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The ability to use genome-wide association studies (GWAS) for genetic discovery
depends upon our ability to distinguish true causative from false positive association
signals. Population structure (PS) has been shown to cause false positive signals in
GWAS. PS correction is routinely used for analysis of human GWAS results, and it has
been assumed that it also should be utilized for murine GWAS using inbred strains.
Nevertheless, there are fundamental differences between murine and human GWAS,
and the impact of PS on murine GWAS results has not been carefully investigated.
To assess the impact of PS on murine GWAS, we examined 8223 datasets that
characterized biomedical responses in panels of inbred mouse strains. Rather than
treat PS as a confounding variable, we examined it as a response variable. Surprisingly,
we found that PS had a minimal impact on datasets measuring responses in < 20
strains; and had surprisingly little impact on most datasets characterizing 21 — 40 inbred
strains. Moreover, we show that true positive association signals arising from haplotype
blocks, SNPs or indels, which were experimentally demonstrated to be causative for
trait differences, would be rejected if PS correction were applied to them. Our results
indicate because of the special conditions created by GWAS (the use of inbred strains,
small sample sizes) PS assessment results should be carefully evaluated in conjunction
with other criteria, when murine GWAS results are evaluated.

Keywords: mouse genetic models, GWAS - genome-wide association study, genetic discovery, population
structure, genetic analyses

INTRODUCTION

Because of ancestral relatedness among the individuals within an analyzed population, a GWAS will
identify a true causative genetic variant along with multiple other false positive associations, some of
which arise because of commonly inherited genetic regions within a sub-population. This property,
which is referred to as ‘population structure’ (PS) and has been shown to exist in populations
ranging from plants (Zhao et al., 2007) to humans (Reich and Goldstein, 2001; Yu et al., 2006),
inflates the number of false positive results obtained in a GWAS. Since PS was identified as a
significant confounding factor for human GWAS, many methods were developed to distinguish
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the false positive PS-based associations from the true causative
genetic factors for a studied trait. Initially, a Q + K(population
structure and relative kinship) model (Yu et al., 2006) was used,
where Q is a matrix that reflects the discrete sub-population for
an individual. An improved method for controlling for PS was
developed by replacing the Q matrix with principle components
(PCs) that summarized the genome-wide patterns of relatedness
(Zhao et al., 2007). Principal component analysis (PCA) was
shown to be useful for inferring PS from genetic data (Price et al.,
2006; Yang H. et al., 2011), and the use of PCs for PS capture
has been a widely accepted and shown to be an effective method
PS correction (Consortium, 2007; Purcell et al., 2007; Yang J.
et al,, 2011). PCA has two advantages over using the population
structure matrix: (i) the finite number of subpopulations do
not have to be specified prior to the analysis, which can be
an arbitrary process that introduces errors; and (ii) it is far
more computationally efficient, which is important when many
individuals with many SNPs are evaluated.

Although PS correction methodology has improved and has
facilitated genetic discoveries emerging from GWAS of human
populations, we do not know whether PS has a significant
impact on GWAS analyzing inbred mouse strains. Mouse is
the premier model organism for biomedical discovery, and
many therapies were initially discovered using mice. Since the
inbred laboratory strains are derived from what is estimated
to be four ancestral founders that diverged ~1 million years
ago (Guenet and Bonhomme, 2003; Reuveni et al., 2010), PS
could certainly impact murine GWAS results and others have
advocated that PS correction should be used in murine GWAS
(Kang et al, 2008; Sul et al, 2018). However, murine and
human GWAS differ in several fundamental ways. A typical
human GWAS includes thousands of individuals collected from
a natural population. In contrast, while most murine GWAS
analyzed less than 30 inbred strains of known ancestry (Beck
et al., 2000), the strains are homozygous, they do not inter-breed,
and environmental and other variables are tightly controlled.
Because of this, the genetic effect sizes examined in murine
GWAS are much larger than in human GWAS. Because of
these differences, we examined a large database of responses
measured in panels of inbred strains to assess the impact of
PS on GWAS outcome. For this analysis, we analyzed results
obtained using haplotype-based computational genetic mapping
(HBCGM), which differs from conventional SNP-based GWAS
studies in the type of allelic information analyzed (Zheng et al.,
2012). In a conventional murine GWAS, a property of interest is
measured in available inbred mouse strains and the phenotypic
response pattern is compared with the alleles at individual SNP
sites. For HBCGM analysis, the genomic sequence of 49 inbred
strains (Supplementary Table 1) was analyzed to produce a
database with 25M SNPs (Arslan et al., 2020); and the alleles
are organized into blocks with multiple SNPs. Then, genetic
factors are computationally predicted by identifying genomic
regions (haplotype blocks) where the pattern of within-block

Abbreviations: GWAS, genome-wide association study; HBCGM, haplotype-
based computational genetic mapping; Indel, insertion or deletion; PC, principal
component; PCA, principal component analysis; PS, population structure; SNP,
single nucleotide polymorphism.

genetic variation correlates with the distribution of phenotypic
responses among the strains (Liao et al., 2004; Wang and Peltz,
2005; Zheng et al., 2012). HBCGM has successfully identified
genetic factors for >22 biomedical traits in mice (Grupe et al,,
2001; Rozzo et al, 2001; Liao et al., 2004; Guo et al., 2006,
2007; Liang et al,, 2006; Smith et al., 2008; Zaas et al., 2008;
Chu et al., 2009; LaCroix-Fralish et al., 2009; Hu et al., 2010a,b;
Liu et al., 2010, 2012; Tregoning et al., 2010; Peltz et al., 2011;
Sorge et al,, 2012; Zheng et al,, 2012, 2015; Zhang et al., 2016;
Liang et al., 2014; Donaldson et al,, 2016; Ren et al.,, 2020).
However, as with other GWAS methods, HBCGM analyses
identify many genomic regions with allelic patterns that correlate
with a phenotypic response pattern; but only a few contain
a causative genetic factor (Zheng et al., 2012). Therefore, we
investigated the effect that PS had on murine GWAS results,
and the utility of applying a PS association test for eliminating
false positives from candidate genes identified by HBCGM. We
also examined the potential impact of PS association test on
SNP-based GWAS studies.

