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Noncoding RNA (ncRNA) is a kind of RNA that plays an important role in many biological
processes, diseases, and cancers, while cannot translate into proteins. With the
development of next-generation sequence technology, thousands of novel RNAs with
long open reading frames (ORFs, longest ORF length > 303 nt) and short ORFs (longest
ORF length ≤ 303 nt) have been discovered in a short time. How to identify ncRNAs more
precisely from novel unannotated RNAs is an important step for RNA functional analysis,
RNA regulation, etc. However, most previous methods only utilize the information of
sequence features. Meanwhile, most of them have focused on long-ORF RNA
sequences, but not adapted to short-ORF RNA sequences. In this paper, we propose
a new reliable method called NCResNet. NCResNet employs 57 hybrid features of four
categories as inputs, including sequence, protein, RNA structure, and RNA
physicochemical properties, and introduces feature enhancement and deep feature
learning policies in a neural net model to adapt to this problem. The experiments on
benchmark datasets of 8 species shows NCResNet has higher accuracy and higher
Matthews correlation coefficient (MCC) compared with other state-of-the-art methods.
Particularly, on four short-ORF RNA sequence datasets, specifically mouse,
Saccharomyces cerevisiae, zebrafish, and cow, NCResNet achieves greater than 10
and 15% improvements over other state-of-the-art methods in terms of accuracy and
MCC. Meanwhile, for long-ORF RNA sequence datasets, NCResNet also has better
accuracy and MCC than other state-of-the-art methods on most test datasets. Codes
and data are available at https://github.com/abcair/NCResNet.

Keywords: noncoding RNA, protein coding RNA, RNA sequence features, deep neural networks, noncoding
RNA prediction
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INTRODUCTION

Non-coding RNA (ncRNA) cannot translate protein, but it is
involved in many crucial and essentially biological processes,
such as gene expression (Wang et al., 2019), gene regulation
(Deaton and Bird, 2011; Dykes and Emanueli, 2017), gene
silencing (Singh et al., 2018), etc. Furthermore, ncRNA plays a
key role in the development of diverse cancers, including
pancreatic cancer (Peng et al., 2016; Xiong et al., 2017), lung
cancer (Anastasiadou et al., 2017), and so on. With the rapid
development of next-generation sequencing technology,
numerous novel transcripts have been discovered. The
recognition of ncRNAs from protein-coding RNAs (pcRNAs)
is the first and vital step in exploring the latent function of
unannotated transcripts. However, the differentiation of ncRNAs
from numerous unclassified sequences is time- and labor-
consuming with the use of biological experimental methods
(Lu et al., 2019). Furthermore, there is growing evidence that
some ncRNAs with short open reading frames (longest ORF
length ≤ 303 nt) can translate into micro-peptides (Galindo et al.,
2007; Kondo et al., 2007; Kondo et al., 2010; Chng et al., 2013;
Magny et al., 2013; Pauli et al., 2014; Anderson et al., 2015),
which makes it more difficult to distinguish ncRNAs from
pcRNAs. From a computational perspective, many methods
have been developed to distinguish ncRNAs and pcRNAs
based on machine learning techniques. Liu J et al. proposed a
classified method, called CONC (Liu et al., 2006), which employs
180 hybrid features of eight categories and is trained by support
vector machine (SVM) (Huang et al., 2018). However, the
calculation of CONC is slow with big datasets due to the
search and alignment of the dataset. To alleviate the problem
of inefficiency, coding protein potential (CPC) (Kong et al., 2007)
used SVM to appraise RNA noncoding potential by using six
biological sequence features. However, the performance of CPC
heavily relies on the quality of multiple sequence alignment
(McDermaid et al., 2018). Owing to the lower efficiency of
alignment and dataset searches, an alignment-free tool, coding-
potential assessment tool (CPAT) (Wang et al., 2013), based on
the logistic regression method, predicts ncRNAs by four pure
sequence features. Additionally, to accelerate the computational
speed of CPC, coding potential calculator version 2 (CPC2)
(Kang et al., 2017), an updated version of CPC, uses sequence
intrinsic features to differentiate ncRNAs from pcRNAs by SVM.
Many previous methods aim to categorize long noncoding RNAs
(lncRNAs) and pcRNAs such as iSeeRNA (Sun et al., 2013a),
Coding-Non-Coding Index (CNCI) (Sun et al., 2013b), PLEK (Li
et al., 2014), FEELnc (Wucher et al., 2017), DeepLNC (Tripathi
et al., 2016), COME (Hu et al., 2017), LncRNAnet (Baek et al.,
2018), and LncFinder (Han et al., 2018). iSeeRNA, CNCI, PLEK,
and LncFinder adapt SVM as a classifier. iSeeRNA works with
conservation, ORF, and sequence features. CNCI combines
profiling adjoining nucleotide triplets and unequal distribution
of codons (codon bias) to construct input features. PLEK uses k-
mer scheme features to represent a sequence. LncFinder
introduces sequential, RNA secondary structural, and
physicochemical properties to build input features. FFFLnc and
COME apply the random forest algorithm as a classifier. FFFLnc
Frontiers in Genetics | www.frontiersin.org 2
accepts ORF coverage, codon usage, and multi k-mer frequencies
as encoding features. COME utilizes experimental and sequence-
based features to assemble the input feature. LncRNANet and
DeepLNC manipulate deep neural networks as a predictor.
LncRNANet receives a raw RNA sequence, ORF length, and
ORF coverage features to learn recurrent neural networks (De
Mulder et al., 2015) and convolutional neural networks (Rawat
and Wang, 2017). DeepLNC uses multi k-mer frequencies as
features to train a deep neural network.

