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Alagille syndrome (ALGS), as known as congenital arteriohepatic dysplasia, is a rare
autosomal dominant multi-systemic disorder. Mutations in JAG1 or more rarely NOTCH2
have been reported as the cause of ALGS. In this study, a 5-year old girl with typical ALGS
feature and her pregnant mother came to our reproductive genetics clinic for counseling.
We aimed to clarify the genetic diagnosis and provide prenatal genetic diagnosis for the
pregnant. Next generation sequencing (NGS)-based multigene panel was used to identify
pathogenic variant of the proband. Then the candidate variant was verified by using
Sanger sequencing. RNA assay was performed to clarify splicing effect of the candidate
variant. Amniocentesis, karyotyping, and Sanger sequencing were performed for prenatal
testing. We found a novel de novo noncanonical JAG1 splicing variant (c.2917-8C > A) in
the proband. Peripheral blood RNA assay suggested that the mutant transcript might
escape nonsense-mediated messenger RNA (mRNA) decay (NMD) and encode a C-
terminal truncated protein. Information of the variant has resulted in a successful prenatal
diagnosis of the fetus. Our results clarified the genetic diagnosis of an ALGS patient and
ensured utility of prenatal genetic testing.

Keywords: JAG1, Alagille syndrome, targeted sequencing, RNA assay, prenatal diagnosis
INTRODUCTION

Alagille syndrome (ALGS) is a multi-systemic congenital disorder characterized by paucity of
intrahepatic bile ducts in combination with five primary clinical findings, inducing cholestasis,
cardiac abnormalities, skeletal malformations, ocular abnormalities, and characteristic facial
features (Li et al., 1997). The lack of bile duct directly causes cholestasis. In addition, about 39%
of ALGS patients also have renal involvement, mainly renal hypogenesis (Kamath et al., 2012b).
Current managements for ALGS patients are supportive in which most cases require lifetime
surveillance and relevant operations. Besides, nearly 94% patients harbor congenital structural
cardiac diseases and 21–31% patients require a liver transplantation (Mitchell et al., 2018). ALGS
has a prevalence of approximately 1:70,000 based on the presence of neonatal liver disease (Vozzi
et al., 2013).

Defects in components of the NOTCH signaling pathway are associated with ALGS (Turnpenny
and Ellard, 2012). Currently, two genes have been revealed as the cause of ALGS. Approximately
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94% of the ALGS patients are associated with loss-of-function
variants of JAG1 gene, subclassified as ALGS1 (OMIM 118450);
while 1–2% of patients are due to NOTCH2 gene, subclassified as
ALGS2 (OMIM 610205) (Mcdaniell et al., 2006; Kamath et al.,
2012a). The phenotypic expression and penetrance of JAG1/
NOTCH2 variants are variable (Grochowski et al., 2016). There is
no strong correlation between the genotype and phenotype,
suggesting that other genetic modifiers beyond the known
variants may be the cause of the variable expressivity of ALGS.
ALGS is inherited in an autosomal dominant pattern with about
50–70% of cases have de novo pathogenic variants. The risk of
sibs of a proband who with an apparent de novo pathogenic
variant is very low, but still greater than the general population
because of the possibility of germline mosaicism (Campbell
et al., 2014).

JAG1 gene, located on chromosome 20p12.2, consists of 26
exons and encodes a ligand for the NOTCH receptor. The JAG1
domains physically interact with NOTCH2 and other NOTCH
factors to trigger cascading proteolytic cleavages, leading to
transport of the intracellular domain of NOTCH receptor into
the nucleus, and activation of transcription factors related to cell
differentiation and morphogenesis (Grochowski et al., 2016). To
date, over 692 JAG1 mutations have been reported in HGMD
(the Human Gene Mutation Database) (Stenson et al., 2003).

The rapid development and application of next-generation
sequencing (NGS) enables the screening of the entire exome/
genome and reveals an increasing amount of new pathogenic
causes of genetic diseases. In this study, we identified a novel de
novo noncanonical splicing JAG1 pathogenic variant as
molecular cause in a Chinese ALGS family. The effect of the
variant was analyzed using RNA assay. Additionally, the
potential risk of transmitting the variant was prenatally
diagnosed using fetal DNA derived from amniocytes.
MATERIALS AND METHODS

Subjects and Ethics Statement
Peripheral blood samples (including the family members and
592 ethnically matched unrelated controls) for the study were
recruited from the International Peace Maternity & Child Health
Hospital (IPMCH), Shanghai Jiao Tong University School of
Medicine. Genomic DNAs were isolated from peripheral blood
according to standard procedures. This study was conducted in
accordance with the Declaration of Helsinki and approved by the
Ethics Review Committee of IPMCH. Informed consents were
obtained from all participants or their legal guardians.

