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Data normalization is vital to single-cell sequencing, addressing limitations presented by
low input material and various forms of bias or noise present in the sequencing process.
Several such normalization methods exist, some of which rely on spike-in genes,
molecules added in known quantities to serve as a basis for a normalization model.
Depending on available information and the type of data, some methods may express
certain advantages over others. We compare the effectiveness of seven available
normalization methods designed specifically for single-cell sequencing using two real
data sets containing spike-in genes and one simulation study. Additionally, we test those
methods not dependent on spike-in genes using a real data set with three distinct cell-
cycle states and a real data set under the 10X Genomics GemCode platform with multiple
cell types represented. We demonstrate the differences in effectiveness for the featured
methods using visualization and classification assessment and conclude which methods
are preferable for normalizing a certain type of data for further downstream analysis, such
as classification or differential analysis. The comparison in computational time for all
methods is addressed as well.

Keywords: normalization, single-cell, comparison, RNA-seq, spike-in RNA
INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a recent and powerful technology developed as an
alternative to previously existing bulk RNA sequencing methods (Nawy, 2014). Bulk sequencing
methods analyze the average genetic content for individual genes across a large population of input
cells within a sample (e.g., a tissue), potentially obscuring transcriptional features and other
differences among individual cells. Conversely, scRNA-seq is able to discern such heterogeneous
properties within a sample (Patel et al., 2014) and has great potential to reveal novel subpopulations
and cell types (Buettner et al., 2015). scRNA-seq has already been applied in the field of embryonic
stem cell research, detecting developmental differences across weeks or days of growth (Macaulay
and Voet, 2014). It has wide applications in cancer research as well, from identifying intratumor
heterogeneity to profiling clonal evolution mechanisms (Zhang et al., 2016). However, individual
cells have extremely tiny amounts of input material available, typically on the scale of picograms
(Brennecke et al., 2013). The small scale of scRNA-seq input material means that some level of
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inaccuracy is inevitable even with the most precise instruments,
resulting in an additional layer of stochasticity known as
technical noise (Jia et al., 2017). During the sequencing
process, reverse transcription is necessary to convert RNA to
cDNA for use in amplification, but this introduces positional bias
regardless of where the polymerization begins (Hebenstreit,
2012). The following amplification process counteracts low
input material, though this in turn leads to additional bias as
some genes may experience preferential amplification, leading to
uneven representation in the data (Neu et al., 2017). The
amplification process also runs the risk of producing dropout
events, in which either genes known to be present in a sample are
completely absent from the observed gene counts or genes are
observed with lower value than their true expression (Van den
Berge et al., 2018). These events frequently lead to excessive
zeros, and in many cases, more than half of all counts.
Traditional bulk approaches do not naturally accommodate
these differences, and therefore lose their effectiveness when
applied to scRNA-seq.

Normalization is critical to the development of analysis
techniques on scRNA-seq and to counteract technical noise or
bias. Before observed data can be used to identify differentially
expressed genes or potential subpopulations, it must undergo
these corrections, for what is observed is seldom exactly what is
present within the data set. Over its years of development for
scRNA-seq, several normalization methods have been utilized,
ranging from variations of bulk sequencing methods to entirely
new approaches designed specifically for single-cell studies.
These methods frequently draw attention to the differences
between technical noise (e.g., due to imprecise measurements)
and biological/medical variation, attributed to natural differences
among the cells under the same biological/medical condition
(Kim et al., 2015). In this paper, the term “condition” refers to
biological and medical conditions (e.g., cell type).

Although bulk-based normalization methods such as those
included within differential expression analysis for sequence
count data (DESeq) (Anders and Huber, 2010) and trimmed
mean of M-values (TMM) (Robinson and Oshlack, 2010) have
found varying degrees of success and early widespread use
(Dillies et al., 2013), they do not effectively account for the
limitations specific to scRNA-seq data. In particular, excessive
zeros greatly impact DESeq due to its reliance on genes with
nonzero counts in every cell, while TMM frequently overcorrects
for scaling factor sizes (Vallejos et al., 2017). For these reasons,
this paper focuses on normalization methods that have been
specifically designed for scRNA-seq data, rather than adapted
from bulk-based approaches.

Some scRNA-seq studies involve the use of spike-in
molecules for the purpose of normalization (Jiang et al., 2011).
The spike-in RNA set is artificially added to each cell's lysate in
the same volume under the assumption that spike-ins and
endogenous transcripts will experience similar variation among
cells during the capture process (Lun et al., 2017). Since spike-in
gene concentrations are known, normalization methods model
existing technical variation by utilizing the difference between
these known values and the values observed after processing.
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Spike-ins can also aid in quantifying capture efficiency to
improve the quality of normalization (Stegle et al., 2015).