There is growing evidence that some ncRNAs contain short
ORFs that can encode small molecule peptides. This discovery
illustrates that the categorization of ncRNAs and pcRNAs is
more challenging than before. Current computational methods,
including all of the methods mentioned above, have yielded
encouraging results in distinguishing RNA sequences with long
ORFs but do not adapt to distinguishing RNA sequences with
short ORFs. To improve the predicted accuracy on short-ORF
RNA sequences, CPPred (Tong and Liu, 2019) utilizes
composition, transition and distribution (CTD) features
(Dubchak et al., 1995), sequence features, and protein features
to identify ncRNA by the SVM model. However, the generation
of CPPred on cross-species datasets is worse. Therefore, more
contributing features and a more powerful classification model
are needed to solve the problem.

In this paper, we propose a novel deep learning model, named
NCResNet, to identify noncoding RNA. NCResNet combines 57
reasonable features and a modified deep residual network (He
et al., 2016) to find ncRNAs. The 57 reasonable features are
selected from the sequence, protein, RNA structure, and RNA
physicochemical properties to overcome the shortcoming that
single or a few types of features cannot represent a raw sequence
abundantly and amply. NCResNet modified residual network is a
deep learning-based model composed of four main modules: an
input module, a feature enhancement module, a deep feature
learning module, and a prediction module. Based on feature
enhancements and deep feature learning policies, NCResNet
achieves better performance than other state-of-the-art
methods, such as CPC2, CPAT, IRSOM, LncFinder, and
CPPred. On eight benchmark datasets, NCResNet successfully
identifies ncRNAs from pcRNAs. In particular, on short-ORF
RNA sequence datasets of mouse, Saccharomyces cerevisiae,
zebrafish, fruit fly, and cow species, NCResNet achieves more
than 10 and 15% improvement over the compared methods in
terms of accuracy and MCC, respectively. In addition, for long-
ORF RNA sequence datasets, NCResNet performs better than
other methods on most test datasets. Overall, NCResNet is a
robust and high confidence tool for distinguishing ncRNAs and
pcRNAs, especially, in short-ORF RNA sequences.
METHODS

Data
NCRestNet is trained on three-fourths of a human dataset and
tested on the rest of the human dataset along with other seven
cross-species datasets of mouse, S. cerevisiae, zebrafish, fruit fly,
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cow, rat, and Caenorhabditis elegans. The whole human dataset
consists of 33,045 ncRNAs and 42,242 pcRNAs collected from
CPPred research. The test datasets of mouse, S. cerevisiae,
zebrafish, and fruit fly are also derived from CPPred research,
containing 20,776/20,776, 826/826, 11,049/11,049, and 4,479/
4,479 ncRNAs/pcRNAs, respectively. The other three species test
datasets of cow, rat, and C. elegans are downloaded from
Ensembl (Zerbino et al., 2018) and NONCODE (Bu et al.,
2012) including 1,028/1,028, 5,669/5,669, and 2,075/2,075
ncRNAs/pcRNAs, respectively. Moreover, all test datasets of
each species are split into long-ORF and short-ORF RNA
sequence datasets based on whether the longest ORF length of
a sequence is larger than 303 nt. For further verification, we test
NCResNet on an independent dataset downloaded from RefLnc
(Jiang et al., 2019) research, which contains 20,364 novel long-
ORF ncRNAs and 7,142 novel short-ORF ncRNAs assembled
from real clinical samples and without overlap of the previous
training and test datasets. In this paper, ncRNAs and pcRNAs are
treated as negative and positive samples, respectively. Table 1
shows the number of samples in each species dataset.

We use t-Distributed Stochastic Neighbor Embedding (t-SNE)
(Gisbrecht et al., 2015) to visualize the distribution of ncRNAs
and pcRNAs by mapping 57 features dimensions into two-
dimensional space. Figure 1 illustrates that ncRNAs and
pcRNAs with long-ORF sequences in the human test dataset
can be easily classified by these features (see Figure 1A), while
Frontiers in Genetics | www.frontiersin.org 3
datasets with short-ORF sequences are harder (see Figure 1B),
which reconfirms the observation that categorization between
ncRNAs and pcRNAs is more challenging in short-ORF RNAs.

Feature Construction
Many ncRNA identification methods have been attempted, and
most of them just use features from sequence information alone.
However, in this work, we employ 57 hybrid features from four
categories: sequence, protein, RNA structure, and RNA
physicochemical properties.

RNA Sequence Features
There are essential differences between ncRNAs and pcRNAs at
the sequence level (Ransohoff et al., 2018). For example, ncRNAs
often contain shorter ORFs and lack sequence conservation. In
this paper, 16 features generated by sequence are employed.
Firstly, the first three features related to ORFs, including ORF
length, ORF coverage, and ORF integrity [whether containing
open-reading frame (ORF)], are chosen because short-ORF
RNAs have a low ability to translate proteins. Secondly, the
Fickett score (Fickett, 1982) is a linguistic feature that
distinguishes ncRNAs and pcRNAs according to the
combinational effect of nucleotide composition and codon
usage bias. Hexamer score (Wang et al., 2013) is also an
essential feature because of the dependence between adjacent
amino acids in proteins. Thirdly, we select some fundamental
sequence features such as the codon number, codon ratio, GC
content, as well as GC variance. Fourthly, we use the distance
between ncRNAs and pcRNAs as candidate features, including
Dist.Ratio which is the ratio between Euclidean-distance to
ncRNAs and Euclidean-distance to pcRNAs (Han et al., 2018).

