature separately as follows:

ei=1lnNi=1NBFij.ln(BFij)(20)

Therefore, for the ith protein biological feature, we can calculate the entropy weight of each feature by the following formula:

wj=(1ei)i=1M(1ei)(21)

Based on the above formula, for a given protein pk , we can further calculate its integrated biological score as follows:

proBio(pk)=k=1MwjBFkj(22)

Finally, according to the above Eq. 18, for any given protein pk, we can further obtain its initial score as follows.

proscore(pk)=λ×proBio(pk)+(1λ)×ProTri(pk)(23)

Here, λ is a proportion parameter with a value between 0 and 1.

Construction of the Prediction Model Collaborative Filtering Model-Based Method

According to WBP, our prediction model CFMM can apply improved PageRank to identify potential proteins. Let WP(pk , pr)=WBP(pk , pr)(1+max(WBP(pk , pr)))2, and for any two given proteins pk and pr, we can define the distribution rate possibility matrix as follows:

DRPM(pk , pr)={WP(pk , pr)×proscore(pr)piεNG(pk)proscore(pi)if WP(pk , pr)00,Otherwise(24)

Based on the above distribution rate matrix DRPM, let a possibility vector proScore(t), proScore(t+1) mean the score vector of protein at the tth and t+1th time separately; therefore, we can iteratively compute the protein ranks as follows:

proScore(t+1)=α×proScore(t)×DRPM+(1α)×proScore(0)(25)

Here the parameter α ∈ (0, 1) in order to adjust the proportion proscore(t) and initial score  proscore(0).

Based on the above descriptions, our prediction method CFMM can be concisely described as follows.

Performance Evaluation

Comparison Between Collaborative Filtering Model-Based Method and 14 Representative Methods

In order to further evaluate the performance of CFMM in this section, two different datasets, the DIP database and the Krogan database, are adopted to compare CFMM with 14 competitive detection models, which include DC (Hahn and Kern, 2005), SC (Estrada and Rodríguez-Velázquez, 2005), BC (Joy et al., 2005), EC (Bonacich, 1987), IC (Stephenson and Zelen, 1989), CC (Wuchty and Stadler, 2003), NC (J. Wang et al., 2012), ION (Peng et al., 2012), Pec (Li et al., 2012), CoEWC (Zhang et al., 2013), POEM ((Zhao et al., 2014), TEGS (Zhang W. et al., 2018), CVIM (S. Li et al., 2020), and NPRI (Z. Chen et al., 2020). For the purpose of observing the accuracy of the experiment more intuitively, we chose to use a bar graph to compare the 1, 5, 10, 15, 20, and top 25% of each method. Figure 5 shows that the comparison of the identifying results of different algorithms on the DIP and Krogan database separately. From Figure 5A, the newly put forward CFMM method detected a larger number of essential proteins in the top 1–25% compared with 14 other competitive methods. It is obvious that CFMM can reach the accuracy of 92.16, 83.14, 71.37, 63.87, 55.84, and 52.43% in the top 1, 5, 10, 15, 20, and 25% predicted candidate key proteins based on the DIP database. Among the top 25% proteins predicted by the CFMM method, there are 668 proteins correctly detected, which indicates that the CFMM method has superior advantages over other methods. From Figure 5B, we can see that CFMM can reach the accuracy of 94.59, 75.54, 70.03, 65.34, 60.08, and 54.68% in the top 1, 5, 10, 15, 20, and 25%, which are superior to all 14 advanced methods, except that in the top 10% CFMM-predicted 257 proteins, they are a little lower than NPRI. Therefore, we can make a conclusion that CFMM always obtains the better prediction accuracy from the top 1% to the top 25%.

FIGURE 5
www.frontiersin.org

FIGURE 5. (A) Performances achieved by CFMM and other candidate methods under the DIP database. (B) Performances achieved by CFMM and other candidate methods under the Krogan database.

