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Locomotion is an important welfare and health trait in turkey production. Current
breeding values for locomotion are often based on subjective scoring. Sensor
technologies could be applied to obtain objective evaluation of turkey gait. Inertial
measurement units (IMUs) measure acceleration and rotational velocity, which makes
them attractive devices for gait analysis. The aim of this study was to compare three
different methods for step detection from IMU data from turkeys. This is an essential
step for future feature extraction for the evaluation of turkey locomotion. Data from
turkeys walking through a corridor with IMUs attached to each upper leg were annotated
manually. We evaluated change point detection, local extrema approach, and gradient
boosting machine in terms of step detection and precision of start and end point of the
steps. All three methods were successful in step detection, but local extrema approach
showed more false detections. In terms of precision of start and end point of steps,
change point detection performed poorly due to significant irregular delay, while gradient
boosting machine was most precise. For the allowed distance to the annotated steps
of 0.2 s, the precision of gradient boosting machine was 0.81 and the recall was 0.84,
which is much better in comparison to the other two methods (<0.61). At an allowed
distance of 1 s, performance of the three models was similar. Gradient boosting machine
was identified as the most accurate for signal segmentation with a final goal to extract
information about turkey gait; however, it requires an annotated training dataset.

Keywords: inertial measurement unit, step detection, gait analysis, segmentation, accelerometer

INTRODUCTION

Locomotion is an important welfare and health trait in turkey production. Impaired locomotion
compromises growth and (re)production. Breeding programs tend to record locomotion of
selection candidates by scoring the conformation or walking ability by a human expert (Quinton
et al., 2011). These scores are repeatable, heritable, and valuable to the breeding program. However,
these scores are subjective and labor intensive and require animal handling. Therefore, an objective
automated locomotion score would be preferred. Sensor technology seems a promising tool for this
task. Additionally, it provides opportunities for repeated measurements of individuals, which could
lead to more accurate breeding values.

In recent years, sensor technologies have been introduced in livestock production, and
some of them are well suited for objective locomotion scoring like force platforms, cameras,

Frontiers in Genetics | www.frontiersin.org 1 March 2020 | Volume 11 | Article 207

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00207
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00207
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00207&domain=pdf&date_stamp=2020-03-19
https://www.frontiersin.org/articles/10.3389/fgene.2020.00207/full
http://loop.frontiersin.org/people/795535/overview
http://loop.frontiersin.org/people/847347/overview
http://loop.frontiersin.org/people/863066/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00207 March 17, 2020 Time: 16:34 # 2

Bouwman et al. Turkey Step Detection

and accelerometers. Force platform systems have been used
for locomotion phenotyping in experimental setups (Pastell
et al., 2006; Nääs et al., 2010; Maertens et al., 2011; Pluym
et al., 2013), but applications on farms are limited because they
are expensive and require frequent maintenance. Cameras are
upcoming tools in cattle and pigs, with the advantage that they
do not disturb the animal (Kashiha et al., 2014; Viazzi et al.,
2014; Kuan et al., 2019). However, adding individual animal
identification to the image data is a challenge. Accelerometers
are widely applied to individual cows and pigs for detecting
behavioral changes over time that can indicate signs of estrus and
health or welfare impairment, including lameness (e.g., Pastell
et al., 2009; Escalante et al., 2013; Tamura et al., 2019). Inertial
measurement units (IMUs) are a combination of accelerometer,
gyroscope, and sometimes a magnetometer. Besides acceleration,
they also measure rotational velocity; together, they can indicate
orientation. Human locomotion has been well studied using
IMUs, where they are considered as a cost-effective alternative
to optical motion systems, which are the golden standard in
kinematic analysis in laboratory settings (e.g., Seel et al., 2014;
Kluge et al., 2017).

In order to use IMUs for objective evaluation of turkey
locomotion, it is essential to describe individual steps
by extracting its features. Hence, accurate automated step
segmentation of the IMU profile, i.e., defining the start and end
point of a single step, is an essential first challenge. Therefore,
the aim of this study was to compare different methods for
automated step detection from IMU data from turkeys.