RNA Structure Features
RNA structure plays significant roles in some biological
functions (Burge et al., 2013) and is considered more
conserved than the primary sequence but is seldom employed
to predict ncRNA. Therefore, we introduce some RNA structure
characters as features. Recently, composition, transition, and
distribution (CTD) were found to be connected with RNA
TABLE 1 | Sample size of each species test dataset.

Long-ORF RNAs Short-ORF RNAs

NC PC NC PC

Human 8,241 8,241 641 641
Mouse 19,930 19,930 846 846
S. cerevisiae 413 413 413 413
Zebrafish 10,662 10,662 387 387
Fruit fly 4,098 4,098 381 381
Cow 284 284 744 744
Rat 4,589 4,589 1,080 1,080
C. elegans 582 582 1,493 1,493
FIGURE 1 | Distribution of noncoding RNA (ncRNAs) and protein-coding RNAs (pcRNAs) on human test datasets with long-open-reading frame (ORF) (A) and
short-ORF (B) RNA sequences by t-Distributed Stochastic Neighbor Embedding (t-SNE).
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structure and are seldom used to identify ncRNAs. Therefore, in
this paper, we use CTD to represent RNA structure information.
CTD includes 30 features from the three categories of
composition, transition, and distribution. The composition
features are the number of amino acids of a particular property
divided by the total number of amino acids; transition features
characterize the percent frequency with which amino acids of a
particular property are followed by amino acids of a different
property; and the distribution features to measure the chain
length within which the first, 25, 50, 75, and 100% of the amino
acids of a particular property are located.

For example, we use a toy RNA sequence ATACGTACTGCT
GACGTAGC which contains five adenines (As), five thymines
(Ts), five guanines (Gs), and five cytidines (Cs) to show how to
calculate the CTD features. The composition includes four
features which are frequency of adenines, thymines, guanines,
and cytidines respectively. The toy RNA sequence contains 5 A, 5
T, 5 G, and 5 C, so composition is equal to 5/20 = 0.25, 5/20 =
0.25, 5/20 = 0.25, and 5/20 = 0.25. Transition includes AT, AC,
AG, TG, TC, and GC six features which describe the percent
frequency with the conversion of four nucleotides between
adjacent positions. AT represents the percent frequency of A
adjoining T or T adjoining A. AC, AG, TG, TC, and GC are the
same formulation of AT. Therefore, the transition for the toy
RNA sequence is equal to 2/19 = 0.105, 3/19 = 0.158, 2/19 =
0.105, 4/19 = 0.211, 2/19 = 0.105, 4/19 = 0.211. Distribution is
five relative positions along the transcript sequence of each
nucleotide, with 0 (first node), 25, 50, 75, 100% (last node), to
measure the nucleotide distribution. For As, the 0% is location at
first position in toy RNA sequence, 25, 50, 75, and 100% at 3rd,
7th, 14th, 18th position respectively. So, As are 1/20 = 0.05,
3/20 = 0.15, 7/20 = 0.35, 14/20 = 0.7, and 18/20 = 0.9. Likewise,
Ts, Gs, and Cs are 0.1, 0.3, 0.45, 0.6, 0.85, 0.25, 0.5, 0.65, 0.8, 0.95,
0.2, 0.4, 0.55, 0.75, 1. We use A0, A1, A2, A3, A4, T0, T1, T2, T3,
T4, G0, G1, G2, G3, G4, C0, C1, C2, C3 and C4 to represent the
20 features.

Protein Features
ncRNAs cannot translate proteins, so the fake protein sequence
translated by ncRNA does not have true protein sequence
characters. Based on this understanding, we select and
calculate six related protein characters as features, including
Frontiers in Genetics | www.frontiersin.org 4
protein instability index, grand average of hydropathy
(GRAVY), isoelectric point, molecular weight and their
combination by Biopython (Cock et al., 2009).

Physicochemical Property Features
pcRNA has a different power spectrum distribution compared
with ncRNAs (Han et al., 2018). Generally, in the power
spectrum of a protein-coding transcript, a peak value will
emerge in the thirds position but will not appear in ncRNA
(Han et al., 2018). For any DNA sequence, nucleotides can be
replaced by EIIP values: {A!0.1260; C!0.1340; G!0.0806;
T!0.1335} (Nair and Sreenadhan, 2006). A sequence power
spectrum calculated by the following equation:

Se½k� = o
N−1

n=0
Xe½n�e−j

2pkn
N

����

����

2

   (k = 0, 1, 2,⋯,N − 1)

where Xe[n] is EIIP indicator value at nth position of a sequence,
N is the sequence length.

Based on the difference, we employ six physicochemical
properties from power spectrum as features, including
Signal.Peak, signal-to-noise ratio (SNR), Signal.Min, Signal.Q1,
Signal.Q2, and Signal.Max. Signal.Peak records the third position
value (peak value), and SNR is equal to Signal.Peak divided by the
averagingpower of a sequence.Additionally, the power spectrumof
a sequence is sorted in descending order to sample four position
values, which are Signal.Min, Signal.Q1, Signal.Q2, and Signal.Max,
corresponding to the minimum, lower quartile, upper quartile,
and maximum value of sorted power spectrum, respectively.