We compared seven existing normalization approaches that
aim to reduce noise or bias specifically for scRNA-seq data: (1)
Single-Cell Tagged Reverse Transcription (SAMstrt) (Katayama
et al., 2013), (2) Bayesian Analysis of Single-Cell Sequencing
Data (BASiCS) (Vallejos et al., 2015), (3) Gamma Regression
Model (GRM) (Ding et al., 2015), (4) scran, a package for
scRNA-seq data analysis (Lun et al., 2016), (5) Robust
Normalization of Single-cell RNA-seq Data (SCnorm) (Bacher
et al., 2017), and (6) Linnorm, a linear model and normality
based normalizing transformation method for scRNA-seq data
(Yip et al., 2017). To compare the effectiveness of these methods
on data normalization, we considered two real data sets
containing spike-in genes. Additionally, we compared
normalization methods by using a simulation study, and lastly,
we compared the three normalization approaches (Linnorm,
SCnorm, scran) that do not require spike-in genes on a real
data set consisting of human embryonic stem cells in various
stages of the cell cycle, as well as on a 10X Genomics real data set
of peripheral blood mononuclear cells (PBMCs).
MATERIALS AND METHODS

The focus of this study is comparing single-cell specific
normalization methods. Of these, seven normalization
techniques are defined and applied according to their respective
packages. Information on the data sets used is listed in Table 1.
Summary information for the normalization methods is listed in
Table 2. As a note, variable names for some methods' formulas
have been altered from their original forms for the sake of
consistency in this review and the untouched forms can be
found in the referenced papers. The corresponding R packages
for all of these methods can be found in Table 3. All methods were
performed using the default settings of their respective R packages.

Single-Cell Tagged Reverse Transcription
(SAMstrt)
SAMstrt is an adaptation of SAMseq designed for the single-cell
tagged reverse transcription (STRT) sequencing method
TABLE 1 | Summary of data sets used in this review.

Data Type Author Year Protocol Platform # genes
after

cleaning

# cells
after

cleaning

Mouse
embryonic
stem cells

Islam
et al.

2011 AbGene
Thermo-
Fast 96

Illumina
Genome
Analyzer IIx

11430 90

Mouse lung
cells

Treutlein
et al.

2014 Fluidigm
C1

Illumina
HiSeq 2000

12073 186

Human
embryonic
data

Leng
et al.

2015 Fluidigm
C1

Illumina
HiSeq 2500

19084 247

PBMC data Zheng
et al.

2017 10X
Genomics

GemCode 13714 2649
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(Islam et al., 2012). SAMseq is a nonparametric approach to
differential expression in bulk sequencing, designed to be resistant
tooutliers (Li andTibshirani, 2011). It uses the two-sampleWilcoxon
test and Poisson resampling to detect the genes associated with an
outcome in RNA-Seq or other sequencing-based comparative
genomic experiments. SAMstrt is developed on this method and
alters the sequencing depth estimation by assuming equivalent
spike-in-molecules per cell in each condition. In other words,
SAMstrt builds on the method by accounting for and correcting
differences in sequenced spike-in reads across cells, even in the
presence of highly variable sequencing depths. SAMstrt is effective
at identifying highly expressed features, though it depends on the
number of total reads per spike-in gene across all cells, with higher
performance expected for deeper sequencing depth.

Bayesian Analysis of Single-Cell
Sequencing Data (BASiCS)
BASiCS uses a fully Bayesian approach that separates data
variation into gene-specific constants, technical noise, and
biological variation. Though using spike-in genes, it does not
rely on them exclusively to determine technical variation, instead
electing to jointly model spike-in genes and biological genes (i.e.,
all other genes in the data set).
Frontiers in Genetics | www.frontiersin.org 3
For normalization, BASiCS first utilizes the spike-in genes to
determine a hierarchical model for technical variation, with Xij

representing the expression count of spike-in gene i in cell j,
using the Poisson and Gamma distributions. Here, for cell j mi is
the normalized expression rate of gene i from the same cell type,
vj is a random effect centered on the capture efficiency constant sj
and q quantifies technical noise using information from all genes
and all cells. Once established for the spike-in genes, this model
expands to account for the biological genes:

Xijjmi, fj, nj, rij ∼
Poisson fjnjmirij

� �
,     for   biological   genes

Poisson njmi

� �
,     for   spike − in   genes

(
(1)

with vjjsj, q ∼ Gamma
1
q
,

1

sjq
� �

 !
and rijjdi

∼ Gamma
1
di
,
1
di

� �
(2)
In this equation, rij represents a mutually independent set of
random effects from vj, while including cell-specific size factors
fj. Note that cell-size factors are only applicable to the biological
genes in this equation; spike-in genes are included in equal
amounts for each cell, regardless of cell-size, so spike-in genes are
independent of such effects. BASiCS treats cell-specific
normalizing constants (fj and sj) as model parameters and
estimates them by combining information across all genes.
Properly cleaning data by removing genes and cells with all
zero or very low total read counts (<10 for genes, <10000 for
cells) is especially important for BASiCS.
Gamma Regression Model (GRM)
The Gamma Regression Model uses spike-in genes to construct a
model that accounts for differences between observed and known
spike-in concentrations. Notably, it predicts concentration as a
function of the fragments per kilobase of transcript per million
mapped reads (FPKM).