MATERIALS AND METHODS

IMU Data
The IMUs used for this study were wireless inertial-magnetic
motion trackers (MTw Awinda, XSens Technologies
B.V., Enschede, Netherlands). Each IMU contains a
triaxial accelerometer, triaxial gyroscope, and triaxial
magnetometer. An IMU weighs 16 g and its dimensions
are 47 mm × 30 mm × 13 mm. The IMU data were logged to a
computer in real time via a receiver.

Data were collected during the standard walkway test applied
in the turkey breeding program of Hybrid Turkeys (Hendrix
Genetics, Kitchener, Canada). In total, 85 animals were recorded
during 1 day. The animals were 20 weeks of age. Two IMUs
were attached using Velcro straps, one on each upper leg.
Then, the animal was placed in a corridor (∼1.5 m wide)
and stimulated to walk in one direction for approximately
5 m. The floor was covered with bedding the animals were
familiar with. Because these data were recorded during routine
processes, there was little time for the animals to get used to
the IMUs around their legs. Occasionally, the animals needed
stimulation to start walking or during walking. A person walked
along with the animal and waved his hand if needed; when
waving was not effective, the animals were tapped on the back
or finally pushed.

The recording of the IMU was at 100 Hz and was manually
started and stopped; on average, there was 20 s recording

material per animal. The IMU output consisted of calibrated
time series data for triaxial acceleration, triaxial free acceleration,
triaxial angular velocity, and triaxial magnetic field. In addition,
orientation data are provided in Euler representation (pitch, roll,
yaw), as well as unit quarternions represented by a normalized
quaternion q = [W X Y Z], with W being the real component and
X, Y, Z being the imaginary parts. More information about the
output data can be found in Paulich et al. (2018).

Annotation
The annotation was based on the knowledge that a complete
single step can be divided into two stages: (1) from the foot
separating from the ground to the foot reaching the highest
point, the acceleration at this stage starts to increase until it
reaches a maximum value; (2) from the highest point of the
foot to the foot hitting the ground, at this stage, the acceleration
drops from the maximum value to the minimum value (Wang
et al., 2017). In the IMU profile, clear indications of movement
can be seen. Knowing that the main actual movement of the
animals is walking through the corridor, it is safe to assume
these are steps. The location of the steps was annotated by hand
for 20 IMU profiles: both leg IMUs of 10 different animals.
Plots of acceleration magnitude against time were used to define
start and end position of the step. Acceleration magnitude
was calculated as

√
Acc_X2 + Acc_Y2 + Acc_Z2 where Acc_X,

Acc_Y, and Acc_Z are the output of the triaxial accelerometer in
X, Y, and Z direction, respectively (Wang et al., 2017). Half steps
at the beginning or end of a profile were not annotated, as well
as insignificant movements (acceleration magnitude <20 m/s2).
The number of annotated steps per profile ranged between
7 and 15 with an average of 9.9. These ranges were within
expectation from turkeys this age walking ∼5 m. In total, 198
steps (sum of annotated steps over 20 profiles) were annotated
and available for further analysis. Although more IMU profiles
were available, they were not manually annotated, because the
manual annotation was too time-consuming. In addition, the
20 IMU profiles resulted in sufficient steps (198) for model
development and performance testing (shown below).

Although we use this manual step annotation for model
training and performance evaluation, we do not consider it as
the truth. The start and end position of the annotated steps are
not perfectly accurate, but this was the best we could do with
the data at hand. The step annotation allows us to compare
performance of the different methods applied and what may
cause the observed differences.

Change Point Detection
Change point is used to denote a significant variation
in the probability distribution of time series. Detection of
such variations and exact moments when they occurred
may be accomplished with the broad family of supervised
and unsupervised methods, the extensive overview of which
can be found in Aminikhanghahi and Cook (2017). An
application of change point detection (CPD) approaches
to step segmentation were demonstrated, for example, by
Martinez and De Leon (2016). In our study, we applied an
unsupervised version of CPD that is called a singular spectrum
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transformation (SST). The basic idea of SST is that, for each
time point, it compares distribution in the interval before
the time point and an interval of the same length after the
time point and, based on this, assigns a change point score.
Comparison of distributions is made by comparing singular
spectrums of two trajectory matrices for these consecutive
intervals (Aminikhanghahi and Cook, 2017).