In brief, sequence, protein, RNA structure, andphysicochemical
property information are employed to generate 57 features. These
features can represent a raw sequence abundantly and copiously
fromdiverseperspectives.Tovisual the features intuitively,we show
density distribution of four used features on human training
ncRNA and pcRNA dataset in Figure 2. Additionally, the detail
definition and description of all features are listed in Supplementary
Table 1 and the density distribution of all the features on the
human training dataset is shown in Supplementary Table 2.

Model Structure
In this paper, we propose a novel deep-learning-based model,
named NCResNet, for predicting whether an RNA sequence is
FIGURE 2 | Density distribution of four used features on human training dataset. (A) Feature A2 is the rate between location of 25% A and sequence length. (B)
Feature A3 is the rate between location of 50% A and sequence length. (C) Feature Gravy is grand average of hydropathy of a protein. (D) signal.Min is minimum
power value in sorted power spectrum of a RNA sequence.
February 2020 | Volume 11 | Article 90
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an ncRNA or a pcRNA. To achieve the aim, as shown in Figure 3,
NCResNet is designed to contain four modules, including an input
module, feature enhancement module, deep feature learning
module, and prediction module. The input module is used to
receive an RNA sequence and calculate 57 features related to an
RNA sequence, RNA structure, protein features, and RNA
physicochemical properties as mentioned above.

The feature enhancement module is designed to enhance
feature information represented by 57 features and contains a
repeated layer and a flatten layer. The repeated layer is used to
duplicate features multiple times to augment the information of
the features, where the duplication time is a hyperparameter
determined by 10-fold cross validation. Then, the flatten layer is
applied to flatten the duplicated features into a linear vector,
which can be fed into the deep feature learning module as input.

The deep feature learning module is composed of six basic
units, and each unit contains several fully connected neural
network layers embedded by dropout layers and a rectified
linear unit (ReLU) activation function, where the dropout layer
aims to prevent the overfitting of the training model. Meanwhile, a
batch normalization operation is employed by the first layers of
each unit to guarantee the data derived from different sources
follow the same distribution. The principal part of the deep feature
learning module has three residual units, which aim to extract the
high-level features for an RNA sequence by modified Inception-
Resnet (Kamilaris and Prenafeta-Boldú, 2018). Inception-ResNet
is a significant deep learning network, which combines the residual
and inception methods to relieve gradient vanishing and gradient
explosion problems. Based on these strategies, it is feasible to
extend the neural network layer deeper and gain deep level
features. However, unlike the traditional Inception-ResNet, we
combine fully connected neural network layers (Parvat et al., 2017)
to construct a residual unit rather than a neural network
convolution kernel (Rawat and Wang, 2017). Figure 3E shows
Frontiers in Genetics | www.frontiersin.org 5
the structure of the residual unit used in our method. In front of
the three residual units, a compression unit, constructed by two
fully connected neural network layers, is applied to reduce the
dimension of enhanced features to decrease the number of
parameters of NCResNet. Behind the three residual units, we
assign two integration units made up of a fully connected neural
network layer to fuse the advanced features from the front three
residual units and the primary features generated by the
compression unit. This is an efficient way to supplement the
information that is missing in the extraction process for high-level
features, according to recent advances in deep learning (Iandola
et al., 2014).

The prediction module, stacked by five fully-connected neural
network layers, is the last module of NCResNet aimed to receive
integrated features from the deep feature learning module to
predict ncRNA probability for an RNA sequence. Like the
architecture of the units in the deep feature learning module,
each fully connected neural network layer is mediated by a
dropout operation (Dahl et al., 2013) and a ReLU activation
function. Meanwhile, the first fully connected neural network
layer applies a batch normalization operation (Ioffe and
Szegedy, 2015).

NCResNet is implemented in Python3 using Keras (Parvat
et al., 2017) and Tensorflow (Parvat et al., 2017). Additionally, we
use the high-performance NVIDIA GeForce GTX2080Ti GPU to
accelerate the computation. Binary cross entropy (BCE) (Zhang
and Sabuncu, 2018) is applied as the loss function. BCE defined
as follows:

BCE(pi) = yi log (pi) + (1 − pi) log (1 − pi)

where pi is the predicted probability of an ncRNA sequence, and
yi is the label indicating whether it is an ncRNA. NCResNet
introduces the AdaBound optimizer to minimize loss function
FIGURE 3 | The detailed structure of NCResNet includes the input module (A), feature enhancement module (B), deep feature learning module (C), and prediction
module (D). In addition, the deep feature learning module contains multiple residual units which consist of multiple fully connected neural network layers, and the
structure of the residual unit is shown in panel (E). Seq, Pro, CTD, and Phy represent sequence features, protein features, CTD features, and RNA physicochemical
property features, respectively. Dt, Nc, Nr, and Pd are the hyperparameters. Dt represents the duplicated time of input features in the feature enhancement module;
Nr equals the number of residual units Nc denotes the cell number of the fully connected neural network layer; Pd is the dropout value.
February 2020 | Volume 11 | Article 90
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and update parameters in backpropagation. AdaBound is an
adaptive optimizer proposed recently, which can achieve the
same performance as SGD and as fast as AdaGrad, RMSprop,
and Adam (Gambella et al., 2019).
Performance Evaluation of NCResNet
NCResNet is evaluated by the widely used standard performance
metrics, which are sensitivity (SN), specificity (SP), accuracy
(ACC), F1-score, and Matthews correlation coefficient (MCC).
These evaluation metrics are defined as follows:

Sensitivity (SN) =
TP

TP + FN

Specificity (SP) =
TN

TN + FP

F1� score =
2TP

2TP + FP + FN

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN

Matthews Correlation coefficient (MCC)

=
TP*TN − FP*FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FN)*(TP + FP)*(TN + FP)*(TN + FN)
p

where TP, FP, TN, and FN represent the true positives, false
positives, true negatives, and false negatives, respectively. We
also plot the receiver operating characteristic curves (ROC)
(Hanley and McNeil, 1982) and computed area under the
curve (AUC) (Faraggi and Reiser, 2002) to show the distinctly
different performance of each predictor.
Frontiers in Genetics | www.frontiersin.org 6
RESULTS

The Effects of Feature Combination
To explore the performance of different combinations of four
feature categories, a 10-fold cross validation experiment is
conducted on human training datasets. As shown in Table 2,
on training and test datasets, NCResNet trained with all feature
categories achieves better performance and obtains the lowest
accuracy when it only uses sequence-based features. The result
shows that the integration of four feature categories is a
compel l ing combination for dist inguishing ncRNA
from pcRNA.

Hyperparameters of NCResNet
Determined by 10 Cross-Validation
The optimal hyperparameters of NCResNet are empirically
chosen via grid research with a 10-fold cross validation in
terms of average accuracy on human training datasets. The
baseline hyperparameters are duplication time (Dt) in the
features enhancement module, the number of residual units
(Nr) in the deep feature learning module, and the number of
cells (Nc) of the fully connected neural network layer in the deep
feature learning module and dropout probability (Pd), which are
10, 3, 512, and 0.3, respectively. The results of the 10-cross
validation experiment are shown in Table 3.

The duplication time Dt in the feature enhancement module
is changed to 1, 5, 10, and 20. As the duplication time increases,
the feature information capacity of NCResNet increases. Dt of 10
shows better accuracy on both human training and test datasets.
The number of residual units Nr at the deep feature learning
module is changed to 1, 3, 5, and 10. The Nr of three shows better
performance both on training dataset and test datasets. The
number of cells Nc in the fully connected neural network layer is
changed to 64, 128, 256, and 512. When Nc is 512, NCResNet
achieves the highest accuracy both on the training dataset and
test dataset. The dropout probability Pd is changed to 0, 0.3, 0.5,
and 0.7. Similar to Nr and Nc, NCResNet achieves higher
accuracy when Pd is 0.3 both on the training and test datasets.
As a result, we assign Dt = 10, Nr = 3, Nc = 512, and Pd = 0.3 as
baseline hyperparameters of our model to balance performance
and generalization.

Performance Comparison Between Tools
To assess the performance of NCResNet, NCResNet is compared
with the other five models including CPC2, CPAT, IRSOM,
LncFinder, and CPPred. NCResNet is trained on the human
TABLE 2 | Effects of feature information in terms of prediction accuracy.

Seq Seq, Pro Seq, Pro, Str Seq, Pro, Str, Phy

Training 0.8229 0.9634 0.9862 0.9868
Test 0.8197 0.9514 0.9707 0.9828
Seq, sequence features; Pro, protein features; Str, RNA structure features; Phy,
physicochemical property features.
TABLE 3 | Effects of hyperparameter variations through 10-fold cross validation in terms of prediction accuracy.

Parameters Dt Nr Nc Pd

1 5 10 20 1 3 5 10 64 128 256 512 0 0.3 0.5 0.7

Training 0.9831 0.9861 0.9868 0.9865 0.9845 0.9868 0.9863 0.9860 0.9842 0.9848 0.9854 0.9868 0.9831 0.9868 0.9846 0.9815

Test 0.9807 0.9823 0.9828 0.9827 0.9806 0.9828 0.9826 0.9825 0.9819 0.9821 0.9823 0.9828 0.9827 0.9828 0.9820 0.9796
F
ebruary 2
020 | Vo
lume 11
 | Article 9
Dt, duplication time in the features enhancement module; Nr, the number of residual units in the deep feature learning module; Nc, the number of cells of fully connected neural network layer
in deep feature learning module; Pd, dropout probability.
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training dataset and tested on the eight human, mouse, S. cerevisiae,
zebrafish, fruit fly, cow, rat and C. elegans cross-species test
datasets. Because CPAT, IRSOM, and LncFinder provide a
retraining interface, they are retrained on the human training
dataset same as NCResNet, and tested on the other eight cross-
species datasets. Our training dataset is derived from CPPred, so
CPPred is not retrained, and we use the default human-CPPred
model as the comparison model. Additionally, we use an existing
human model of CPC2 to test other cross-species datasets as well
because of the lack of a retraining interface. In addition, each
species test dataset is split into long-ORF RNA sequence test
datasets and short-ORF RNA sequence test datasets based on
whether the length of the longest ORF is greater than 303 nt.

As shown in Table 4, on the human test dataset with long-
ORF RNA sequences, NCResNet outperforms the other models
in terms of sensitivity, F1-score, accuracy, AUC, and MCC with
0.9842, 0.9670, 0.9664, 0.9947, and 0.9334, respectively.
Frontiers in Genetics | www.frontiersin.org 7
Although CPPred calls a higher specificity with 0.9540, it
shows poor performance in other metrics.