Targeted Sequencing and Data Analysis
DNA sample obtained from the proband (II-1) was sequenced
using targeted next generation sequencing. A 2,181-gene medical
exome panel was used for exomes and flanking sequence capture.
The procedure for preparation of library was published
previously (Liu et al., 2015; Zhang et al., 2017). Sequencing of
the captured target regions was performed paired-end
sequencing (2×90bp) on Illumina HiSeq2500 Analyzer
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(Illumina, San Diego, CA, USA). Clean sequencing reads were
aligned to thehumanreferencegenomeGRCh37/hg19byBurrows-
Wheeler Aligner (BWA; v.0.7.12) (Li and Durbin, 2009). Variant
calling and annotation were performed using theGenomeAnalysis
Toolkit (GATK; version 3.5) and ANNOtate VARiation
(ANNOVAR) (Yang and Wang, 2015), respectively. The resulting
variants were prioritized with our in-house developed pipeline
(MultiOmics One) (Zhang et al., 2017). The interpretation of
variants was based on the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology
(ACMG/AMP) guideline (Richards et al., 2015).

Variant Confirmation and RNA Assay
Prioritized variants were confirmed by Sanger sequencing. The
pr imer s for ve r i f y ing JAG1 var i an t ( JAG1 -F : 5 ' -
ggatgtctgcttgcttgctt-3' and JAG1-R: 5'-gaactgccttgccatcgaat-3')
were designed by Primer 3 online (Untergasser et al., 2012).
Variant nomenclature was based on the Human Genome
Variation Society (HGVS) naming conventions (Den Dunnen
et al., 2016).

For RNA assay, total RNAs were extracted and reversely
transcribed from peripheral blood mononuclear cells (PBMCs)
of the proband (II-1) and a healthy control. The Reverse
transcription (RT)-PCR were performed with the primers
JAG1-E22F: 5'-CAGATGGGGCCAAATGGGAT-3' (exon 22)
and JAG1-E26R:5'-GCTCAGCAAGGGAACAAGGA-3' (exon
26). The amplified DNA fragments were analyzed using
Qsep100 DNA Analyzer (BiOptic Inc., Taiwan, China) and
subcloned into the pGM-T vector (TIANGEN Biotech, Beijing,
China) for sequencing.

Prenatal Testing and Short Tandem
Repeat Identity Testing
Amniocentesis was performed in 17-week of gestation under
continuous ultrasonographic guidance (Practice Bulletin No.
162: Prenatal Diagnostic Testing for Genetic Disorders, 2016).
Thirty milliliters of amniotic fluid sample was obtained.
Chromosomal karyotyping and Sanger sequencing were
conducted in parallel in both cultured and uncultured samples.
Identity testing was performed using the human personal
identification detection kit (R1004T; GENESKY, Shanghai,
China) for de novo variant confirmation and potential
maternity contamination analysis. The PCR amplicons were
analyzed using Applied Biosystems 3500Dx sequencer.
CASE PRESENTATION

A 33-year-old pregnant woman of 9-week gestation was referred
to our reproductive genetics clinic for counseling (Figure 1A).
The 5-year-old proband (II-1) was born at full term with low
birth weight (2,162 g). She was presented with jaundice in skin
and sclera shortly after birth to the present (Figure 1B).
Echocardiography showed an atrial septal defect. Other
features include hepatosplenomegaly and curly hair (Figure
1B). Laboratory testing done at that time revealed raised
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cholestasis makers, including total bilirubin (TBIL) 231.1 mmol/L
(normal range 5.1–17.1 mmol/L), direct bilirubin (DBIL) 187.6
mmol/L (normal range 0–6 mmol/L), total bile acid (TBA) 99.7
mmol/L (normal range 0–10 mmol/L), g-glutamyl transpeptidase
(GGT) 174 IU/L (normal range 7-50 IU/L), aspartate
aminotransferase (AST) 81 IU/L (normal range 0–40 IU/L),
and alkaline phosphatase (ALP) 876 IU/L (normal range 42–
383 IU/L). Further tests showed normal values of vitamin D,
vitamin E, and prothrombin time (PT). The clinical features of
the patient suggested a diagnosis of Alagille syndrome.
RESULTS

Identification of a Novel JAG1 Splicing
Variant by Target Sequencing
While the clinical characteristics supported a diagnosis of ALGS,
genetic analysis of the proband revealed no pathogenic variants
in JAG1 or NOTCH2 in another clinical laboratory previously.
To search for genetic variant that might explain the patient's
clinical findings, NGS-based targeted sequencing of 2,181 genes
related to Mendelian disorder of digestive system was performed
using genomic DNA of the proband (II-1). The average
sequencing depth of the target region is 374.47× with 97.92%
of bases reached at least 30× coverage. Date priority filtering
revealed that the proband was heterozygous for a novel
noncanonical splicing variant of NG_007496.1(JAG1):c.2917-
8C > A in splicing consensus region of 3' splice site
(Prioritized variants are listed in Table S3).