We developed the following algorithm based on the SST that
was applied to three acceleration signals Acc_X, Acc_Y, Acc_Z:

(a) To each signal, we applied a low-pass filter to reduce
the presence of noise. This step was required because
SST does not consider the effect of noise on the system
(Aminikhanghahi and Cook, 2017).

(b) For each de-noised signal, we applied SST with windows
equal to 10 time points and calculated a change point score.

(c) When the change point score was above 5% of the
maximum for a given signal, we declared the step; when
it was lower, we declared no step.

(d) Final decision was made by majority: if at least two of the
three acceleration signals indicated the step, we declared
step at that moment.

Local Extrema Approach
The local extrema approach (LEA) was inspired by the idea that
the significant local extrema in a signal should be associated with
the changes in the leg movements. Assuming that we have a set of
signals, the method can be described by the following procedure:

(a) To each signal (we used Acc_X, Acc_Y, Acc_Z, Gyr_X,
Gyr_Y, Gyr_Z, Roll, Pitch, and Yaw here), we applied a
low-pass filter to reduce the presence of noise.

(b) With a sliding window equal to 140 time points, we found
local minima and local maxima for each signal. Based on
the training data, a window of 140 time points ensures
there is at least one step in the sliding window, making it
the most optimal window to detect local extrema.

(c) From the set of all extrema discovered in step (b), we
filtered out those that were within less than 0.5 standard
deviations from the surrounding 10 measurements. This
step helped us, for example, to get rid of extrema found
in the regions where an animal was not moving and no
step had occurred.

(d) We combined significant local extrema from all the
considered signals into one set. Then, we kept only those
significant extrema that were found in more than one signal
or those for which there exists at least one other extrema
within 0.1 s (10 measurement to the right or 10 to the left).
We will refer to such extrema as important extrema.

(e) Based on the detected important extrema and density of
their distribution, we created a list of potential intervals
that contain steps. For the first local extrema, we formed
an interval that starts in that point and has a length of
0.6 s. Then, for the first extrema that has not ended up
in that interval, we checked whether it is within 0.12 s to
the end of the created interval, and if so, we added it to
the interval, consequently updating the interval’s length.

We continued this procedure until we could not find a new
extrema within 0.12 s to the interval. Then, we recorded
the detected interval as potential step interval and repeated
the procedure for the next important extrema. The time
thresholds of 0.6 and 0.12 s were chosen based on the
data to assure that only one step was occurring within an
interval. From the annotated data, the average step length
was 0.6 s, and there was at least 0.12 s in between two steps.

(f) If, in some potential step, interval distance between the
first important extrema to the second important extrema
was higher than 0.12 s, we removed the first important
extrema from the interval and proceed the check for the
next element of the interval.

(g) We filtered out intervals that have duration shorter than
0.2 s, because that is too short to be an actual step. We also
filtered out intervals that have two consecutive important
extrema that were located more than 0.25 s from each other,
to assure a dense set of important extrema that support
the evidence of a step. These thresholds were based on the
annotation of the steps.

(h) Finally, to avoid false-positive indications, we filtered out
intervals within which acceleration magnitude was lower
than 11 m/s2. Real steps always showed an acceleration
magnitude peak higher than 11 m/s2; below this value, it
may be noise or tremor in the legs.

The obvious drawback of the LEA method is that it depends
on a high number of parameters that probably will be different for
other species or even another age group of turkeys. While some
parameters allow slight deviation from the given numbers, the
set of measured signals does not. We found that it is impossible
to build successful LEA for step segmentation based only on
acceleration signals. The density of received important extrema
does not allow to distinguish between parts of the signals that
correspond to the step and no step periods.