The human test dataset with short-open-reading frame (ORF)
RNA sequences is a challenging dataset that includes 641 ncRNAs
and 641 pcRNAs. The test results are listed in Table 5. NCResNet
calls better performance in terms of specificity, F1-score, accuracy,
AUC, and MCC with 0.9329, 0.8357, 0.8494, 0.9323, and 0.7089,
respectively, and shows 1.88, 4.5, and 6.04% improvement in terms
of specificity, accuracy, and MCC, respectively.

We also compare NCResNet with other methods by accuracy
on cross-species test datasets including mouse, S. cerevisiae and
zebrafish, fruit fly, cow, rat, and C. elegans. NCResNet achieves
overwhelming performance on these datasets. As shown in Table
6, NCResNet obtains the higher accuracy in mouse, S. cerevisiae,
zebrafish, cow, rat, and C. elegans species with 0.9946, 0.9936,
0.982, 0.985, 0.9815, and 0.9074, respectively, and slightly worse
accuracy than CPAT in fruit fly species. on the cross-species test
datasets with short-ORF RNA sequences shown in Table 7,
NCResNet achieves better relative improvement in terms of
accuracy compared with cross-species test datasets with long-
ORF RNA sequences. Moreover, on the mouse, S. cerevisiae, and
zebrafish species datasets, the improved accuracy exceeds 10%.

Moreover, the ROCs of six methods in human, mouse, S.
cerevisiae and zebrafish, fruit fly, cow, rat, and C. elegans are
drawn. Figures 4 and 5 show ROCs on cross-species test datasets
with long-ORF and short-ORF RNA sequences, respectively.
Both on long-ORF RNA sequence test datasets and short-ORF
RNA sequence test datasets, NCResNet obtains a higher AUC
score on most cross-species datasets.

We also employ MCC to measure the performance of six
methods. MCC has a range of −1 to 1, where −1 indicates a
completely wrong binary classifier, while 1 indicates a completely
correct binary classifier. Figure 6 shows the MCC of each method
on cross-species test datasets with long-ORF and short-ORF RNA
sequences. On both kinds of datasets, NCResNet obtains a higher
MCC value for most species, especially on cross-species datasets
with short-ORF RNA sequences.
TABLE 4 | Performance of NCResNet on the human long-open-reading frame
(ORF) RNA sequence test dataset.

Specificity Sensitivity F1-score Accuracy AUC MCC

NCResNet 0.9485 0.9842 0.9670 0.9664 0.9947 0.9334
CPC2 0.9119 0.9512 0.9152 0.9315 0.9806 0.8637
CPAT 0.9328 0.9575 0.9458 0.9452 0.9835 0.8906
IRSOM 0.9183 0.8983 0.9073 0.9083 0.9083 0.9083
LncFinder 0.9196 0.9595 0.9408 0.9396 0.9803 0.8799
CPPred 0.9540 0.9706 0.9626 0.9623 0.9915 0.9247
TABLE 5 | Performance of NCResNet on the human short-open-reading frame
(ORF) RNA sequence test dataset.

Specificity Sensitivity F1-score Accuracy AUC MCC

NCResNet 0.9329 0.7659 0.8357 0.8494 0.9323 0.7089
CPC2 0.1263 0.9500 0.5209 0.5382 0.7994 0.1348
CPAT 0.3790 0.9703 0.7489 0.6747 0.8496 0.4333
IRSOM 0.9141 0.1653 0.2643 0.5397 0.7256 0.1200
LncFinder 0.1684 0.9734 0.6941 0.5709 0.8382 0.2392
CPPred 0.6271 0.9797 0.8328 0.8034 0.9260 0.6485
TABLE 6 | Accuracy of six models on cross-species long-open-reading frame (ORF) RNA sequence datasets.

Mouse S. cerevisiae Zebrafish Fruit fly Cow Rat C. elegans

NCResNet 0.9708 0.9515 0.9463 0.9702 0.926 0.9223 0.8324
CPC2 0.9315 0.9563 0.9315 0.9592 0.8503 0.8146 0.6065
CPAT 0.9468 0.96 0.9143 0.9297 0.8239 0.6887 0.5867
IRSOM 0.9406 0.9092 0.9203 0.9464 0.8028 0.767 0.6039
LncFinder 0.961 0.9104 0.9259 0.9554 0.875 0.8328 0.6279
CPPred 0.9663 0.9382 0.9474 0.9508 0.8926 0.8729 0.7139
February
 2020 | Volume 11
TABLE 7 | Accuracy of six models on cross-species short-open-reading frame (ORF) RNA sequence datasets.