To account for a wide range of gene concentrations, GRM
employs the gamma regression model to fit the log transformed
concentration data against the log transformed FPKM reads for
the spike-in genes. Due to the non-linearity of the reads, they are
modeled using a polynomial function m(X) that can be adjusted
to various degrees (D0 = 1~ 4) to find an optimal fit with minimal
average technical noise of spike-in genes. Furthermore, GRM is
applied to cells individually rather than simultaneously, unlike
other normalization methods. Once the regression model is
formed for an individual cell, it calculates the expectation of
the biological gene concentration based on the given FPKM as
follows:

C ∼ Gamma m Xð Þ, fð Þ (3)

m(X) =oD0
d=0bdX

d (4)
TABLE 3 | A list of source packages for downloading.

Package Source

SAMstrt v.0.99.0 (https://github.com/shka/R-SAMstrt/archive/0.99.0.tar.gz)
BASiCS v.1.0.1 Bioconductor (http://www.bioconductor.org)
GRM v.0.2.1 (http://wanglab.ucsd.edu/star/GRM/)
scran v.1.6.9 Bioconductor (http://www.bioconductor.org)
SCnorm v.1.0.0 Bioconductor (http://www.bioconductor.org)
Linnorm v.2.2.0 Bioconductor (http://www.bioconductor.org)
Seurat v.3.0.0 CRAN (https://CRAN.R-project.org/package=Seurat)
TABLE 2 | Summary of normalization methods, including the basic description
and whether the method uses spike-in genes information.

Method Author Year Spike-
ins

Model Description

SAMstrt Katayama
et al.

2013 Yes Poisson resampling and non-parametric
statistics

BASiCS Vallejos
et al.

2015 Yes Use spike-ins for hierarchical Poisson/
Gamma model for technical variability.
Expand model to incorporate biological
genes with new Poisson model

GRM Ding et al. 2015 Yes Gamma regression model from spike-ins
Simple
Norm.

Satija
et al.

2015 No Divide gene counts for cells, then
multiply by scale factor and apply a log(x
+1) transformation to the result (included
in the Seurat package as NormalizeData)

scran Lun et al. 2016 No Deconvolution of size factors from
constructed linear system. Form pools
of cells and normalize using summed
expression values

SCnorm Bacher
et al.

2017 Optional Quantile based model for log
sequencing depth.

Linnorm Yip et al. 2017 Optional Linear models defined with a
normalization strength coefficient to
update means. Focuses on stable genes
to perform normalization
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f Cð Þ =  
1

CG fð Þ
fC
m Xð Þ
� �f

exp −
fC
m Xð Þ

� �
(5)

where X = log(FPKM), C = log(concentration). The parameters
are determined using maximum likelihood estimation for
Gamma regression. The normalized expression for gene i can
be calculated for the observed gene expression by:

Yi = E(Ci) = m̂(Xi) =oD0
d=0b̂dX

d
i (6)

GRM is a method that performs normalization and denoising
for individual cells. As such, it is primarily used for denoising
effect, as it does not perform normalization directly among cells.

scran—Methods for Single-Cell RNA-Seq
Data Analysis
The scran method uses a deconvolution approach that
partitions cells into pools, normalizes across cells in each
pool, then uses the resulting system of linear equations to
define individual cell factors. This method takes extra steps to
counteract assumptions about differential expression (DE)
genes by estimating a size factor term for each cell pool and
utilizing these estimates to approximate a size factor term for
ind iv idua l ce l l s . Ce l l pool s are des igned to have
comparable library sizes to account for potential estimation
errors. By keeping sizes consistent, estimation errors are less
likely to disproportionately affect extreme cells under the
same condition.

For Xij, the count of a non-DE gene i in cell j the expected
value is E(Xij)=qjli0, where qj is the cell-specific bias, and li0 is
the expected gene expression count. Including a constant
adjustment factor tj for cell j, the normalized expression value
Yij is defined as Yij = Xijt

−1
j with expectation of E(Yij) = qjli0t−1j .

Now for pool k of arbitrary cell set Sk let Vik be the sum of Yij

across all cells in the set, Ui be the mean of Yij across the entire
data set of N cells, and Rik be the ratio of Vik to Ui, so:

E(Vik) = li0oj∈Sk
qjt

−1
j (7)

E(Ui) = li0N−1oj∈S0
qjt−1j (8)

E Rikð Þ ≈ E Vikð Þ
E Uið Þ = oSk

qjt−1j
N−1oS0

qjt−1j
= oSk

qjt−1j
C

(9)

with set S0 of all cells in the entire data set and constant C
independent of the gene, cell, and pool. This results in the pool-
based size factor Rik, whose estimates can be applied to individual
cells accurately. Linear equations are then set up for every pool
using the estimate of the size factor and treating qjt−1j is
unknown, using least-squares methods to solve for all cells.
The pool sizes chosen for scran are restricted by the number of
cells in each condition within a data set. The authors
recommended that the number of cells is at least 20, though
smaller sizes may be possible. A larger number of cells will also
lead to computational complexity, so this may impact the
execution time for certain data sets.
Frontiers in Genetics | www.frontiersin.org 4
Robust Normalization of Single-Cell RNA-
Seq Data (SCnorm)
This recently developed method does not rely on global
sca l ing fac tors that many other methods use for
normalization. Instead, it focuses on two layers of quantile
regression to effectively group genes and estimate their
dependence. While it does not require spike-ins, SCnorm
can use them to improve its accuracy, provided the spike-in
genes cover a similar range of gene expression to that of the
biological genes in the study.