In agreement with the NGS result, Sanger sequencing
confirmed the proband was heterozygous for the variant
(Figure 2). The variant was not detected in other family
members. Subsequent identity testing using short tandem
repeat (STR) markers revealed the de novo feature of the
variant (Table S1). The variant was neither found in 592
unrelated control subjects, nor included in public population
databases, including genome Aggregation Database (gnomAD;
http://gnomad.broadinstitute.org) (Lek et al., 2016), Exome
Aggregation Consortium (ExAC; http://exac.broadinstitute.org)
(Lek et al., 2016), 1000 Genomes Project (http://browser.
1000genomes.org) (Genomes Project et al., 2015).
The JAG1 c.2917-8C > A Variant
Generated an Aberrant Transcript
Retained Partial Intron Sequence
To evaluate the effect of the splicing variant, in silico splicing
assays were performed. While Human Splicing Finder (HSF 3.0)
(Desmet et al., 2009) predicted splice acceptor site in wild-type
JAG1, the activation of an intronic cryptic acceptor site was
suggested in the presence of c.2917-8C > A. RNA assay was then
performed to confirm the predicted result. RT-PCR analysis of
RNA extracted from peripheral blood mononuclear cells
(PBMCs) of the proband and a healthy control was carried out
using primers located at exon 22 and exon 26. The proband and
healthy control showed a different splicing pattern (Figure 3A).
FIGURE 1 | Pedigree of a Chinese family at-risk for recurrence of Alagille
syndrome (ALGS). (A) Arrow indicates the proband. All family members were
subjected to genetic analysis. (B) The proband was presented with jaundice skin
and curly hair.
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Further complementary DNA (cDNA) sequencing indicated
that the JAG1 transcripts of the proband were heterozygous for
r.2916_2917ins2917-6_2917-1 (Figure 3B). This result suggested
the variant could destroy the intron23/exon 24 splice acceptor
site and active a new stronger acceptor site in intron 23 (position
c.2917-7/c.2917-6). The intron 23 sequence from positions
c.2917-6 to c.2917-1 (TTTTAG) was inserted in the mutant
transcript, consequently. Thus, the splicing variant could be
predicted to introduce a premature termination codon (PTC)
in position 974, p.(Gly973Phefs*2). The putative PTC is located
283-bp upstream of the last exon 25-exon 26 junction; thus the
corresponding mutant transcript should not escape the
nonsense-mediated mRNA decay (NMD) (Maquat, 2004;
Khajavi et al., 2006).

To further investigate the influence of the NMD on JAG1
mutant transcript, RT-PCR products were then subcloned into
pGM-T vector. Totally, 27 clones were sequenced using T7
universal primer. Sequence analysis showed a 15:12 proportion
of wild-type and r.2916_2917ins2917-6_2917-1 clones (Figure
3C). Together, these results suggested the JAG1 c.2917-8C > A
variant could generate an aberrant transcript, which might
escape the NMD and encode a C-terminal truncated protein.

The Variant Was Classified to
Pathogenic Variant and Prenatal
Tested in the Pregnant
The de novo variant was classified as “pathogenic” according the
PS2, PS3, PM2, PP3, and PP4 criteria of the ACMG/AMP
guidelines (Richards et al., 2015). The family was counseled
with low recurrence risk, but that gonadal mosaicism could not
be excluded. The amniocentesis was carried out in 17-week of
gestation of the proband's mother. Variant analysis and
Frontiers in Genetics | www.frontiersin.org 4
chromosomal karyotyping (Figure S1) results showed the fetus
(II-2) was unaffected with normal female karyotype. STR
markers analysis confirmed that the sample on testing was not
contaminated by maternal blood (Table S1). The pregnancy was
continued and delivered at 39 weeks' gestation with the Apgar
score of 10-point.
DISCUSSION

ALGS is an autosomal dominant multi-system disorder which is
caused by pathogenic variants in JAG1 or NOTCH2. Only a few
cases of ALGS were reported in Chinese population (Li et al.,
2015). Published articles reveal a wide spectrum of phenotypes
ranging from cardiac or hepatic manifestations and intracranial
bleeding associated with morbidity and mortality to subclinical
symptoms, thus a genetic diagnosis can be useful for atypical
patients. The clinical diagnosis and management of ALGS patients
require a multidisciplinary panel of experts. Despite therapeutic
regimens like choleretic agents and biliary diversion prove to be
helpful to relieve the symptoms; ongoing surveillance of growth,
diet, nutritional conditions, and multi-organ functions is
demanded in the lifetime. Genetic counseling is recommended
to families with an ALGS patient and in want of a healthy child.