Validated by Jackknife Methodology

Due to the jackknife methodology (Holman et al., 2009) that can evaluate the advantages and disadvantages of the prediction model, in this section, we will apply the jackknife method to assess the predictive effect of our proposed mode CFMM. Figures 6, 7 show the experimental comparisons between CFMM and 14 advanced competitive methods based on the first 1,000 candidate proteins. By observing Figure 6A, it is obvious that CFMM can achieve better performance than the seven network topology-based methods including DC, SC, BC, EC, IC, CC, and NC. What is more, Figure 6B shows that the performance of CFMM is better than the other seven methods that are based on the combination of biological information of proteins and PPI networks including Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI. From Figure 7A, we can easily conclude that the CFMM is advanced than these centrality-based methods including DC, IC, EC, BC, CC, SC, and NC. Although the performance curves of CFFM and NPRI overlap partially, as the number of candidate proteins increases to 450, the predictive performance of CFMM will be significantly higher than that of NPRI. Therefore, based on the above description, we can make a conclusion that the performance of CFMM is not only superior to the first category of methods, such as DC, SC, BC, EC, IC, CC, and NC, but also better than these multiple biological data methods including Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

FIGURE 6
www.frontiersin.org

FIGURE 6. Comparison of jackknife curves of CFMM and 14 other methods under the DIP database. (A) Comparison between CFMM and DC, IC, EC, SC, BC, CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

FIGURE 7
www.frontiersin.org

FIGURE 7. Comparison of jackknife curves of CFMM and 14 other methods under the Krogan database. (A) Comparison between CFMM and DC, IC, EC, SC, BC, CC, and NC. (B) Comparison between CFMM and Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

Differences Between Collaborative Filtering Model-Based Method and Competitive Methods

In order to further prove the accuracy of the CFMM model, we will analyze the differences between CFMM and other models based on the top 100 predicted proteins under the DIP database and the Krogan database separately, and comparison results are shown in Tables 2, 3, respectively. Here ME denotes one of the 14 competitive methods. |CFMMME| represents the number of essential proteins predicted by both CFMM and ME. |CFMMME| denotes the number of essential proteins recognized by the CFMM but not by ME, and |ME−CFMM| means the number of key proteins predicted by ME but ignored by CFMM. In addition, {CFMMME} represents the set of key proteins recognized by CFMM but not by ME. {MECFMM} means the set of essential proteins predicted by ME but not by CFMM. Hence, Tables 2, 3 show the difference between the 14 competitive methods and CFMM under the DIP and Krogan datasets separately. Figure 8 indicates that CFMM can achieve much better predictive performance than all these competing methods as a whole.

TABLE 2
www.frontiersin.org

TABLE 2. The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the DIP database.

TABLE 3
www.frontiersin.org

TABLE 3. The connection and difference between CFMM and 14 competing methods based on the top 100 ranked proteins in the Krogan database.

FIGURE 8
www.frontiersin.org

FIGURE 8. The X-axis represents different protein predicted methods. The Y-axis represents the proportion of essential proteins in {ME−CFMM} or {CFMM−ME}.

Validation by Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve and precision recall curve (PR) are used to scientifically prove the performance of the prediction model. The area under the curve (AUC) is used to evaluate the performance of the prediction method. The closer the AUC value is to 1, the better the prediction performance of the method. The curve can be plotted by the ratio of true positive rate (TPR) to false positive rate (FPR) according to different thresholds (Peng et al., 2020). Hence, we will further utilize the ROC curves to compare CFMM with other advanced models. Figures 9, 10 indicate that the ROC curves and PR curves of CFMM and other competitive models are based on the DIP and Krogan databases separately. It is obvious that CFMM has a higher AUC curve than other competitive models. Although we can see that the ROC curve of CFMM and the NPRI ROC curves overlap slightly, the AUC value of CFMM is higher than NPRI. Finally, in order to prove the applicability of CFMM, we will further test it in the Gavin database and compare with other methods. The experimental results are shown in Tables 4, 5.