For SCnorm, let Xi,j be the log nonzero expression count for
gene i in cell j, and Dj as the log sequencing depth for cell j.
Furthermore, the total number of pools K for which the count-
depth relationship substantially varies is chosen, starting at K=1.
The gene-specific relationship between log of raw expression and
log sequencing depth with median quantile regression is as
follows:

Q0:5 Xi,j

� ��DjÞ = bi,0 + bi,1Dj (10)

However, the median may not be an appropriate
representation depending on the gene, so this can be extended
to multiple quantiles t and polynomial degrees d for all the genes
in the current pool k, where k={1,..,K}:

Qtk ,dk Xj

� ��DjÞ = btk
0 + btk

1 Dj +⋯+btk
d Ddk

j (11)

SCnorm also designates ĥ tk
1 as the estimated count-depth

relationship of expression values from the median first-degree
polynomial:

Q0:5 X̂ tk
j

� ���DjÞ = htk
0 + htk

1 Dj (12)

Let t*k and d
*
k be the specific values that minimize the absolute

difference between the estimate count-depth relationship and the
mode of the estimate of slopes in (Equation 10) across all genes.
The scale factor SFj for cell j is defined as below, as are the
normalized counts Yi,j:

SFj =
eX̂

t*
k
,d*
k

j

eX
t*
k

(13)

Yi,j =
eXi,j

SFj
(14)

SCnorm begins with K=1 and calculates the modes of slopes
for median quantile regression within a certain number (default
= 10) of pools of equal size. If any mode exceeds 0.1, the
normalization is deemed insufficient, and K increases by 1 to
repeat the process.

SCnorm sequentially chooses the number (K) of pools for
which the count-depth relationship varies significantly.
Depending on the nature of the data set, the number of pools
necessary can greatly vary, and data sets of similar size may have
noticeably different execution times as a result. In particular,
exceptionally large amounts of zeros in the data may require a
February 2020 | Volume 11 | Article 41

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Lytal et al. Normalization Methods on scRNA-seq Data
large number of pools to converge, increasing total
computational time.

Linear Model and Normality Based
Normalizing Transformation Method
(Linnorm)
Linnorm is a newer method designed for both normalization and
transformation of scRNA-seq data, though for the purpose of
this paper we consider the normalization portion only. It first
identifies stable genes (i.e., exhibiting nearly zero variance across
all cells, according to the referenced paper) with an initial
normalization step that converts initial expression level Xij for
gene i and cell j to relative scale Rij as follows:

Rij =
Xij

om
i=1Xij

1 ≤ i ≤ m,   1 ≤ j ≤ nð Þ (15)

When only performing normalization, Linnorm then defines the
expression level Gij as

Gij = ln lRij

� �
(16)

where l is the median of total counts across all cells and employs
the expression means zi within n linear models of the form:

zi = ajXij + bj (17)

in which the parameters a and b in each model are estimated
through the linear model. Then, the normalized data can be
obtained using the normalization strength coefficient c (0≤c≤1),
set to 0.5 by default in the following process:

  aupdatedj = c aj − 1
� �

+ 1 (18)

bupdatedj = bj*c (19)

Bij = exp aupdatedj Gij + bupdatedj

� �
(20)

Yij = ln Bij + 1
� �

(21)

Linnorm depends on the assumption that genes are
homogeneously expressed across different cells, and genes with
low expression can introduce skewness to data that may violate
these assumptions. Also, though it relies on only stable genes to
determine normalization parameters, these parameters are
applied universally, which may introduce additional variation
for less stable genes.

Simple Normalization
In addition to the above methods, we obtain a baseline
comparison for normalization through the use of the Seurat
(Satija et al., 2015) R package's NormalizeData function. This
method, referred to as “Simple Norm” in subsequent plots, is a
global normalization process that by default divides gene counts
for a cell before multiplying by the scale factor and natural log
transforming the result with log(x+1) to account for zero counts.
Frontiers in Genetics | www.frontiersin.org 5
Bulk Normalization Methods
Although this paper is focused on the performance of single-cell-
based normalization methods, an additional section comparing
the performance of two popular bulk-based normalization
methods is included. The “median of ratios” (MoR) approach is
analyzed using version 1.17.15 of the DESeq2 package, while the
“trimmed mean of M values” (TMM) approach is analyzed using
version 3.19.3 of the edgeR package. Analysis for bulk methods
can be found in section 4 of the Supplementary Materials.