RESULTS

The Mouse Phenome Database (MPD)! (Grubb et al., 2014)
contains 8223 datasets that characterize basal, age-related,
and experimentally induced responses (i.e., ‘phenotypes’) in
panels of inbred mouse strains. For each individual MPD
dataset, the same response is measured in a panel of inbred
strains, and this database has a total of 1.52 M individually
measured responses. We previously demonstrated that MPD
datasets have utility for genetic discovery; a genetic susceptibility
factor for a drug-induced CNS toxicity was identified by
HBCGM analysis of one MPD dataset (Zheng et al., 2015).
Therefore, we initially examined all MPD datasets that measured
a response in 10 or more strains whose genomic sequence
was available (2435 datasets). For each of these datasets,
candidate haplotype blocks with allelic patterns that correlated
with the measured strain response pattern were identified by
HBCGM. The average number of correlated blocks (prpcom <
0.01) for each dataset was 3966, which were selected from
among the 6 to 50 million haplotype blocks produced by
the algorithm for each dataset. The number of assembled
blocks depended upon the number of strains analyzed in a
dataset. We then wanted to use a multi-variate association
test (MANOVA) to determine whether the haplotypic strain
groupings within the correlated blocks were related to PS
among the analyzed strains. However, to use PCA for the
PS association test, the number of PCs must be specified in
advance. Therefore, we first examined the percentage of the
variance that was explained when a variable number of principal
components (PCs), which ranged from 1 to 33 because < 33
inbred strains were analyzed in any dataset, were used for
the PCA analysis. Because the curves on the Scree plots for
most of the evaluated datasets had a bend (i.e., ‘elbow’) that
occurred between the 3rd and 5th PC, we used the first four

'https://phenome.jax.org

Frontiers in Genetics | www.frontiersin.org

September 2021 | Volume 12 | Article 745361


https://phenome.jax.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Wang et al.

Population Structure Effect on Murine GWAS

TABLE 1 | The 49 inbred strains can be divided into the four groups shown in this
table based on their pattern of genome-wide allelic sharing.

Group Number of Strain List
Strains

1 7 C57BL/6J, B10, C57BL10J, C57BL6NJ, C57BRcd,
C57LJ, C58

2 14 BTBR, CEJ, KK, NZB, NZW, 129P2, 12951, 129S5, ILNJ,
LPJ, NZO, PJ, SMJ, WSB

3 23 BUB, DBA1J, FVB, NON, NUJ, RFJ, RHJ, RIIIS, SJL, A/J,
AKR, BALB, C3H, CBA, DBA, LGJ, MAMy, MRL, NOD,
PLJ, SEA, ST, SWR

4 5 CAST, MOLF, PWD, PWK, SPRET

PCs (total genetic variance ranged between 26-59%) as the
response variable that was used for the PS association analyses
(Supplementary Figure 1). A pairwise identity-by-state (IBS)
matrix divided the 49 sequenced inbred strains into four sub-
populations (Table 1 and Figure 1), which are based upon
their genome wide genetic relatedness. The sub-population
grouping, which is based upon the IBS matrix, provides a
pre-determined label that is used in the subsequent analyses.
Sub-populations 2 and 3 contain most of the inbred strains,
and they are closely related. The sub-population 1 strains are
derived from a C57BL ancestor; and the five (wild derived)
strains in sub-population 4 are genetically distinct from the
other groups. The spatial relationship of the 49 strains (plotted
using the first two PCs for each strain) is concordant with
the hierarchical clustering (Figure 1). A separately performed
quantitative analysis (Patterson et al., 2006), which generates
Tracy-Widom (TW) statistics and ANOVA values for the
groupings, confirms that two PCs captured the PS for these
strains (Supplementary Tables 2A,B).

Our global analysis of strain relationships used all available
SNPs (25M) to generate the PCs. We also examined the results
obtained after LD pruning (PLINK 1.90) of genome-wide SNPs
was performed using different window sizes (10 kb, 50 kb)

and pairwise correlation coefficients (> = 0.5 or r* = 0.75).
These analyses utilized 1/10 or 1/5 of the total number of
available SNPs. The LD pruned SNPs separated the 49 strains
into the same 4 subpopulations, which were found when all SNPs
were used (Supplementary Figures 2A-D). Also, even after the
removal of the group four wild-derived strains, the PCA plot
for the 44 classical inbred strains has the same 3 sub-groups,
which were present when all 49 inbred strains were evaluated
(Supplementary Figure 2E).