FIGURE 9
www.frontiersin.org

FIGURE 9. The precision recall (PR) curves and receiver operating characteristic (ROC) curves between CFMM and other advanced methods based on the DIP database. (A) The PR curves and the ROC curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

FIGURE 10
www.frontiersin.org

FIGURE 10. The PR curves and ROC curves between CFMM and other advanced methods based on the Krogan database. (A) The PR curves and the ROC curves of DC, BC, SC, NC, EC, IC, and CC. (B) The PR curves and the ROC curves of Pec, CoEWC, POEM, ION, TEGS, CVIM, and NPRI.

TABLE 4
www.frontiersin.org

TABLE 4. The area under the curve (AUC) value of each method under the DIP and Krogan databases.

TABLE 5
www.frontiersin.org

TABLE 5. The number of key proteins recognized by CFMM and other methods based on the Gavin database.

The Analysis of Parameter

In this section, we discuss the effect of the two self-defined parameters α and λ on the prediction results of CFMM. We set the parameter α to vary from 0.1 to 0.9, then the CFMM algorithm is ran nine times from α = 0.1 to α = 0.9 separately. Finally, the number of true essential proteins identified by CFMM based on the DIP and Krogan databases are shown in Tables 6, 7 separately. Here we select from the top 1% to the top 25% of the proteins identified by CFMM. The prediction accuracy is based on the number of essential proteins that are truly identified. It is obvious that the closer α value is to 1, the higher the prediction accuracy CFMM can achieve. So, we consider that the parameter α on all the databases is 0.9, which can achieve the best performance. When α is set to 0.9, and λ is set to 0.65, the amount of true essential protein is closest to its average level. Therefore, as a result, we will set α and λ on the DIP and Krogan databases to 0.9 and 0.65 separately, while for the Gavin database, the optimum parameters α and λ will be set to 0.9 and 0.8, respectively.

TABLE 6
www.frontiersin.org

TABLE 6. Effects of the parameter α to CFMM based on the DIP database.

TABLE 7
www.frontiersin.org

TABLE 7. Effects of the parameter α to CFMM based on the Krogan database.

Discussion

Accumulating evidence have shown that prediction of essential proteins is important for the development of an organism in biological process, complex disease diagnoses, and drug design. However, the requirement of identifying key protein prediction accuracy is not satisfied only through biological experiments and relying on the topological characteristics of the PPI network. In this manuscript, we constructed an original protein–domain network by combining protein and domain associations first. Then we formulated the prediction of potential essential proteins as a problem of the recommendation system and obtained an updated recommendation network through applying a novel mutual recommendation between protein and domain to the original association network. Next, after we integrate the biological features, we combine with the major topological features to obtain the initial protein score. Finally, we design a novel distribution rate matrix and apply an iterative algorithm based on the improved PageRank algorithm to calculate protein scores iteratively. In addition, we apply the CFMM method on the DIP database, Krogan database, and Gavin database to testify the performance, respectively. Experiments show that CFMM can achieve better performance than other advanced methods. In future work, we will use multi-information fusion method to integrate various information related to proteins and machine learning methods to further improve the prediction performance (Peng et al., 2017; Zhou et al., 2019).

Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author Contributions

XZ and XH conceived the study. XZ, XH, LK, and ZC improved the study based on the original model. XZ and XH implemented the algorithms corresponding to the study. ZC and LK supervised the study. XZ and XH wrote the manuscript. All authors including CL reviewed and improved the manuscript.

Funding

This research is partly sponsored by the Research Foundation of Education Bureau of Hunan Province (No. 20B080), the Natural Science Foundation of Hunan Province (No. 2019JJ70010), the Hunan Provincial Natural Science Foundation of China (2020JJ4152), and the Science and Technology Plan Project of Hunan Province (2016TP1020). The Hunan Province Science and Technology Project Funds (2018TP1036), the National Scientific Research Foundation of Hunan Province Education Commission (18B367).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

The authors sincerely thank all the teachers and students who participated in this study for their guidance and help.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.763153/full#supplementary-material

References

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths‐Jones, S., et al. (2004). The Pfam Protein Families Database. Nucleic Acids Res. 32, 138D–141D. doi:10.1093/nar/gkh121