Data
For spike-in gene case, we chose two scRNA-seq mouse data sets,
one on embryonic stem cells and fibroblasts and the other on
four development stages of epithelial lung cells. We also
simulated a data set based on the stem cell study. For non-
spike-in gene case, we utilized a human data set with three cell-
cycle states.

1) Mouse Embryonic Data
The first data set, drawn from a study by Islam et al. and
hereafter referred to as the mouse embryonic data, has two
groups of cells: 48 mouse embryonic stem cells (ES) and 44
mouse embryonic fibroblasts (MEF) (Islam et al., 2011). Counts
for this data can be found at the GEO Database under accession
number GSE29087. This data set also includes a set of 8 spike-in
genes (synthetic control mRNAs).

2) Mouse Lung Data
The second spike-in real data set originates in a study by
Treutlein et al. (2014), hereafter referred to as the mouse lung
data, and consists of mouse lung epithelial cell data separated
into three stages of embryo development labeled by number of
days: 45 E14.5 cells, 27 E16.5 cells, and 80 E18.5 cells, plus 46
adult cells. Counts for this data can be found at the GEO
Database under accession number GSE52583. Additionally,
this data includes a set of 92 ERCC spike-in genes, available
through Thermo Fisher Scientific's Ambion line of spike-in
control mixes (ThermoFisher Scientific, 2015) (https://tools/
thermofisher/com/content/sfs/manuals/ERCC92.zip).

3) Simulated Data
The simulated data set is based on the mouse embryonic data.
Using a similar approach to anexisting study on scRNA-seq
simulation for normalization (Vallejos et al., 2017), we divided
the first group of mouse embryonic stem cells into two subgroups
of equal size that are then differentiated by upregulating random
genes between the two subgroups. Based on the mean counts for
genes across all cells, global scaling factors for each gene, and the
overdispersion of each gene, we then generated new read counts
through a negative binomial distribution, mimicking scRNA-seq
data. In this instance, global scaling factors refer to constant
factors by which expression within each cell is scaled in order to
remove cell-specific biases (Vallejos et al., 2017). These factors
assume read counts in a cell have an expected value proportional
to both gene-specific expression and cell-specific scaling factors.
We also subject one of the two subgroups to an n-fold change
[n=(2, 5)] in expression among a random selection of 1000 genes.
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https://tools/thermofisher/com/content/sfs/manuals/ERCC92.zip
https://tools/thermofisher/com/content/sfs/manuals/ERCC92.zip
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Lytal et al. Normalization Methods on scRNA-seq Data
This allows us to observe each method's sensitivity to various
levels of differential expression.

4) Human Embryonic Data
In addition to the data sets with provided spike-in genes, we
selected a data set specifically for the methods that do not use spike-
in genes to provide a closer comparison. This data set belongs to
the H1-FUCCI case study by Leng et al. (2015), hereafter referred
to as the human embryonic data, and contains 247 human
embryonic stem cells (hESC) separated by cell-cycle state: 76 G2
cells, 80 S cells, and 91 G1 cells. Counts are available at the GEO
Database under accession number GSE64016.

5) Peripheral Blood Mononuclear Cell (PBMC) Data
To demonstrate the effectiveness of these methods with more
recent protocols, we selected thisdata set, hereafter referred to
as the PBMC data. This data set is a representative of 10X
Genomics's more recent GemCode platform, which several
scRNA-seq studies have adopted, and which typically
processes much larger numbers of cells at more sparse count
levels. As with the human embryonic data set, there are no
spike-in genes present, and we again compare only methods
that do not use spike-in genes. The data set consists of 2700
PBMCs (2649 of which were used in this study) and is part of a
larger dataset used in a study by Zheng et al. (2017), with the
original data set consisting of 68k PBMCs from a healthy
donor. Cell groups for this dataset were determined through
a clustering pipeline as part of the Seurat R package. Counts are
available at the NCBI Sequence Read Archive under accession
number SRP073767, and the smaller version used in this study
can be found at http://support.10xgenomics.com/single-
cell/datasets.
RESULTS

The chosen normalization methods were first compared on two
mouse scRNA-seq data sets. For further comparisons, we also
constructed a simulated data set based on one of the real sets. We
also include a human data set with three cell-cycle states to test
methods not dependent on spike-in genes. The raw data are
noisy and must be cleaned before subjecting the data to
normalization. Details for the basic cleaning process can be
found in the Supplementary Materials. All final plots after
normalization are at a log-transformed scale, as employed in
similar studies (Chapman et al., 2002; Lin et al., 2017).

Visualization Analysis
Principal component analysis, a linear method of dimensionality
reduction, is used to demonstrate differences among cells under
different conditions within each data set (Wold et al., 1987). By
projecting the data through orthogonal transformations, PCA
allows most of the variance in a data set to be contained within
the first few principal components. Very often, by plotting the
first two principal components, we can observe separation within
the data from a PCA visual representation of the scRNA-seq
Frontiers in Genetics | www.frontiersin.org 6
data. However, since PCA is a linear method in dimension
reduction, it is not always able to capture differences among
cell groups. As such, we consider t-SNE analysis, a non-linear
method for visualization (Van Der Maaten and Hinton, 2008).
This non-parametric method for dimension reduction is a
modern alternative to PCA that displays patterns for
visualization in just a few dimensions—all t-SNE analysis is
performed within the Rtsne() package, version 0.13.
Additionally, we employ UMAP (Becht et al., 2019) analysis, a
new non-linear alternative to t-SNE that is resistant to loss of
large-scale information and suitable for very large datasets. All
UMAP analysis is performed with the runUMAP() function
within the Seurat package, version 3.0.0. The following
visualization plots focus on the t-SNE results, while PCA and
UMAP results can be found in the Supplementary Materials.