Mouse S. cerevisiae Zebrafish Fruit-fly Cow Rat C. elegans

NCResNet 0.8321 0.8244 0.7674 0.7335 0.8581 0.7287 0.8888
CPC2 0.5372 0.5387 0.4599 0.559 0.5544 0.5523 0.5663
CPAT 0.7027 0.5968 0.6201 0.727 0.7862 0.7231 0.7608
IRSOM 0.5017 0.5012 0.4276 0.5354 0.5631 0.5361 0.4959
LncFinder 0.653 0.5326 0.5645 0.702 0.6055 0.5949 0.5743
CPPred 0.7169 0.6779 0.6627 0.5748 0.7043 0.6652 0.8054
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Performance Comparison of Models on
Verification Datasets
To further evaluate our method, we test the capacity of
NCResNet according to the number of correctly predicted
ncRNAs and compare it with other methods (CPC2, CPAT,
Frontiers in Genetics | www.frontiersin.org 8
IRSOM, LncFinder, and CPPred). The evaluated data derived
from RefLnc, which analyzes a compendium of 14,166 RNA-Seq
libraries from 30 physiological tissues, 18 tumors, and 2 cell lines
from two independent datasets, obtain 27,520 robust novel
lncRNAs. Among the 27,520 lncRNAs are 20,364 long-ORF
FIGURE 4 | Receiver operating characteristic curves (ROCs) of six methods on cross-species test datasets of human (A), mouse (B), Saccharomyces cerevisiae
(C), zebrafish (D), fruit fly (E), cow (F), rat (G), and Caenorhabditis elegans (H) with long-open reading frame (ORF) RNA sequences.
February 2020 | Volume 11 | Article 90
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ncRNA sequences and 7,142 short-ORF ncRNA sequences.
From Table 8, we can see that NCResNet correctly predicts
al l long-ORF ncRNA sequences and all short-ORF
ncRNA sequences.
Frontiers in Genetics | www.frontiersin.org 9
Performance Comparison of Six Models
on Integrated Datasets
Afterward, we merge the above eight popular species datasets
into an integrated dataset for the sake of eliminating the
FIGURE 5 | Receiver operating characteristic curves (ROCs) of six methods on cross-species test datasets of human (A), mouse (B), Saccharomyces cerevisiae
(C), zebrafish (D), fruit fly (E), cow (F), rat (G), and Caenorhabditis elegans (H) with short-open reading frame (ORF) RNA sequences.
February 2020 | Volume 11 | Article 90
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problems caused by the specificity of species and the differences
between the databases. We select two-thirds RNA sequences as
an integrated-training dataset randomly and the rest as an
integrated-test dataset. In addition, the integrated-test dataset
is split into the long-ORF RNA sequence dataset and short-ORF
RNA sequence dataset. In view of CPC2 and CPPred do not
provide retraining codes, we train NCResNet and retrain CPAT,
IRSOM, and LncFinder on the integrated-training dataset and
compare them on integrated-test datasets. Tables 9 and 10 show
the performance of the compared methods on the integrated-test
dataset with long-ORF and short-ORF RNA sequences,
respectively, and indicate that both on the long-ORF and
short-ORF RNA sequence integrated-test datasets, NCResNet
achieves better performance in terms of F1-score, accuracy,
AUC, and MCC. Particularly on integrated-test datasets with
short-ORF RNA sequences, NCResNet performs much better
than the other compared methods with more than 3.53, 5.15, 6.8,
and 7.21% improvement in F1-score, accuracy, AUC, and
MCC, respectively.
Running Time Comparison of Six Models
We also compare the efficiency of six methods according to the
average consuming time of per sequence on a 10,000-sequence
dataset. First, we select 10,000 long-ORF RNA sequences
(including 5,000 ncRNAs and 5,000 pcRNAs) and 10,000
short-ORF RNA sequences (including 5,000 ncRNAs and 5,000
pcRNAs) from test datasets randomly. Then, we record the
average cost time of per sequence of six methods on a 10,000
long-ORF RNA sequence dataset and a 10,000 short-ORF RNA
sequence dataset. On 10,000 long-ORF RNA sequence dataset,
NCResNet average running time of per sequence is 0.0112 s
Frontiers in Genetics | www.frontiersin.org 10
(0.0112 s) versus CPC2 (0.0013 s), CPAT (0.0017 s), IRSOM
(0.0012 s), LncFinder (0.0030 s), and CPPred (0.0401 s). And, on
10,000 short-ORF RNA sequence dataset, NCResNet average
running time of per sequence is 0.0049 s versus CPC2 (0.0005 s),
CPAT (0.0004 s), IRSOM (0.0011 s), LncFinder (0.0019 s), and
CPPred (0.0091 s). Table 11 lists the average running time of per
sequence comparison and Table 12 shows the corresponding
accuracy. Although the running time of per sequence of
NCResNet is larger than CPC2, CPAT, IRSOM, LncFinder,
NCResNet achieve higher accuracy and the corresponding total
running time is in the second level which is within an acceptable
range. Additionally, the hardware device of the running
environment is CPU (i7-7700, 3.6 GHz), memory (8 G,
2,300 Hz).
FIGURE 6 | Matthews correlation coefficients (MCCs) of six methods on cross-species test datasets with long-open-reading frame (ORF) test datasets (A) and
short-ORF (B) RNA sequences.
TABLE 8 | Number of noncoding RNA (ncRNAs) correctly predicted by six models on the verification datasets.

Data type Number of new data NCResNet CPC2 CPAT IRSOM LncFinder CPPred

Long-ORF ncRNAs 20,364 20,364 19,787 19,487 19,341 19,703 20,112
Short-ORF pcRNAs 7,142 7,142 7,141 7,105 7,142 7,828 7,111
February
 2020 | Volume 11 | A
TABLE 9 | Performance of four models on the integrated-test dataset with long-
open reading frame (ORF) RNA sequences.