CrossRef Full Text | Google Scholar

Binder, J. X., Pletscher-Frankild, S., Tsafou, K., Stolte, C., O'Donoghue, S. I., Schneider, R., et al. (2014). COMPARTMENTS: Unification and Visualization of Protein Subcellular Localization Evidence. Database 2014, bau012. doi:10.1093/database/bau012

PubMed Abstract | CrossRef Full Text | Google Scholar

Bonacich, P. (1987). Power and Centrality: A Family of Measures. Am. J. Sociol. 92, 1170–1182. doi:10.1086/228631

CrossRef Full Text | Google Scholar

Chen, L., Zhang, Y.-H., Wang, S., Zhang, Y., Huang, T., and Cai, Y.-D. (2017). Prediction and Analysis of Essential Genes Using the Enrichments of Gene Ontology and KEGG Pathways. PLoS One 12, e0184129. doi:10.1371/journal.pone.0184129

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, Z., Meng, Z., Liu, C., Wang, X., Kuang, L., Pei, T., et al. (2020). A Novel Model for Predicting Essential Proteins Based on Heterogeneous Protein-Domain Network. IEEE Access 8, 8946–8958. doi:10.1109/ACCESS.2020.2964571

CrossRef Full Text | Google Scholar

Cherry, J., Adler, C., Ball, C., Chervitz, S. A., Dwight, S. S., Hester, E. T., et al. (1998). SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79. doi:10.1093/nar/26.1.73

PubMed Abstract | CrossRef Full Text | Google Scholar

Cullen, L. M., and Arndt, G. M. (2005). Genome‐wide Screening for Gene Function Using RNAi in Mammalian Cells. Immunol. Cell Biol 83, 217–223. doi:10.1111/j.1440-1711.2005.01332.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Dastbaz, M., Arabnia, H., and Akhgar, B. (2018). Technology for Smart Futures (Cham: Springer International Publishing). doi:10.1007/978-3-319-60137-3

CrossRef Full Text | Google Scholar

Dezso, Z., Oltvai, Z. N., and Barabási, A.-L. (2003). Bioinformatics Analysis of Experimentally Determined Protein Complexes in the Yeast Saccharomyces cerevisiae. Genome Res. 13, 2450–2454. doi:10.1101/gr.1073603

PubMed Abstract | CrossRef Full Text | Google Scholar

Estrada, E., and Rodríguez-Velázquez, J. A. (2005). Subgraph Centrality in Complex Networks. Phys. Rev. E 71, 056103. doi:10.1103/PhysRevE.71.056103

CrossRef Full Text | Google Scholar

Fan, Y., Hu, X., Tang, X., Ping, Q., and Wu, W. (2016). “A Novel Algorithm for Identifying Essential Proteins by Integrating Subcellular Localization,” in Proceeding of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15-18 Dec. 2016 (IEEE), 107–110. doi:10.1109/BIBM.2016.7822501

CrossRef Full Text | Google Scholar

Fang, M., Lei, X., Cheng, S., Shi, Y., and Wu, F.-X. (2018). Feature Selection via Swarm Intelligence for Determining Protein Essentiality. Molecules 23, 1569. doi:10.3390/molecules23071569

PubMed Abstract | CrossRef Full Text | Google Scholar

Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., et al. (2006). Proteome Survey Reveals Modularity of the Yeast Cell Machinery. Nature 440, 631–636. doi:10.1038/nature04532

PubMed Abstract | CrossRef Full Text | Google Scholar

Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., et al. (2002). Functional Profiling of the Saccharomyces cerevisiae Genome. Nature 418, 387–391. doi:10.1038/nature00935

PubMed Abstract | CrossRef Full Text | Google Scholar

Hahn, M. W., and Kern, A. D. (2005). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Mol. Biol. Evol. 22, 803–806. doi:10.1093/molbev/msi072

PubMed Abstract | CrossRef Full Text | Google Scholar

Holman, A. G., Davis, P. J., Foster, J. M., Carlow, C. K., and Kumar, S. (2009). Computational Prediction of Essential Genes in an Unculturable Endosymbiotic Bacterium, Wolbachia of Brugia malayi. BMC Microbiol. 9, 243. doi:10.1186/1471-2180-9-243