In our study, it's interesting to highlight that we identified a
noncanonical splicing JAG1 variant located at −8 bp from intron
23/exon 24 boundary using our pipeline. However, the PVS1
evidence could only be used for the canonical ±1 or 2 splice sites
according to the ACMG/AMP guidelines (Richards et al., 2015).
The default setting of ANNOVAR also merely marked ±1 or 2
splice sites as splicing variant (Grochowski et al., 2016). These
may contribute to the underdiagnosis of the proband by the
FIGURE 2 | Identification of a novel JAG1 pathogenic variant in the proband. Sanger sequencing verified the next generation sequencing (NGS) result. The arrows
indicate the alteration from C to A.
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other clinical laboratory. Functional analysis for splicing variant
is essential. Besides the variant identified in our study, the other
variant of c.2917-8C > T, at the same position of our variant, has
been identified in two individuals with an allele frequency of
0.000007974 in gnomAD. However, the Human Splicing Finder
prediction results only supported a deleterious effect on our
variant. Most importantly, further RNA assay and clone
sequencing data proved the splicing alteration of our variant.
Three noncanonical splicing variants near the c.2917-8C > A
variant, including c.2917-13 _2917-8del (Warthen et al., 2006),
c.2917-5_2919dup (Pilia et al., 1999), c.2917-10A > G (Stalke et al.,
2018), have been reported in patients with ALGS (Figure S2, Table
S2). The c.2917-10A > G variant is most similar to the one reported
in our study. The variant was reported as “variant of uncertain
significance,” although it's identified in a typical ALGS patient, and
the in-silico predictions suggested deleterious affecting on splicing.
Further RNA assay on this variant might upgrade the classification
to “likely pathogenic” or “pathogenic.” Together, our experience
shows that detailed analysis of variants that may affect splicing at
noncanonical position can provide a definite molecular diagnosis
when the clinical manifestations clearly suggest the involvement of
a set of candidate genes, but the standard (sequencing) techniques
do not provide a clear answer.

To date, the guideline for pregnancy management in families
with ALGS patients has not been established in terms of its low
prevalence. Prenatal genetic testing for couples at-risk is possible if
the pathogenic variant in the proband is known. In this study,
Frontiers in Genetics | www.frontiersin.org 5
amniocentesis, karyotyping, and Sanger sequencing were
performed for the pregnant mother, and a healthy baby girl was
delivered at 39 weeks' gestation. Approximately 50–70% of ALGS
cases are caused by de novo pathogenic variant. The mosaicism
frequency for ALGS cases has been reported more than 8.2%, which
should be taken seriously in genetic counseling (Giannakudis et al.,
2001). For parents of a child with an apparent de novo pathogenic
variant, recurrence risk to subsequent offspring with ALGS is low
but still greater than in the general population because of the
possibility of germline mosaicism.

In conclusion, we identified a novel noncanonical splicing
JAG1 pathogenic variant (c.2917-8 C > A) in an ALGS patient by
using multigene panel testing. Furthermore, peripheral blood
RNA assay was performed and indicated that the mutant
transcript could escape NMD and might encode a C-terminal
truncated protein. Moreover, we also led to a successful prenatal
diagnosis of the pregnant mother. The novel pathogenic variant
could enrich the mutation database of JAG1. Our approach of
functional analysis splicing variant would provide valuable
insight into clarifying those of noncanonical splicing variants.
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FIGURE 3 | RNA assay of the JAG1 messenger RNA (mRNA). (A) Reverse transcription (RT)-PCR analysis of JAG1 mRNA from peripheral blood mononuclear cells
(PBMCs) of the proband (II-1) and a healthy female control. The complementary DNA (cDNA) fragments of 611-bp were identified in both the proband and the wild-
type control. In addition, a little larger fragment was detected in the proband, but not in the wild-type. (B) cDNA sequencing revealed that JAG1 transcripts of the
proband were heterozygous for c.2917-8C > A. (C) Sequencing analysis results of the pGM-T clones with the cDNA amplicons.
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