Most Inbred Strain Panels Have Little or
No PS

We then examined PS among the strain panels used in the
MPD datasets. The number of inbred strains analyzed in each of
the 2435 MPD datasets, which contain data for > 10 evaluable
strains, are summarized in Supplementary Table 3. During
our analysis, we noted that many different MPD datasets used
the same panel of inbred strains, which is because multiple
phenotypes were evaluated by the same investigator, and because
certain strains are commonly used by different laboratories.
Therefore, we could examine PS among the strains used in the
majority (55%) of the 2435 MPD datasets by examining the 21
sets of inbred strains that were repeatedly used (Supplementary
Table 2C). Our initial analysis of the PS graphs indicated that
we should not assess population structure in MPD datasets that
analyzed < 20 strains because: (i) the population substructure
was extremely variable, and (ii) the strain groupings within these
datasets often contained strains from different global sub-groups
(Supplementary Figure 3). To confirm these visual observations,
we used the EIGENSOFT/smartpca program (Patterson et al.,
2006) to analyze PS in the panels with <20 inbred strains,
since it provides an unsupervised analysis that ignores the
pre-determined of sub-population for each strain. The results
indicated that the strain groupings did not have significant PS:
all TW test p-values were far above 0.05 for the first two PCs
(Supplementary Table 2C). Also, the TW p-values decreased as
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FIGURE 1 | An analysis of population structure among 49 inbred mouse strains, which is based upon whole genome sequence analysis, identifies four
sub-populations. (A) The relatedness of the 49 inbred strains based upon hierarchical clustering using an identity-by-state similarity matrix; or (B) a scatter plot
generated by PCA using the first two PCs for each strain are shown. The sub-populations identified by the two methods are completely concordant.
Sub-populations 1 and 4 are distinct from the majority of the inbred strains that contained in two closely related sub-populations (2 and 3).
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the strain number increased, which indicates that it is easier to
identify PS when a larger number of strains is evaluated. Overall,
only 3 of the 22 strain panels that were repeatedly evaluated in
MPD datasets had a TW p-value < 0.05 for the first PC; and these
3 panels had over 29 inbred strains and the TW p-value for the
second PC was not significant (Supplementary Table 2C). These
results indicate that most of the strain panels used in the MPD do
not have PS that needs to be corrected; and among the few that
do, the PS among the strains is not large enough for principal
component analysis (PCA) to capture it.

We then examined population sub-structure in the 1750 MPD
datasets that examined responses in >20 inbred strains. To
illustrate the general properties that emerged from our analyses,
we show 960 MPD datasets that repeatedly analyzed responses
in the same sets of (n = 23-32) inbred strains. The first two PCs
for 432 of these datasets did not identify significant PS; there
were no clear groupings for the strains; and the TW p-values
are all > 0.05 (Supplementary Figure 4 and Supplementary
Table 2C). In contrast, the PCA plots indicated that PS could be
present in 528 other MPD datasets (Supplementary Figure 4)
where the group 1 strains (C57BL related) are clearly separated
from the other strains. However, in those datasets, the global
group 2 and group 3 strains are broadly distributed in the
graphs, without an explicit boundary that separates them into
distinct sub-groups. It should be noted that 256 of these 528
datasets use two recurring strain panels: 178 datasets use the
same 24 strain panel and 78 datasets use the same 25 strain
panel (Supplementary Figures 5A,B). Also, the TW p-values
are > 0.05 for the first two PCs (Supplementary Table 2C) for
most of these recurring panels irrespective of whether the strains
are separable on the PCA plots. Of importance, even for the

datasets that utilize strain panels that appear to have PS, it will
only have an effect if the strain grouping for the phenotypic
response pattern completely mirrors that the groupings within
the sub-populations determined by genome wide analysis of their
pattern of allelic sharing.

PS Impact on Haplotype Blocks

We next assessed the impact of PS on the haplotype blocks
generated by HBCGM analysis. To do this, a PS association test
was performed on each correlated haplotype block produced
from the analysis of the 2435 MPD datasets with phenotypic
data covering >10 strains. A Benjamini-Hochberg adjusted
p-value for the PS association test for each block was generated
using MANOVA. Blocks with a p,q; < 0.05 have a significant
association with population structure (i.e., PS™), and could
be removed from further consideration, while those with a
Pagj > 0.05 are viewed as viable candidate genes for further
evaluation (PS™). For 68% of the datasets (1,660 of 2435
analyzed), >50% of the correlated blocks were not associated
with population structure (PS™); and 39% of the datasets (949
of 2435) had 75 to 100% PS™ blocks (Figure 2). Only 32% of
the datasets (n = 775) had >50% PST correlated blocks; and
most of these (23%, 565 datasets) have between 25 and 49% PS™
blocks. Only 9% of the MPD datasets (n = 210) have >75%
PST blocks. Overall, our results indicate that for most MPD
datasets, the vast majority of the haplotype blocks produced by
HBCGM are not affected by PS. We also investigated whether the
magnitude of the PS impact is affected by the number of strains
analyzed (i.e., the sample size). As the strain number increased,
the number of correlated candidate blocks identified by HBCGM
analysis increased (Figure 3A). This result is consistent with
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FIGURE 2 | A scatter plot showing the number of candidate haplotype blocks associated with population structure (PS™) relative to PS™ candidate blocks. After
2435 MPD datasets were analyzed by HBCGM, candidate blocks (opscam < 0.01) were analyzed by an association test to determine whether they were related to
population structure among the inbred strains that were analyzed. Each datapoint (+) indicates the number of PS* (y-axis) and PS™ (x-axis) blocks identified for one
MPD dataset. There are 949 MPD datasets where 75% to 100% of the blocks are PS™ (shown in red); the 711 datasets with 51-74% PS™ blocks are shown in
orange; and the 565 datasets with 25-49% PS™ haplotype blocks are shown in blue; and the 210 datasets with 0-24% PS™ blocks are shown in green.
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prior studies indicating that association tests performed on large
populations will identify additional genetic variants with a small
effect size (Visscher et al., 2017). However, while the percentage
of PS™ blocks plateaued after 15 strains were analyzed, the
percentage of PST blocks (and thus the total number of PS*
blocks) increased as the number of analyzed strains increased
(Figures 3B,C). These results indicate that when an increased
number of inbred strains are analyzed, the number of correlated
haplotype blocks and the percentage of PST blocks increase. The
results are consistent with the sample size effects previously noted
in human-case control studies.