PubMed Abstract | CrossRef Full Text | Google Scholar

Jeong, H., Mason, S. P., Barabási, A.-L., and Oltvai, Z. N. (2001). Lethality and Centrality in Protein Networks. Nature 411, 41–42. doi:10.1038/35075138

PubMed Abstract | CrossRef Full Text | Google Scholar

Jiang, Y., Wang, Y., Pang, W., Chen, L., Sun, H., Liang, Y., et al. (2015). Essential Protein Identification Based on Essential Protein-Protein Interaction Prediction by Integrated Edge Weights. Methods 83, 51–62. doi:10.1016/j.ymeth.2015.04.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Joy, M. P., Brock, A., Ingber, D. E., and Huang, S. (2005). High-Betweenness Proteins in the Yeast Protein Interaction Network. J. Biomed. Biotechnol. 2005, 96–103. doi:10.1155/JBB.2005.96

CrossRef Full Text | Google Scholar

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., et al. (2006). Global Landscape of Protein Complexes in the Yeast Saccharomyces cerevisiae. Nature 440, 637–643. doi:10.1038/nature04670

PubMed Abstract | CrossRef Full Text | Google Scholar

Lei, X., Zhao, J., Fujita, H., and Zhang, A. (2018). Predicting Essential Proteins Based on RNA-Seq, Subcellular Localization and GO Annotation Datasets. Knowledge-Based Syst. 151, 136–148. doi:10.1016/j.knosys.2018.03.027

CrossRef Full Text | Google Scholar

Li, M., Wang, J., Chen, X., Wang, H., and Pan, Y. (2011). A Local Average Connectivity-Based Method for Identifying Essential Proteins from the Network Level. Comput. Biol. Chem. 35, 143–150. doi:10.1016/j.compbiolchem.2011.04.002

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, M., Zhang, H., Wang, J.-x., and Pan, Y. (2012). A New Essential Protein Discovery Method Based on the Integration of Protein-Protein Interaction and Gene Expression Data. BMC Syst. Biol. 6, 15. doi:10.1186/1752-0509-6-15

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, S., Chen, Z., He, X., Zhang, Z., Pei, T., Tan, Y., et al. (2020). An Iteration Method for Identifying Yeast Essential Proteins from Weighted PPI Network Based on Topological and Functional Features of Proteins. IEEE Access 8, 90792–90804. doi:10.1109/ACCESS.2020.2993860

CrossRef Full Text | Google Scholar

Liu, W., Ma, L., Chen, L., Chen, B., Jeon, B., and Qiang, J. (2020). A Novel Scheme for Essential Protein Discovery Based on Multi-Source Biological Information. J. Theor. Biol. 504, 110414. doi:10.1016/j.jtbi.2020.110414

CrossRef Full Text | Google Scholar

Liu, W., Wang, J., Chen, L., and Chen, B. (2018). Prediction of Protein Essentiality by the Improved Particle Swarm Optimization. Soft Comput. 22, 6657–6669. doi:10.1007/s00500-017-2964-1

CrossRef Full Text | Google Scholar

Meng, Z., Kuang, L., Chen, Z., Zhang, Z., Tan, Y., Li, X., et al. (2021). Method for Essential Protein Prediction Based on a Novel Weighted Protein-Domain Interaction Network. Front. Genet. 12, 645932. doi:10.3389/fgene.2021.645932

PubMed Abstract | CrossRef Full Text | Google Scholar

Mewes, H. W., Amid, C., Arnold, R., Frishman, D., Güldener, U., Mannhaupt, G., et al. (2004). MIPS: Analysis and Annotation of Proteins from Whole Genomes. Nucleic Acids Res. 32, 41D–44D. doi:10.1093/nar/gkh092

CrossRef Full Text | Google Scholar

Östlund, G., Schmitt, T., Forslund, K., Köstler, T., Messina, D. N., Roopra, S., et al. (2010). InParanoid 7: New Algorithms and Tools for Eukaryotic Orthology Analysis. Nucleic Acids Res. 38, D196–D203. doi:10.1093/nar/gkp931