Gradient Boosting Machine
We used a gradient boosting machine (GBM) implemented in R
version of H2O 3.20.0.8 (Landry, 2018) to predict the time points
that are part of steps in IMU profiles. The GBM method is a
supervised learning task with the advantage of high performance
and interpretable models (Elith et al., 2008). Each individual time
point within an annotated step was classified as step and each
individual time point outside an annotated step was classified
as non-step for model training. To build the GBM model, 60%
of the 198 manually annotated steps were used for training
(125 steps from 12 IMU profiles), 20% for validation (36 steps
from 4 profiles), and 20% as an independent test set (37 steps
from four profiles).

Except for magnetic field data, all standard IMU output
parameters as described above were used for step prediction, as
well as magnitude of acceleration. Each of the 20 parameters
were transformed by taking the difference between the actual
time point measure and a lag or lead measure. Each time series
was lagged by 5 to 10 time points, and led by 5 to 10 time
points. The lag/lead was applied to detect significant changes
in the profiles, the 5 to 10 time points relates to 0.05 to 0.1 s,
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which seemed reasonable for significant changes in movement
during walking. This resulted in 12 different time series
per parameter (e.g., Acc_X_lag5-Acc_X_lag10, Acc_X_lead5-
Acc_X_lead10), and a total of 240 predictor variables for the
GMB prediction of steps. We ran the GBM model with default
settings. The model parameters were as follows: number_of_trees
was 50, number_of_internal_trees was 50, model_size_in_bytes
was 21040, min_depth was 5, max_depth was 5, mean_depth was
5, min_leaves was 24, max_leaves was 32, and mean_leaves was
28.48. Performance results of the selected GBM model can be
found in the Supplementary Material.

The prediction of the step per time point is not very helpful in
defining features from a step; hence, step start and end needed to
be defined. Based on the predictions per time point, we defined
the start and end moment of the steps. Starting from the first
time point predicted to be a step, if it had at least 10 consecutive
step predictions, it was the starting point of that particular step.
The end point of that step was the last time point in the row
that was predicted a step. This resulted in some steps being very
close to each other, so close that they are likely part of the same
(annotated) step. Hence, steps within 10 time points were merged
together into one step.

Performance Assessment
The main goal of step segmentation is to provide subsequences
of a signal for the following feature extraction. Therefore, we
have two obvious requirements for segmentation methods: (i)
to maximize the number of recognized steps; and (ii) precise
start and end moments of the recognized steps. To evaluate
performance of proposed methods, we applied techniques used in
Haji Ghassemi et al. (2018) and Šprager and Jurič (2018). First, we
calculated the numbers of true-positive (TP), false-negative (FN),
and false-positive (FP) steps for the 198 annotated steps, where
TP are steps detected by the method and also labeled manually
in the annotation step; FN are steps that were annotated but not
detected by the method; FP are steps detected by the method but
which were not annotated.

Based on these numbers, we calculated three metrics:
precision = TP/(TP + FP) recall = TP/(TP + FN), and
F-score= 2(Precision× Recall)/(Precision+ Recall) (Rijsbergen,
1975). Precision provides punishment for the detected steps
that were not annotated; it is equal to one if there are no FP
steps. Similarly, recall provides punishment for the annotated
steps that were not detected by a method, and is equal to one
if there are no FN steps. The F-score is the harmonic mean of
precision and recall, and is equal to one if there are no FN or
FP steps but decreases with higher number of FP and FN steps
(Hand and Christen, 2018).

To be considered as a TP, both the start and end points
of detected steps should be within the allowed distance from
the corresponding start and end points of the annotated steps.
We compared the performance of the different step detection
methods at an allowed distance from 0.1 s to 0.5 s and 1 s.

In addition, the average delay per detected start and end point
of the corresponding annotated step was calculated for each
method. The delay was negative if the detected start or end point
was located before the annotated start or end point.