Visualization of Data Set 1): Mouse
Embryonic Data
The results for the t-SNE visualization are displayed in Figure 1.
Of the normalization methods, BASiCS and simple
normalization present the clearest division between the two
cell types. In comparison, SAMstrt, scran, and SCnorm form
groups with mild overlap. Linnorm and GRM have several
misclassified points despite forming two main groups.

PCA plots suggest the different cells do naturally form
separate groups, but there is relatively little separation for
some cells compared with others (Supplementary Figure 1).
Most of the normalization methods succeed to varying degrees in
forming separate groups, though occasional outliers lead to some
cells being grouped incorrectly. However, the limitations of PCA
are especially clear for the GRM method, which forms an
exponential model from spike-ins and is not effectively
represented by PCA's linear approach due to the presence of
some abnormally large outliers. UMAP plots (Supplementary
Figure 2) present an alternative conclusion in which SAMstrt
and simple normalization form the most distinct groups, though
still with some misclassified cells.

Visualization of Data Set 2): Mouse
Lung Data
For the four conditions in the mouse lung data set, the original
data contains considerable overlap among groups, and the
normalization methods each maintain this overlap in some
form (Figure 2). It is especially common to merge the E14 and
E16 conditions together, suggesting a lack of strong
differentiation between the two conditions during this range of
embryonic development. BASiCS, SAMstrt, scran, and simple
normalization are unable to separate the E14 and E16 conditions.
Here, Linnorm, GRM, and SCnorm are more effective at
separating the two conditions, though there is still a large
amount of overlap for a number of cells. The PCA plots yield
similar results (Supplementary Figure 3), with no methods able
to form truly distinct groups for conditions. UMAP plots
(Supplementary Figure 4) further demonstrate the difficulty of
separating the two conditions, with no method truly being able to
distinguish E14 from E16 cells.
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Visualization of Data Set 3): Simulation
Data
Simple normalization and the scran and BASiCS methods all
form distinct groups for both the 2-fold change data set
(Figure 3) and the 5-fold change data set (Supplementary
Figure 5), even when relatively few distinctions remain
between the two cell groups. Conversely, GRM and SAMstrt
both struggle at separating these two groups for the simulated
data sets. SCnorm and Linnorm both somewhat separate the
groups for both 2-fold and 5-fold change data.

For the PCA plots, it is obvious that most normalization
methods result in a clear separation between the cell groups for
2-fold change data (Supplementary Figure 6), with the
exception of GRM and SAMstrt. Conclusions are consistent for
the 5-fold change data (Supplementary Figure 7). This is
attributed to the linear relationship resulting from gene
upregulation between two subgroups when constructing the
simulated data. UMAP plots (Supplementary Figures 8, 9)
confirm this and demonstrate the difficulties GRM and
Frontiers in Genetics | www.frontiersin.org 7
SAMstrt have in cleanly identifying cells between the two
groups in comparison.

Visualization of Data Set 4): Human
Embryonic Data
This data set does not contain spike-in genes, so only methods
not reliant on spike-in genes are compared for this data (i.e.
Linnorm, SCnorm, and scran). The t-SNE results (Figure 4)
suggest that when spike-ins are not available, SCnorm is the
most effective at separating the three cell-cycle groups into
generally distinct groups. However, Linnorm and scran are less
effective at separating the groups. PCA plots fail to reveal any
outstanding performers for this data set (Supplementary
Figure 10). No methods can separate conditions very well,
though SCnorm comes closest to doing so. UMAP plots
(Supplementary Figure 11) are similar, though notably
simple normalization appears most effective at maintaining all
S cells as a single cluster, rather than splitting them into two as
other methods do.
FIGURE 1 | t-SNE plots of the mouse embryonic data set under various normalization methods, with the original data for comparison.
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Visualization of Data Set 5): PBMC Data
We again compare methods not reliant on spike-in genes for
this data set (Figure 5). In this case, most approaches, including
simple normalization, appear to be comparable in effectiveness,
with no approach able to completely separate cell groups in
comparison to the original data. Existing similarities among the
cell types depicted highlight the important of individual marker
genes in distinguishing groups from each other. These
observations hold true for the PCA plots (Supplementary
Figure 12) and UMAP plots (Supplementary Figure 13) as
well. In addition, we consider a smaller subset of this data set
consisting of solely the T-cell categories within the PBMC data
set to better observe how well each normalization method can
separate similar cell types. The resulting t-SNE plot
(Supplementary Figure 14) suggests that none of the viable
non-spike-in methods are able to definitively succeed as
separating the similar T-cell categories.