Assessing the False Negative Problem
When considering whether PS correction should be utilized
for mouse GWAS, the key question is whether it could lead

to rejection of a true causative association signal. Therefore,
we investigated whether PS was present in haplotype blocks
within genes whose allelic patterns are known to be causal for
a measured phenotypic response pattern (Table 2). The results
of PS analyses for three MPD datasets raised concerns. (i)
HBCGM analysis of two datasets (MPD 9904 and 9907), which
measured high density lipoprotein (HDL) cholesterol levels,
correctly identified haplotype blocks within Apoa2 as highly
correlated with inter-strain differences in HDL levels. Apoa2
encodes the second most abundant protein within HDL particles,
and it is known to be involved in lipoprotein metabolism. Apoa2
alleles were previously associated with differences in plasma
HDL cholesterol levels in mice (Doolittle et al., 1990); and
HDL levels were 70% decreased in Apoa2 knockout mice (Weng
et al., 1999). However, a PS association test indicated that 3

A o
]
g @ |-e— Total
——e— PS™ . o, °_o'°
E 8 |- pst \ /e
> 8 . e\ o0/ o ®
o1 L/ .
0,0 N o ° 7’
58 °—\°\,°—°°/\Ooo/\°°/°<\s*xo
R / o0 2o N7
[3Y 0o/ o0 o
s | R °o— 5
s ° / ~°_°/
o H.—"°
T T T T T
10 15 20 25 30
Strain Number
B
8
170 T I T IT I TeTTTT
0 Q ) o - T -
¥ 00 ! ! ] | ! ] \
[5] 1 1 !
S o | 1 )
m © b X
1 !
2 Q- A O e . ;
1
2 g B A A A AR A A o
o ‘6'-L_L_L'LJ_.LJ__L'L-L-L
T T T T T T T T T T T T T T T T T T T T 1T
10 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Strain Number
c o
S
— -
» O - -,--.-_'_'T'-r-r-r_l_T-rlTT_'__l_
2 ® - e S T e A S '
[&] . ] ] ) 1 1 1 ] 1 | 1 1 | 1
Q2 o [ 8 | T R T B 1 X
m o Co T o ! : '
] 1
RQ ' T . v s
D 1 T oy [ a4 L
= T 4+ 9+ . - L+ a4+ +
T T T T T T T T T T T T T T T T T T T T T T
10 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Strain Number
FIGURE 3 | The effect of population structure increases with the number of analyzed strains. Analysis of the total number of candidate haplotype blocks, the number
of blocks with population structure (PS*), and the number of PS-independent (PS") blocks are shown as a function of the number of analyzed strains. After 2435
MPD datasets were analyzed by HBCGM, the correlated blocks (oHgcam < 0.01) were analyzed by an association test to determine whether population structure
had a significant influence on the strain groupings within the blocks. (A) The results were then graphed as a function of the number of mouse strains within each
dataset (range 10 — 33). A blue circle represents the average of the total number of candidate blocks, and the mean number of PS™ (red) and PS* blocks (green) are
also shown in this graph. (B,C) The percentage of (B) PS™ and (C) PS* blocks were then assessed for each dataset. The box plots indicate the 25th and 75th
percentile, and the black bar indicates the median value. While the number of PS™ blocks plateaued after 15 strains were analyzed, the number of PS* blocks
increased in the datasets that analyzed an increased number of strains.
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TABLE 2 | The results of PS analysis performed on haplotype blocks within known causative genes for 3 MPD datasets (each with data from both sexes) are shown.

MPD Dataset Strain # Gene Block Position HBCGM p-val PS (GRM) p-val PS (GRM)adjp-val PS (IBS)p-val PS (IBS) adj p-val
26721 F retinal 29 Pde6b Chrb: 108399551-108400383 0 0.0244 0.0491 0.0274 0.0514
degeneration

26721 M retinal 29 Pde6b Chr5: 108399551-108400383 0 0.0244 0.0491 0.0274 0.0514
degeneration

9904 F HDL 30 Apoa2 Chr1:171225795-171225890 5.5e-6 0.0005 0.0010 9.3e-4 0.0026
cholesterol baseline

9904 M HDL 31 Apoa2 Chrl: 171225644-171225697 3.14e-5 0.1637 0.2448 0.1497 0.2226
cholesterol baseline

9907 F HDL 30 Apoa2 Chr1: 171227457-171227593 0.0066 0.0039 0.0106 0.0042 0.0156
cholesterol after 17

weeks on diet

9907 M HDL 25 Apoa2 Chr1:171227457-171227593 0.0008 0.0020 0.0044 0.0033 0.0068

cholesterol after 17
weeks on diet

The MPD dataset number, the sex of the mice, a description of the measured response, and the number of strains analyzed in that dataset are shown. The gene symbol
for the causative gene, the chromosome and position of the identified haplotype block, and the p-value and adjusted p-value for the PS association test (using the
GRM) for that block are shown. We also calculated an additional p-value and adjusted p-value for the PS analyses, which were performed using PCs derived from an

identity-by-state (IBS) matrix, and these results are shown in the last two columns.

(@)
q
o
c
©
-

Group 2

Group 3

Normal retina
Pde6b Tyr347

had a stronger association with retinal degeneration.