PubMed Abstract | CrossRef Full Text | Google Scholar

Peng, L., Liao, B., Zhu, W., Li, Z., and Li, K. (2017). Predicting Drug-Target Interactions with Multi-Information Fusion. IEEE J. Biomed. Health Inform. 21, 561–572. doi:10.1109/JBHI.2015.2513200

PubMed Abstract | CrossRef Full Text | Google Scholar

Peng, L., Shen, L., Liao, L., Liu, G., and Zhou, L. (2020). RNMFMDA: A Microbe-Disease Association Identification Method Based on Reliable Negative Sample Selection and Logistic Matrix Factorization with Neighborhood Regularization. Front. Microbiol. 11, 592430. doi:10.3389/fmicb.2020.592430

PubMed Abstract | CrossRef Full Text | Google Scholar

Peng, W., Jianxin Wang, J., Yingjiao Cheng, Y., Yu Lu, Y., Fangxiang Wu, F., and Yi Pan, Y. (2015a). UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks. Ieee/acm Trans. Comput. Biol. Bioinf. 12, 276–288. doi:10.1109/TCBB.2014.2338317

PubMed Abstract | CrossRef Full Text | Google Scholar

Peng, W., Wang, J., Wang, W., Liu, Q., Wu, F.-X., and Pan, Y. (2012). Iteration Method for Predicting Essential Proteins Based on Orthology and Protein-Protein Interaction Networks. BMC Syst. Biol. 6, 87. doi:10.1186/1752-0509-6-87

PubMed Abstract | CrossRef Full Text | Google Scholar

Peng, X., Wang, J., Zhong, J., Junwei Luo, J., and Pan, Y. (2015b). “An Efficient Method to Identify Essential Proteins for Different Species by Integrating Protein Subcellular Localization Information,” in Proceeding of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, 9-12 Nov. 2015 (IEEE), 277–280. doi:10.1109/BIBM.2015.7359693

CrossRef Full Text | Google Scholar

Priness, I., Maimon, O., and Ben-Gal, I. (2007). Evaluation of Gene-Expression Clustering via Mutual Information Distance Measure. BMC Bioinformatics 8, 111. doi:10.1186/1471-2105-8-111

PubMed Abstract | CrossRef Full Text | Google Scholar

Qin, C., Sun, Y., and Dong, Y. (2017). A New Computational Strategy for Identifying Essential Proteins Based on Network Topological Properties and Biological Information. PLoS One 12, e0182031. doi:10.1371/journal.pone.0182031

PubMed Abstract | CrossRef Full Text | Google Scholar

Qin, C., Sun, Y., and Dong, Y. (2016). A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes. PLoS One 11, e0161042. doi:10.1371/journal.pone.0161042

PubMed Abstract | CrossRef Full Text | Google Scholar

Stephenson, K., and Zelen, M. (1989). Rethinking Centrality: Methods and Examples. Social Networks 11, 1–37. doi:10.1016/0378-8733(89)90016-6

CrossRef Full Text | Google Scholar

Tu, B. P., Kudlicki, A., Rowicka, M., and McKnight, S. L. (2005). Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes. Science 310, 1152–1158. doi:10.1126/science.1120499

PubMed Abstract | CrossRef Full Text | Google Scholar

van Laarhoven, T., Nabuurs, S. B., and Marchiori, E. (2011). Gaussian Interaction Profile Kernels for Predicting Drug-Target Interaction. Bioinformatics 27, 3036–3043. doi:10.1093/bioinformatics/btr500

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, H., Li, M., Wang, J., and Pan, Y. (2011). “A New Method for Identifying Essential Proteins Based on Edge Clustering Coefficient,” in Bioinformatics Research and Applications. Editors J. Chen, J. Wang, and A. Zelikovsky (Berlin, Heidelberg: Springer Berlin Heidelberg), 87–98. doi:10.1007/978-3-642-21260-4_12