For all data sets, we also attempted sparse PCA (Zou et al.,
2006), a variant that relies on fewer input variables to produce its
principal components. This accounts for a large number of zero
Frontiers in Genetics | www.frontiersin.org 8
counts presenting in the data, allowing construction of principal
components even in the absence of certain genes. However, we
found that the first two principal components did not differ
significantly from regular PCA and did not include the
resulting plots.

Classification Analysis
Although visualization methods give a direct impression of cell
relationships, quantitative metrics are necessary to evaluate the
performance of these normalization methods. We performed
classification analysis to assess the effectiveness of the methods.
There are various classification methods, e.g., linear
discriminant analysis (LDA) (Fisher, 1936), support vector
machines (SVM) (Cortes and Vapnik, 1995), and K-nearest
neighbors (KNN) (Altman, 1992). We used KNN for evaluating
the performance of normalization methods due to its non-
parametric nature and ability to naturally work beyond two-
group classification. We then used Cohen's statistic (Cohen,
1960) instead of misclassification rate as a measure of
effectiveness. By adjusting the diagonal in a confusion matrix
FIGURE 2 | t-SNE plots for the mouse lung data set under various normalization methods, with the original data for comparison.
February 2020 | Volume 11 | Article 41

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Lytal et al. Normalization Methods on scRNA-seq Data
for agreement by chance, Cohen's kappa more accurately
describes agreement in the case of unequal group sizes, which
is common for scRNA-seq studies. The details of classification
analysis can be found in the Supplementary Materials. We also
considered the use of Random Forest classifiers (Breiman, 2001)
based on those included as part of the Seurat package, though
we found the results were generally comparable and did not
reveal any new or conflicting findings compared to our
initial approach.

The classification results for the mouse embryonic data set
(Figure 6) suggest that the classification rate is improved for the
normalized data compared to the rate for the raw data set (i.e.,
before normalization), with BASiCS slightly outperforming other
methods. Classification results for the mouse lung data set
(Figure 6) show that SCnorm surpasses other methods as the
most effective, while both GRM and SAMstrt's results are inferior
to those methods for the raw data. For the human embryonic
data (Figure 6), SCnorm is again the top performer, though
Linnorm is close behind. However, it is notable that the simple
normalization approach appeared to outperform other methods
Frontiers in Genetics | www.frontiersin.org 9
for the mouse embryonic data set, though it was significantly less
effective for the mouse lung data set.

For the simulation study, the differences in performance
among normalization methods grow more pronounced, with
certain methods performing perfect or near-perfect classification
while others fail to improve performance over the raw data
(Figure 6). The BASiCS and scran methods show the strongest
performance for the 2-fold change data set, followed by Linnorm
and SCnorm. In comparison, both GRM and SAMstrt are not as
effective as other methods when subjected to the simulated data.
Consistent conclusions can be obtained for the 5-fold change
data set (Supplementary Figure 15), where BASiCS and scran
remain the top methods with the addition of Linnorm as a
close competitor.

For datasets without spike-ins, the three methods included
(Linnorm, SCnorm, scran) had comparable performance, with
the exception of Linnorm underperforming for the PBMC data
set (Figure 7). However, particularly for the PBMC data set,
there does not appear to be a noticeable improvement by any of
the methods over the original data set.
FIGURE 3 | t-SNE plots for the 2-fold change simulated data set under various normalization methods, with the original data for comparison.
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Differential Expression Analysis
In addition to visualization and classification, we consider
the ability of each normalization method to identify
highly differentially expressed (DE) genes. To assess the
Frontiers in Genetics | www.frontiersin.org 10
performance of DE analysis, we consider p-values adjusted
for multiple testing by the Benjamini–Hochberg (BH)
procedure (Benjamini and Hochberg, 1995) at a 0.05
significance level, generated through the use of R's DESeq2
FIGURE 5 | t-SNE plots for the PBMC data under various normalization methods.
FIGURE 4 | t-SNE plots for the human embryonic data under various normalization methods.
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package. The following Venn diagrams (Figures 8–10) display
the number of DE genes detected at this level of significance
for several normalization methods applied to each data set. As
seen in Table 4, none of the three methods featured is
consistently the best at identifying DE genes across all
data sets.
Frontiers in Genetics | www.frontiersin.org 11
DISCUSSION AND CONCLUSION

Based on dimension reduction followed by visualization and
KNN classification for the seven normalization methods, we
can evaluate/access their effectiveness, as seen in Table 5.
BASiCS showed noticeable improvement over the raw data
across spike-in real data sets and simulated sets, performing
best among all methods on the mouse embryonic and
simulated data sets. However, it was not very effective on the
mouse lung data set, and had a longer execution time than
many other methods. SCnorm was the most effective method
for both the mouse lung data set and the human embryonic
data set, in addition to being one of the best methods in terms
of visualization. However, it did not perform well for the
mouse embryonic data set, and its execution time was also
the longes t of a l l methods compared . Due to i t s
implementation of clustering analysis to determine the
optimal number of gene groups, execution time could vary
FIGURE 7 | Comparison of normalization methods using the Cohen's kappa
statistic for the PBMC data set.
TABLE 4 | Number of DE genes detected by DESeq2 at the 0.05 significance
level for the original data and data normalized by three methods (Linnorm,
BASiCS, and SCnorm) for three data sets.