=2 o
25,5
- - >
mm_Jdm ¢ X Q o
a->2 mS-HK_d<=0qg0T<mnZ
S rhE P2 0828533385855 233=22
VCOOLOLOrMOEX IZZNCCODAOSZNNOOLZAND
l ] \ |
| |

Retinal degeneration
Pde6b X347

FIGURE 4 | The haplotype block with a causative mutation is associated with population structure. MPD 26721 examined the retinas of 29 inbred strains: 21 strains
had normal retinas and 8 strains had retinal degeneration. A haplotype block within Pde6b contained the causative SNP (Tyr347X) for this type of retinal
degeneration. All strains with retinal degeneration had the Pde6b 347X allele, while those with normal retinas had the Tyr347 allele. The haplotype block had PS,
because all group 1 and 2 strains [based upon hierarchical clustering of whole genome sequence data from 49 inbred strains (Table 1)] had normal retinas; while all
strains with retinal degeneration were group 3 strains. However, several group 3 strains (AKR, A/J, BALB, DBA, MAMy, NOD, SEA) had normal retinas and the
Tyr347 allele. Thus, while the strain groupings within the block have PS based upon their global allele sharing pattern, the allelic pattern within the haplotype block

of the 4 correlated haplotype blocks in Apoa2 are PST blocks
PS (GRM)adj p-val < 0.05). (ii) Another MPD dataset (MPD
26721) examined the retinas of 29 inbred strains: 21 strains had
normal retinas, and 8 strains had retinal degeneration. HBCGM
analysis identified a haplotype block within phosphodiesterase 6b
(Pde6b) that completely correlated with the pattern of retinal
degeneration in both male and female mice (pupcem = 0).
Retinal degeneration in inbred strains has been shown to be
caused by a stop codon allele (Tyr347X) within Pde6b (Pittler
et al., 1993). However, the strain groupings within the Pde6b
block were correlated with PS; the PS association test p-values
for this block was 0.02 (p,g; = 0.049) (Table 2). The blocks had
PS because all 8 strains with retinal degeneration were from
population group 3, and all population group 1 and 2 strains
had normal retinas. However, several group 3 strains had normal

retinas and Pde6b Try347 alleles (Figure 4). These examples
demonstrate that some true positive genetic associations could
have been falsely rejected based upon their association with PS
(if the usual FDR control rate ¢ = 0.05 was applied). We also
examined these datasets using the PCs that were derived from an
identity-by-state (IBS) matrix that was used to represent the PS
(Table 2). The PS association test p-values using PCs derived from
the IBS matrix are nearly the same as the those obtained using
PCs derived from genetic relationship matrix. This concordance
indicates that the PCA using different types of marker-derived
matrices stably capture the PS for the inbred strains.

PS Impact on Causative SNPs
We also examined whether SNPs or indels, which are known to
be causative of biomedically important trait differences among
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inbred strains, were highly associated with PS. To do this,
causative variants were downloaded from a public database
that described the published evidence linking the variants to
phenotypes (Bult et al., 2019). Surprisingly, we found that four
of the 15 evaluable variants in this database were strongly
associated with PS among the inbred strains (Table 3). (i) For
example, the albino skin and eye hypopigmentation observed
in inbred strains were experimentally proven to be determined
by a Cys103Ser SNP allele within tyrosinase (Tyr) (Jackson and
Bennett, 1990; Yokoyama et al., 1990) (MGI:1855976), but these
alleles are very strongly associated with PS among the inbred
strains (PS P-value = 2 x 107%). (ii) An AGTC sequence
insertion (GRCm38/mml0 chr2: 130048178-130048179) in
Transglutaminase 3 (Tmg3) (MGI:1856269) produces wavy hair
morphology (Brennan et al., 2015), along with 13 other listed
traits in mice, but this indel is also very strongly PS associated
(PS P-value = 4 x 107%) among the inbred strains. (iii) A
spontaneous C to A transversion in Cell Division Cycle 25A
(Cdc25A) increases the activity of a phosphatase (Melkun et al.,
2002), which causes abnormal erythropoiesis and increased
cell proliferation (MGI:2445422). This Cdc25A variant is very
strongly associated with PS (PS P-value = 3 x 107°). (iv)
Deficiencies in phosphatidylcholine metabolism in NZO/HILt]
mice (and in the related NZB/BINJ and NZW/Lac] strains) are
determined by a C to T mutation within Phosphatidylcholine
transfer protein (Pctp) (Pan et al, 2006). This causative SNP
(MGI:3691424) also had a strong association with PS (PS
P-value = 8.3 x 10719). If normal GWAS procedures were
performed using inbred strains for any of the 44 phenotypes
shown in Table 3, the known causative alleles (Tyr Cys103Ser,
Tmg3 Indel, Cdc25A C > A, and Pctp C > T) would have
been eliminated from consideration because of PS correction.
The false negatives generated by PS correction would have
produced a complete disaster for these GWAS studies, since the
causative genetic variation occurred at sites where the alleles were
commonly inherited among the inbred strains.

DISCUSSION

While PS correction helps to eliminate false positives in human
genetic studies, we found that PS makes a smaller than
expected contribution to most murine GWAS studies. Moreover,
irrespective of whether a murine GWAS used SNPs or haplotype
blocks, our results indicate that PS correction could result in
rejection of association signals that were generated by known
causative alleles. Of importance, this analysis evaluated the
largest available dataset of phenotypic information for inbred
mouse strains, and the data was generated by most of the
researchers who are studying genetic traits in mice. Why is the
utility of PS correction in murine GWAS different from that for
human genetic association studies? We identify three factors that
could account for this difference. (i) A very limited number
of inbred strains are examined in most murine GWAS, which
usually analyze < 20 (and rarely > 33 inbred strains). This is
orders of magnitude less than the number of subjects in human
GWAS, which now examine thousands to hundreds of thousands

of subjects. Moreover, the inbred strains were reproductively
isolated, while human populations were not placed under this
restriction. (ii) The vast majority of murine GWAS studies
utilize strains with limited PS. Most (75%) of the inbred strains
that are commonly used in murine GWAS are derived from
closely related populations, which have limited or no population
structure. Among 25M SNPs analyzed, pairwise comparisons
revealed that the level of allelic similarity among the classical
inbred strains is > 70%. The limited amount of genetic variation
among these strains precludes their separation into distinct sub-
populations. (iii) A false negative result resulting from exclusion
of a true positive due to PS correction has a much greater impact
on murine GWAS outcome. Genetic association studies involving
large human populations often (but not always) identify many
genetic variants, with each having a small effect on the overall
trait value. Hence, the loss of a few true positives can have a
lesser impact since many other causative loci remain. However,
murine GWAS analyze a small number of inbred strains; and
the heritability and genetic effect size for identified candidate
genes is relatively large (usually > 0.3) because the inbred strain
genome is homozygous and because environmental and other
confounding factors are minimized. Thus, unlike its small effect
on human GWAS results, the elimination of a true positive due
to PS correction, which in some cases could be the only (or one
of a very few) causative genetic factor, can have a much greater
impact on a murine GWAS.