RESULTS

Change Point Detection
The proposed approach based on SST method for CPD detected
all steps for animal 010 (no FN) and the only FP detection
was actually a true step not annotated because its start point
might have been before recording (Figure 1). It revealed itself
as a quite robust method for step detection. When it comes to
the preciseness of the detection of start and end moments, we
observed significant delay. The peak of acceleration magnitude
is, in some cases, located outside the found interval because of
this delay in detection.

Local Extrema Approach
Results of LEA demonstrate less robustness in terms of step
detection in comparison to CPD. Figure 2 shows FP detection,
like second detected step for leg 1 of turkey 010, as well as FN
steps, like sixth annotated step for leg 2. Based on video material,
we confirmed that these were truly FP and FN detections.

Gradient Boosting Machine
Results of the GBM method are plotted in Figure 3 and
demonstrate that all annotated steps for animal 010 were
detected (no FN) and the only FP detection was actually a
true step not annotated because its start point might have
been before recording. The position of the steps detected using
the GBM model is acceptable, given that the annotation is
not perfect either.

Performance Assessment
Table 1 provides precision, recall, and F-score for the considered
methods. All these metrics were calculated based on annotated
steps of both legs of four turkeys that were left out of the training
of the GBM model. Based on the F-score, GBM performed best
at any of the evaluated allowed distances from the annotated
start and end points. Somewhat worse result was shown by
LEA. For small allowed distances, the performance of CPD
was very low. For an allowed distance of 0.1 s, the steps
detected by CPD were more than 0.1 s from the start and
end point of all annotated steps; hence, none of the steps were
declared as TP and precision and recall were zero. However, the
performance of CPD considerably increased with an increase of
allowed distance.

Unsatisfying performance of CPD for small values of allowed
deviation can be explained by the delay in step detection. There
was an average delay for start points of the steps of 0.27 s with a
standard deviation of 0.15 s. The average delay for the end points
was even higher: 0.47 s with a standard deviation of 0.11 s. This
indicated that the delays were not constant; therefore, it is not
possible to correct for the delay.

As to delays for LEA and GBM, the corresponding values are
much smaller in comparison to CPD. For LEA, average delay
in start points was 0.14 s (± 0.15 s), and 0.15 s (± 0.12 s) for
end points. For GBM, average delay in start points was 0.09 s
(± 0.14 s), and 0.05 s (± 0.05 s) for end points.
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FIGURE 1 | Results of CPD step segmentation for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line depicts manually labeled steps.

FIGURE 2 | Step segmentation results of LEA for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line shows manually labeled steps. Vertical gray lines corresponded to important extrema.

DISCUSSION

The aim of this study was to get accurate start and end position
of turkey steps based on IMU data. In terms of step detection

in general, all three compared methods were successful, although
LEA showed more false detections than CPD and GBM. In terms
of precision of start and end point of steps, CPD performed
poorly, while GBM was most precise.
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FIGURE 3 | Results of GBM step segmentation for turkey 010 (solid black line) for leg 1 (upper plot) and 2 (lower plot). Acceleration magnitude is plotted in red;
dashed black line shows manually labeled steps. The gray line represents the chance of being a step according to the GBM model (×15 for visualization).

Although the data collection was done in a controlled walking
test setup, the data are not as clean as experimental setups with
humans or trained animals like horses (Pfau et al., 2005). For
example, some animals were hesitating and needed stimulation,
after which they took a number of short fast steps before
continuing at a steady pace. This imposed some difficulties in
the annotation of the data, and also hampers accurate step
segmentation. It is, however, realistic data, and therefore more
diverse and comprehensive compared to experimental setups.
This will aid in the development of an algorithm applicable
to data retrieved in, for instance, group housing. In addition,
it also implicates that the detected steps may need further
filtering (e.g., based on standard deviation of certain step features

TABLE 1 | Performance results of the step detection methods for different allowed
distances (in seconds) from the annotated steps.