Original Linnorm BASiCS SCnorm

Mouse Embryonic 7073 5317 4361 5674
Mouse Lung 1179 1393 863 1364
Human Embryonic 667 856 863 467
February 2020
 | Volume 11 |
FIGURE 6 | Comparison of normalization methods using the Cohen's kappa statistic. Statistics measuredover 100 random samples. (A) Mouse embryonic data
(B) Mouse lung data (C) 2-fold change simulated data (D) Human embryonic data.
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considerably for other data sets. Linnorm and scran were
extremely quick to execute for their quality of normalization,
though neither was exclusively the top method for any data set.
Both methods demonstrated consistent performance across all
Frontiers in Genetics | www.frontiersin.org 12
data sets, with scran matching BASiCS for simulated data and
Linnorm surpassing scran for the human data set. While
SAMstrt was nearly as fast a method as scran, it did not
show improvement for any of the data sets except the mouse
embryonic data, and even then, other methods outperformed
it. GRM resulted in some unusual outliers and frequent
misclassifications for the spike-in real data sets, and it
consistently lagged behind other methods for the simulated
data sets.

In the GRM method, an individual model is constructed
for each cell at a time. Thus, the method does not incorporate
the relationship across cells under the same condition,
potentially losing valuable information. SAMstrt appears to
be strongly dependent on the quantity of spike-ins, which
may explain why its performance for classification is not
consistent across the data sets tested. BASiCS's ability to
incorporate more than just spike-in genes for its calculations
allows it to obtain more consistent results than other spike-
in-based approaches, though the process takes comparatively
longer to execute. SCnorm's versatile nature allows it to
automatically adjust the number of necessary groups to the
data, pursuing more finely tuned results at the expense of
extra execution time. It also includes an additional automatic
TABLE 5 | Comparison of normalization methods used, including execution time (rounded to nearest five seconds), visualization, and classification rate across all data
sets.

Category BASiCS GRM Linnorm SAMstrt SCnorm scran Simple Norm

Mouse Embryonic Data (sec) 230 35 <5 <5 760 <5 <5
Mouse Lung Data (sec) 510 60 <5 5 1180 <5 <5
Mouse Embryonic Sim Data (sec) 110 15 <5 <5 110 <5 <5
Human Embryonic Data (sec) _ _ <5 _ 370 <5 <5
Classification (Spike-In Genes) *** * ** * *** ** **
Visualization (Spike-In Genes) ** * ** * ** ** **
Classification (Non-Spike-In) _ _ * _ ** ** **
Visualization (Non-Spike-In) _ _ * _ ** * **
February
 2020 | Volume
A ‘***' indicates that the method showed exemplary performance overall, a ‘**' indicates satisfactory performance overall, and a ‘*' indicates some shortcoming in performance compared
to other methods. ‘_' indicates that the method is not applicable for this type of data. Two variants exist for the Mouse Embryonic Sim Data, but they had negligible differences in execution
time.
FIGURE 8 | Venn diagram of all DE genes detected at 0.05 significance level
for the mouse embryonic dataset.
FIGURE 9 | Venn diagram of all DE genes detected at 0.05 significance level
for the mouse lung data set.
FIGURE 10 | Venn diagram of all DE genes detected at 0.05 significance
level for the human embryonic data set.
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filtering step that allows it to focus on the genes most
relevant to each condition, resulting in better classification.
Though several methods are quick to execute, Linnorm is
potentially the fastest among these due to its implementation
with time complexity O(n*log(n)), allowing easy scaling to
larger datasets compared to other methods and accounting
for its swift performance. Both Linnorm and scran are
written in C++ and implemented in R, contributing to
their swift execution. As may be expected, no single
method will be the clear choice for every data set, but the
strengths and weaknesses of each are useful knowledge when
deciding which approach to employ. The exceptionally low
runtime of scran or Linnorm may be enough to warrant its
use if the size of the data is a concern, while SCnorm often
provides better performance if execution time is not a critical
factor or if spike-ins are not available in the study. BASiCS is
also a sound option when spike-in genes are available.

Despite these slight advantages, comparisons to the simple
normalization process built in to Seurat reveals that even
exceptional methods do not greatly distinguish themselves
from a more straightforward normalization approach. The
limitations of these normalization methods on the 10X data set
depicted also highlights the need for a method that can
appropriately adjust to this new format and its properties.
Additionally, this study focuses primarily on visualization and
c lass ificat ion methods , wi th a br ie f d i scuss ion of
differential expression. Performance for these methods may
differ when applied to additional types of analysis, such as
trajectory inference.
Frontiers in Genetics | www.frontiersin.org 13
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