We identified six examples (Pde6b, Apoa2, Tyr, Tgm3, Cdc25A,
and Pctp) where PS correction could cause an adverse outcome
for murine GWAS. Irrespective of whether haplotype blocks or
SNP/Indels were analyzed, PS correction led to rejection of the
causative variant due to common inheritance. Other investigators
who examined GWAS results for multiple traits in plants have
noted that it can be difficult to distinguish between a true
and a spurious association due to genetic background, even
after correcting for PS (Atwell et al, 2010). However, when
GWAS are performed under conditions with true genome wide
coverage, allele sharing within a localized genomic region with
a true causative factor should be greater than one based upon
genome wide allelic correlations. Hence, examining the ratio
of the p-values obtained from GWAS and PS association tests
could provide a more informative way to eliminate spurious
positives while retaining the true positive associations. In one of
our studied cases (retinal degeneration and Pde6b), the causative
haplotype block was much more strongly associated with the
phenotypic response pattern (genetic association p-value = 0)
than with population sub-structure (PS p-value = 0.024), but
in another case (HDL levels and Apoa2), the p-values for the
causative haplotype block were of a similar magnitude. However,
published information indicated that the gene candidate (Apoa2)
was very strongly associated with the HDL phenotype. As was
previously observed in plants (Atwell et al, 2010), and now
in mice, there are situations where a shared strain background
can be responsible for trait differences. In these situations, the
strength of the functional evidence that a candidate gene could be
responsible for a trait difference could override PS considerations.
We have previously shown that true positive candidates can
be identified using orthogonal criteria for analyzing HBCGM
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output, which include the use of gene expression or metabolomic
data (Liu et al., 2010), curated biologic information (Zhang et al.,
2011), or the genomic regions delimited by prior QTL analyses
(Smith et al., 2008; LaCroix-Fralish et al., 2009). Similar to
our approach to mouse GWAS, investigators have recently used
transcriptome wide association data (Hammerschlag et al., 2019;
Wainberg et al., 2019), information about plant evolutionary type
(Liu et al, 2020), or various types of functional information
to evaluate human (De Leeuw et al., 2016; Watanabe et al.,
2019) or plant (Atwell et al., 2010) GWAS results. In summary,
PS assessment may be one factor that should be used along
with multiple other factors to assess a candidate gene, which
include assessment of the relative strength of the GWAS and PS

association results, tissue-specific gene expression criteria, and
gene-phenotype relationship based upon information contained
within the published literature.

Genetic association studies typically use two different methods
to analyze PS (Greenbaum et al, 2016): (i) phylogenetic
methods based on pedigree and evolutionary history (Pickrell
and Pritchard, 2012; Liu et al, 2020) or (ii) clustering of
the individuals into subpopulations based on their genetic
relatedness, which can be further divided into model- and
distance-based approaches (Greenbaum et al, 2016). The
model-based approaches assume that individuals are drawn from
a predefined number of subpopulations (Pritchard et al., 2000),
which are in Hardy-Weinberg equilibrium. While distance-based

TABLE 3 | Population structure (PS) analysis was performed on causative SNP alleles for 44 mammalian phenotypes (MP) that were annotated in the Mouse Genome

Informatics (MGI) database.

MGI Mammalian Phenotypes

Number of MP Terms

Gene Point Mutation Position PS p-val

0002075 abnormal coat/hair pigmentation 25
0001324 abnormal eye pigmentation

0000371 diluted coat color

0005171 absent coat pigmentation

0005408 hypopigmentation

0011551 variegated eye pigmentation pattern

0011091 prenatal lethality, complete penetrance
00013083 abnormal lens morphology

0001304 cataract

0005643 decreased dopamine level

0003136 yellow coat color

0005077 abnormal melanogenesis

0008480 absent eye pigmentation

0003962 abnormal adrenaline level

0005172 decreased eye pigmentation

0010193 abnormal choroid melanin granule morphology
0001189 absent skin pigmentation

0005075 abnormal melanosome morphology

0000421 mottled coat

0001510 abnormal coat appearance

0011279 decreased ear pigmentation

0000373 belly spot

0003964 abnormal noradrenaline level

0010192 abnormal retinal melanin granule morphology
0004381 abnormal hair follicle melanocyte morphology
0009351 thin hair shaft 14
0010099 abnormal thoracic cage shape

0003641 small lung

0001274 curly vibrissae

0002113 abnormal skeleton development

0000410 waved hair

0011400 lethality, complete penetrance

0001406 abnormal gait

0001510 abnormal coat appearance

0000162 lordosis

0001177 atelectasis

0003109 short femur

00047083 abnormal vertebral column morphology
0001533 abnormal skeleton physiology

0004045 abnormal cell cycle checkpoint function 4
0005584 abnormal enzyme/coenzyme activity

0000245 abnormal erythropoiesis

0000351 increased cell proliferation

0002118 abnormal lipid homeostasis 1

Tyr Chr7:87493043 1.97 x 1074

Tgm3 Chr2:130048178 3.97 x 1074

Cdc25A Chr9:109879893 2.96 x 107°

Pctp Chr11:89987348 8.3 x 1010

The MGI MP terms, the number of MP terms associated with the known gene, the chromosome and location (all in GRCm38/mm10 coordinates) of the known causative

allele, and the PS P-value are shown.