Method Metric 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s 1.0 s

CPD Precision 0.00 0.01 0.07 0.15 0.49 0.97

Recall 0.00 0.01 0.07 0.14 0.47 0.91

F-score NA1 0.01 0.07 0.14 0.48 0.94

LEA Precision 0.25 0.61 0.74 0.85 0.90 0.95

Recall 0.23 0.56 0.69 0.78 0.82 0.88

F-score 0.24 0.58 0.71 0.81 0.86 0.92

GBM Precision 0.65 0.81 0.87 0.92 0.93 0.97

Recall 0.67 0.84 0.89 0.95 0.96 1.00

F-score 0.66 0.82 0.88 0.93 0.95 0.99

1NA = not applicable (due to division by zero).

within an individual) depending on the purpose of using the
automatically detected steps.

There was no golden standard system applied next to the
IMU sensor. In experimental settings, optical motion tracking
systems are often used as golden standard to test the IMU
performance (e.g., Seel et al., 2014; Kluge et al., 2017; Bosch
et al., 2018). Here, we used subjective annotation by a person
to define the step start and end positions in the IMU profiles
knowing that the animals underwent a walking test. In general,
we trust that the annotated steps are true steps and were able
to check doubtful cases with video material. However, the exact
start and end point are debatable, and might be somewhat
different if annotated again or by a different person. Therefore, we
showed performance results of the methods for different allowed
distances to the annotated steps. Also, steps at the beginning
or end of the profile were not annotated because the start or
end point was unclear. All three methods detected such steps,
but because they were not annotated, they showed up as FP
steps in the performance assessment. Although the annotation
was suboptimal for evaluation of accurate step segmentation, the
results show the potential of each method applied along with
their drawbacks.

The main problem of CPD was the inconsistency in delayed
detection of start and end point of steps. The delay inhibits
accurate extraction of step features describing the locomotion.
For example, the maximum acceleration magnitude that might
be an important feature is often outside the detected steps. Such
results make this method inappropriate for step segmentation
with the final goal to extract features that thoroughly describe
the turkey gait. However, in general, all annotated steps were
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detected; therefore, CPD is an appropriate method if exact
position is not relevant, for instance for step counting.

As it was demonstrated, LEA does not have problems with
the delay. However, it is outperformed by GBM. One possible
reason might be that LEA is an unsupervised method and was
not trained on the annotated steps that have somewhat subjective
nature as they are only an approximation of the truth. LEA has
the advantage that it does not need pre-annotation and we believe
that with some optimization of parameters, it can be applied for
other species as well.

In contrast to the LEA and CPD, the GBM method is a
supervised learning method that requires an annotated dataset
to train the model. Annotating a dataset is very time-consuming;
however, our results showed that the GBM model can be
trained on limited annotated data (i.e., 198 steps) with good
results for our specific problem. This makes it worthwhile to
invest in annotation. We used the GBM as it is state-of-the-
art implementation of a powerful classification algorithm, but
that does not reject the possibility that some other methods
of classification may work with similar level of performance. It
would be interesting to see how the trained GMB model performs
on IMU data from other species. For optimal performance, it
might require a species-specific annotated dataset to build a
species-specific GBM model.

We should admit that methods for step detection and
segmentation of gait signals are not limited to those evaluated
here. There exists a vast number of approaches that use local
structure similarly to LEA and, if possible, cyclicity in gait
sequences (Derawi et al., 2010; Hundza et al., 2014). The
most advanced, for example, presented in Derawi et al. (2010),
apply such techniques like dynamic time warping. Another
interesting possibility might be represented by clustering. While
it does not require pre-annotations, it needs a carefully prepared
set of features.

CONCLUSION

In this paper, we compared three approaches for segmentation
of turkey gait sequences obtained with IMU sensors. CPD is
commonly used for this purpose; the LEA was newly developed
based on characteristics of the data, while the GBM is an
advanced machine learning classification algorithm. We have
found that the GBM shows the best performance even for little
allowed deviation for the annotated steps. Performance of LEA
is somewhat worse. Significant inconsistent delay for start and
end point detection makes CPD inappropriate for detailed gait
analyses. GBM can be applied for signal segmentation with the
final goal to extract information about turkey gait; however, it
requires an annotated training dataset.
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