Specificity Sensitivity F1-score Accuracy AUC MCC

NCResNet 0.9542 0.9059 0.9283 0.9301 0.9760 0.8611
CPAT 0.9558 0.7095 0.8091 0.8326 0.9381 0.6864
IRSOM 0.5199 0.9457 0.7421 0.7087 0.9020 0.4986
LncFinder 0.9697 0.7478 0.8412 0.8588 0.9380 0.7360
TABLE 10 | Performance of four models on the integrated-test dataset with
short-open reading frame (ORF) RNA sequences.

Specificity Sensitivity F1-score Accuracy AUC MCC

NCResNet 0.7663 0.9673 0.8790 0.8668 0.9705 0.7490
CPAT 0.1595 0.9948 0.7017 0.5771 0.8593 0.2808
IRSOM 0.9462 0.2813 0.4320 0.4688 0.8160 0.2483
LncFinder 0.6339 0.9968 0.8437 0.8153 0.9025 0.6769
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DISCUSSION

Deep learning technology has yielded inspiring results for many
issues related to bioinformatics owing to the increase in training
data and relatively complex neural network structure (Min et al.,
2017). The issue of distinguishing ncRNAs from pcRNAs is a
vital and indispensable step to explore the functions of novel
RNAs. With the rapid development of next-generation
sequencing technology, numerous novel RNAs have been
generated. However, the differentiation of ncRNAs from
pcRNAs by biological experiments is expensive and time-
consuming. Previous computational methods have achieved
excellent performance on long-ORF RNA sequences, but most
of them do not adapt to short-ORF RNA sequences. In this
paper, NCResNet is proposed to fill this gap by multiple hybrid
features and deep-learning-based structure.

NCResNet introduces 57 hybrid features of four categories,
including RNA sequence, RNA structure, protein and RNA
physicochemical property. An RNA sequence can be
characterized comprehensively, based on the 57 hybrid features
combination of four categories. For example, if the RNA-
sequence-based features, e.g., features related to ORFs, poorly
support the recognition of the ncRNA, other multiple hybrid
category features will fill the gap. Moreover, we do not employ
feature engineering to find and select powerful and contributed
features because models based on the deep neural network are
not sensitive to a few less contributed features due to the
automatic parameter learning. Therefore, the performance of
NCResNet is affected very slightly by some features that are not
the best candidates.

NCResNet consists of four modules: an input module, a
features enhancement module, a deep feature learning module
and a prediction module. The 57 hybrid features calculated from
Frontiers in Genetics | www.frontiersin.org 11
the input model are mapped into a higher dimensional space by
the repeat and flatten layers in the feature enhancement module,
and then the generated enhancement feature information will be
compressed to a relatively lower dimension vector by the
compression unit in the deep feature learning module. These
processes can contribute and strengthen candidate feature
information and reduce the adverse effects of a few slightly
contributing features. Furthermore, stacked residual units in
the deep feature learning module are introduced to learn and
detect high-level features. Although the residual unit can
effectively overcome gradient vanishing and the gradient
explosion problem, it faces another issue: the loss of useful
information from original features. To solve this problem, two
integration units in the deep feature learning module are utilized
to fuse the high-level features from the residual units and the
primary features from the compression unit.

Due to its multiple hybrid features and deep-learning-based
structure, NCResNet achieves excellent performance on both
long-ORF and short-ORF RNA sequence datasets. However, the
core structure of NCResNet, a deep neural network structure, is a
black box, and it is hard and difficult to interpret the
performance and evaluate the importance of every input
feature. Therefore, more efforts are needed to explore the
interpretability of NCResNet, which will help us discover more
novel characteristics of ncRNAs.
CONCLUSION

In this work, we propose a deep learning-based method,
NCResNet, to identify ncRNA by using 57 hybrid features of
four categories, which are derived from sequences, protein, RNA
structure, and RNA physicochemical property. NCResNet
consists of four main modules: an input module, a feature
enhancement module, a deep feature learning module, and a
prediction module. Based on the feature enhancement and deep
feature learning policies, NCResNet can learn more contributed
and useful feature information. As a result, on short-ORF RNA
sequence test datasets including species such as mouse, S.
cerevisiae, zebrafish, fruit fly, and cow, NCResNet achieves
more than 10 and 15% improvement over the compared
methods in terms of accuracy and MCC, respectively.
Meanwhile, on long-ORF RNA sequence test datasets,
NCResNet achieves higher accuracy and higher MCC than
other methods on most species datasets. Overall, NCResNet
successfully detects short-ORF ncRNA sequences and shows
robust performance on long-ORF RNA sequence datasets as
well, and our method will contribute to the identification of novel
ncRNAs from abundant transcriptome data.
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NCResNet CPC2 CPAT IRSOM LncFinder CPPred

Long-ORF
sequence
dataset

0.0112 0.0013 0.0017 0.0012 0.0030 0.0401

Short-ORF
sequence
dataset

0.0049 0.0005 0.0004 0.0011 0.0019 0.0091
TABLE 12 | Corresponding accuracy of six methods average running time of per
sequence on a 10,000 long-open reading frame (ORF) RNA sequence dataset
and a 10,000 short-ORF RNA sequence dataset.

NCResNet CPC2 CPAT IRSOM LncFinder CPPred

Long-ORF
sequence
dataset

0.9662 0.9506 0.9402 0.9353 0.9559 0.9649

Short-ORF
sequence
dataset

0.8171 0.5455 0.7169 0.5150 0.5254 0.7207
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