Frontiers in Genetics | www.frontiersin.org

September 2021 | Volume 12 | Article 745361


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Wang et al.

Population Structure Effect on Murine GWAS

approaches (such as PCA) focus on the genetic differences
or similarity between individuals, they do not require prior
assumptions. Over past decade, distance-based methods became
much more widely utilized for capturing PS and for assessing
cryptic relatedness (Wen et al, 2018, 2019; Wang and Xu,
2019; Wang et al., 2020); and the kinship matrix was used to
derive PCs, which can be obtained by evaluation of identity by
descent (IBD) or calculation of relatedness based on marker data
(Astle and Balding, 2009). The inbred mouse strains (Swiss mice,
Castle’s mice, C57 related strains, etc.) were isolated by different
laboratories beginning over ~100 years ago, and those in each
category underwent an unclear breeding process that extended
over along period of time. Because of these unknowns, significant
uncertainties are introduced when transforming the information
about inbred strain phylogeny obtained from pedigree charts into
the parameters that are required for evolutionary history-based
PS associations. Hence, we cannot use evolutionary history-based
methods for assessing PS among the inbred strains.

Various recombinant inbred (RI) strain panels have been used
for genetic mapping studies: the Hybrid Mouse Diversity Panel
(30 founder strains) (Tewhey et al., 2011; Ghazalpour et al., 2012);
the Diversity Outbred (Chick et al., 2016) and Collaborative Cross
(Chesler et al., 2008) panels (8 strains); and the BXD RI panel
(Belknap and Crabbe, 1992) (2 strains). Since all founder strains
for these RI panels are a subset of the strains evaluated here, our
cautions about the utilization of PS correction methods may be
relevant to studies performed using these RI panels. While these
RI panels have proven useful for genetic mapping, GWAS that
cover a wider set of inbred strains will always be needed for 21st
century genetic discovery. We do not know which strains will
have the outlier (disease-related) phenotypes - and they may not
be among the founder strains for existing RI panels - that are
needed to uncover the genetic basis for biomedical traits that will
be of interest over the next 25 years. As one example, Type 2
Diabetes Mellitus (T2DM), and its principal risk factor (obesity)
have become a major 21st century public health problem (Centers
for Disease Control and Prevention, 2020). The TallyHo strain is
not among the founder strains used for the any of the current
RI panels, but it provides a valuable murine model for T2DM
and obesity because its spontaneously develops hyperlipidemia,
hyperglycemia, insulin resistance, and glucose intolerance (Kim
et al., 2001; Kim and Saxton, 2012). Undoubtedly, other inbred
strains will be identified to have phenotypes reflecting 21st
Century diseases.

METHODS

Selection of Mouse Phenome Database
Datasets

Mouse Phenome Database datasets (n = 8223) were downloaded
on March 24, 2020. We analyzed MPD datasets where the mean
phenotypic measurement of each strain was obtained from >5
mice of each strain. An ANOVA test was also performed to
determine if the inter-strain variance was significantly greater
than intra-strain variances; and a p-value < 1 x 10710
was used as the cutoff for dataset selection. Datasets with

categorical measurements were excluded from bulk analysis
of MPD datasets.

Haplotype Block Construction and
Genetic Mapping in Mice
The genomic sequences of 49 inbred mouse strains were analyzed
as previously described (Zheng et al., 2015). Only SNPs meeting
the following criteria were used for haplotype block construction:
(i) polymorphic among the strains with input trait data; and (ii)
there were at least 8 strains with unambiguous allele calls, which
is an important criterion because it ensures that there is sufficient
genetic diversity in the analyzed cohort for analysis by HBCGM.
In brief, SNPs were dynamically organized into haplotype blocks,
which only used alleles for the strains contained within the
dataset, according to the “maximal” block construction method
(Peltz et al, 2011). In brief, this method produces haplotype
blocks with a minimum of 4 SNPs; and each block is only allowed
to a predetermined number of haplotypes, which ranges from
2 to 5. Since the “maximal” method enables blocks to overlap,
blocks are assembled that cover all possible allelic combinations
within a specific genomic region. If a smaller block was nested
inside of a larger block and it contained the same haplotypes, it
was removed and the larger block was used to cover that region
(Peltz et al., 2011). This ensures that additional SNPs are only
included within a block if additional haplotypes are added to
the block. HBCGM was then performed as originally described
(Liao et al., 2004) using modifications described in Peltz et al.
(2011). Haplotype blocks with 2, 3, 4 or 5 haplotypes were then
dynamically produced and the correlation between the input
phenotypic data and the haplotype pattern within each identified
block was evaluated as described as described (Peltz et al., 2011).
The genes are then sorted based upon the ANOVA p-value
(in increasing order) for numeric data or by the F statistic (in
decreasing order) for categorical data. A cut-off of p = 0.01 was
used to select haplotype blocks with a correlated allelic pattern.
If a gene had multiple correlated blocks, the haplotype block
with the smallest p-value was used. Additional details about the
HBCGM method are described elsewhere (Wang and Peltz, 2005;
Zheng et al., 2015).

The genetic effect size (n?) is calculated:

2_ % _SSB
T T T

where SSB is the between-group sum-of-squares of the ANOVA
model given as and SST is the total sum-of-squares. 12 is
the genetic effect of the groups defined by haplotypes on the
trait value and the total variance (GZT) consists of within-group
variance and between-group variance given as:

2 2 2
o1 = O + Oy

For a sample size of n with k groups, with equal group sizes the
F statistics of samples with effect size #? follows a noncentral
F distribution as F(k - 1, n - k, X) with the non-centrality
parameter:

A= no}%/c\z,\, = no%/(c%—o%) = nnz/(l 1%
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Therefore, the significance level o for power of one-way ANOVA
test is given as:

Power(a,n?,n, k) = Prob(F(k-1,n-k,\)) < F i)

where Feit = F—ak—1,n—k) is the (1-a) quantile of the F
distribution with k — 1 and n - k degrees of freedom.