CrossRef Full Text | Google Scholar

Wang, J., Min Li, M., Huan Wang, H., and Yi Pan, Y. (2012). Identification of Essential Proteins Based on Edge Clustering Coefficient. Ieee/acm Trans. Comput. Biol. Bioinf. 9, 1070–1080. doi:10.1109/TCBB.2011.147

CrossRef Full Text | Google Scholar

Wang, J., Peng, W., and Wu, F.-X. (2013). Computational Approaches to Predicting Essential Proteins: A Survey. Proteomices. Clin. Appl. 7, 181–192. doi:10.1002/prca.201200068

PubMed Abstract | CrossRef Full Text | Google Scholar

Wuchty, S., and Stadler, P. F. (2003). Centers of Complex Networks. J. Theor. Biol. 223, 45–53. doi:10.1016/S0022-5193(03)00071-7

CrossRef Full Text | Google Scholar

Xenarios, I., Salwínski, L., Duan, X. J., Higney, P., Kim, S.-M., and Eisenberg, D. (2002). DIP, the Database of Interacting Proteins: a Research Tool for Studying Cellular Networks of Protein Interactions. Nucleic Acids Res. 30, 303–305. doi:10.1093/nar/30.1.303

PubMed Abstract | CrossRef Full Text | Google Scholar

Xu, B., Guan, J., Wang, Y., and Wang, Z. (2019). Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks. Ieee/acm Trans. Comput. Biol. Bioinf. 16, 377–387. doi:10.1109/TCBB.2017.2701824

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, R., and Lin, Y. (2009). DEG 5.0, a Database of Essential Genes in Both Prokaryotes and Eukaryotes. Nucleic Acids Res. 37, D455–D458. doi:10.1093/nar/gkn858

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, W., Xu, J., Li, Y., and Zou, X. (2018a). Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information. Ieee/acm Trans. Comput. Biol. Bioinf. 15, 109–116. doi:10.1109/tcbb.2016.2615931

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, X., Xiao, W., and Hu, X. (2018b). Predicting Essential Proteins by Integrating Orthology, Gene Expressions, and PPI Networks. PLoS One 13, e0195410. doi:10.1371/journal.pone.0195410

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, X., Xu, J., and Xiao, W.-x. (2013). A New Method for the Discovery of Essential Proteins. PLoS One 8, e58763. doi:10.1371/journal.pone.0058763

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhao, B., Wang, J., Li, M., Wu, F.-X., and Pan, Y. (2014). Prediction of Essential Proteins Based on Overlapping Essential Modules. IEEE Trans.on Nanobioscience 13, 415–424. doi:10.1109/tnb.2014.2337912

CrossRef Full Text | Google Scholar

Zhao, B., Zhao, Y., Zhang, X., Zhang, Z., Zhang, F., and Wang, L. (2019). An Iteration Method for Identifying Yeast Essential Proteins from Heterogeneous Network. BMC Bioinformatics 20, 355. doi:10.1186/s12859-019-2930-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhou, L., Li, Z., Yang, J., Tian, G., Liu, F., Wen, H., et al. (2019). Revealing Drug-Target Interactions with Computational Models and Algorithms. Molecules 24, 1714. doi:10.3390/molecules24091714

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: essential proteins, collaborative filtering model, PDI network, data integration, prediction model

Citation: Zhu X, He X, Kuang L, Chen Z and Lancine C (2021) A Novel Collaborative Filtering Model-Based Method for Identifying Essential Proteins. Front. Genet. 12:763153. doi: 10.3389/fgene.2021.763153

Received: 23 August 2021; Accepted: 13 September 2021;
Published: 21 October 2021.

Edited by:

Tao Huang, Shanghai Institute of Nutrition and Health (CAS), China

Reviewed by:

Guohua Huang, Shaoyang University, China
Lihong Peng, Hunan University of Technology, China

Copyright © 2021 Zhu, He, Kuang, Chen and Lancine. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Xianyou Zhu, enh5QGh5bnUuZWR1LmNu; Xin He, MTU3NzMyNTM5MDFAMTM5LmNvbQ==

These authors share first authorship

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.