Population Structure Association Test

We use principal component analysis (PCA) to determine
whether a haplotypic strain grouping was associated with PS.
Principal components (PC) have been used to assess population
stratification; it is a major component of the linear mixed model
(LMM) that is used to control PS-induced spurious associations
in GWAS results. In the LMM, PS is treated as a covariate that
influences the phenotypic values in addition to the effect of the
genetic markers. However, we treat PS as a dependent variable,
which is determined by a comprehensive analysis of genome-
wide allelic similarity. For this analysis, the PS of the inbred
strains (y) is determined by the equation

y=n+Xp+e

where y is an n x p matrix that is derived from a PCA of sample
size of n with p principal components; | is an # x p matrix that
contains the grand mean for each of the p variables; X is an
n x 1 vector of haplotype indicators for n strains; f is a 1 x p
vector that contains effects of the haplotype, and e is an n x p
matrix of the residual error. p is a hyperparameter to determine
the number of PCs used in analysis, where it guarantees each PC
can explain certain amount (say > 5%) of the variance of the
original genetic relationship. Alternatively, p can be arbitrarily
selected based upon analysis on a Scree plot (to find the “elbow”),
which ranks PCs based on the percentage of variance explained
by each PC. If the elbow is observed at p-th PC; most of the true
signals are captured in the first p PCs. By using PC to represent
population structure, pre-determination of the number of sub-
populations is not required. A multivariate analysis of variance
(MANOVA) could be then used to assess the association between
strain groupings within a haplotype block and PS, since the strain
grouping within a block becomes a single variable that affects
the first p PCs. In this study, the PCs are the eigenvectors of the
genetic relationship matrix (GRM) for the inbred mouse strains,
which is also known as the variance-covariance standardized
relationship matrix.

Population Structure Analysis on Single

Point Mutations

The MGI PostgreSQL database (Bult et al., 2019) was queried
for sequence variants linked with Mammalian Phenotype (MP)
terms. There were 463 spontaneously occurring sequence
variants (i.e., not mutagen induced) that were annotated with
2,878 MP terms. However, after excluding 51 allelic variants that
appeared in C57BL/6 because it is the reference strain; only 30
of these SNP alleles and Indels, which were associated with 429
MP terms, were present in our 48 other strains. We also had to
remove rare variants present in < 3 strains (i.e., had minor allele

frequency < 0.05) because they could not be used for PS analysis.
The remaining 15 evaluable variants, which were associated with
155 MGI MP terms, were used for the PS association analysis. The
PS association test was performed on these alleles as described
above; except the X and B term in the linear equation were
replaced with the strain allele indicator and the effect of that
allele, respectively.

Generation of Genetic Relationship and
Identity-By-State Similarity Matrices

The genetic relationship matrix (GRM) for inbred mouse strains
was generated using genome-wide SNP alleles and GCTA
software (Yang J. et al., 2011). The GRM is also known as
the variance-covariance standardized relationship matrix, and
the eigenvectors of this matrix were used as PC. The GRM
eigenvalues for the inbred strains of each PC were used to
estimate the amount of GRM variance that PC explains. To assess
whether a PC effectively captures the sub-structure of the GRM,
the Tracy-Widom (TW) statistic and corresponding p-values
were calculated using EIGENSOFT/smartpca program (Patterson
et al., 2006). This program provides an unsupervised analysis,
which ignores the pre-determined global sub-populations
identified for each strain. Since we analyze 49 inbred strains
whose genomes are homozygous, SNPs were not filtered based
upon a minor allele frequency threshold. To further verify
that the PCs effectively represent the PS among the strains,
we clustered individual strains using a pairwise identity-by-
state (IBS) similarity matrix, which was also derived using
whole genome SNP data. The IBS similarity matrix is a square,
symmetric matrix that reflects the IBS distance between all pairs
of inbred mouse strains. PLINK 1.90 (Purcell et al., 2007) was
used to calculate the IBS similarity matrix, and it contains values
that range from 0 to 1. The hierarchical clustering of 49 strains
was determined using the hcut() function within the factoextra/R
package?. The sub-population of an inbred strain is based upon
its genetic relatedness relative to the other 49 strains. This
clustering determines the sub-population for a strain used in
subsequent analyses (i.e., their pre-determined label). Then, an
ANOVA test is used to evaluate the overall genetic differentiation
between any two pre-determined sub-populations along the PCs
(i.e., it is a supervised analysis). Hence, the basis for the 4 sub-
populations identified using the IBS similarity matrix for the 49
inbred strains can be assessed using the ANOVA test, where the
resulting ANOVA p-value is compared with 0.05.

Multiple Test Correction for the PS
Association Test

Since the population structure association test was performed on
2435 datasets, the MANOVA test p-value for each block generated
by the HBCGM program is adjusted by controlling for the false
discovery rate (FDR) at g = 0.05 using Benjamini-Hochberg
method (Benjamini and Hochberg, 1995). The adjusted p-value
for i-th block is p,gj = pi x m/i, where p; is the MANOVA test
p-value, m is the number of blocks (multiple tests), and i is the

Zhttps://CRAN.R-project.org/package=factoextra
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order of p; in a series of p-values that satisfies p(;) < po) < --- <

P(my- If @ block has p,g > 0.05, it is not considered as having
significant PS (i.e., the null hypothesis, which is that the tested
block does not have population structure, cannot be rejected).
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