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Detection of differentially expressed genes is a common task in single-cell RNA-seq
(scRNA-seq) studies. Various methods based on both bulk-cell and single-cell
approaches are in current use. Due to the unique distributional characteristics of single-
cell data, it is important to compare these methods with rigorous statistical assessments.
In this study, we assess the reproducibility of 9 tools for differential expression analysis in
scRNA-seq data. These tools include four methods originally designed for scRNA-seq
data, three popular methods originally developed for bulk-cell RNA-seq data but have
been applied in scRNA-seq analysis, and two general statistical tests. Instead of
comparing the performance across all genes, we compare the methods in terms of the
rediscovery rates (RDRs) of top-ranked genes, separately for highly and lowly expressed
genes. Three real and one simulated scRNA-seq data sets are used for the comparisons.
The results indicate that some widely used methods, such as edgeR and monocle, have
worse RDR performances compared to the other methods, especially for the top-ranked
genes. For highly expressed genes, many bulk-cell–based methods can perform similarly
to the methods designed for scRNA-seq data. But for the lowly expressed genes
performance varies substantially; edgeR and monocle are too liberal and have poor
control of false positives, while DESeq2 is too conservative and consequently loses
sensitivity compared to the other methods. BPSC, Limma, DEsingle, MAST, t-test and
Wilcoxon have similar performances in the real data sets. Overall, the scRNA-seq based
method BPSC performs well against the other methods, particularly when there is a
sufficient number of cells.

Keywords: single cell, RNA sequencing, differential expression, rediscovery rate, comparison
INTRODUCTION

Traditional gene expression profiling with high-throughput RNA-sequencing technology measures
the aggregated expression levels of genes from a collection of millions of cells. Such bulk-cell RNA-
sequencing cannot capture cellular heterogeneity since there is no cell-specific information (Miao
and Zhang, 2016; Jaakkola et al., 2017). Single-cell RNA sequencing (scRNA-seq) has developed
rapidly as a powerful technology for studying transcriptomics at the single-cell level (Sandberg,
2014). However, compared to bulk-cell data, scRNA-seq data has a higher level of noise due to both
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biological and technical reasons, for example, lower input
materials, cell-cycle phase, amplification biases, and the so-
called dropout and bursting events (Dal Molin et al., 2017;
Jaakkola et al., 2017; Soneson and Robinson, 2018). Such
events are caused by the stochastic nature of the gene
expression process at the single-cell level (Gong et al., 2018).
The dropout events generate zero expression, statistically leading
to zero inflation in the gene-expression distribution at a much
higher proportion than expected under the standard negative-
binomial model commonly assumed in bulk-cell data (Miao
et al., 2018). Aggregation of expression in bulk-cell data reduces
the effects of these single-cell events.

Differential expression (DE) analysis to discover quantitative
changes between different groups or conditions plays an
important role for understanding the molecular basis of
phenotypic var iat ion. However , due to the unique
characteristics of scRNA-seq data, it is not immediately obvious
that we can just use standard methods developed for bulk-cell
data. Aparticular challenge is dealingwith the large number of low
(or zero) read counts in the scRNA-seq data. A previous study
(Love et al., 2014) has shown the phenomenon that weakly
expressed genes tend to produce more differences than highly
expressed genes. For instance, to tackle this issue, several DE
methods have been developed for scRNA-seq data, for example,
BPSC (Vu et al., 2016), MAST (Finak et al., 2015), and monocle
(Qiu et al., 2017). In general, bulk-cell–based DE methods were
not originally designed to deal with a large fraction of lowly
expressed genes. Yet, in practice, many studies use the bulk-cell
−based DE methods for single-cell data, such as edgeR (Wang
et al., 2016) or limma (Ziegenhain et al., 2017). Furthermore,
various pipelines and workflows of RNA-seq analysis do not
consider scRNA-seq data specifically (Lun et al., 2016; Chen
et al., 2016; Law et al., 2016) and suggest users apply the bulk-
cell−based methods to scRNA-seq data (Zhu et al., 2017).

These bulk-cell−based methods are methodologically
sophisticated, and they have been used for scRNA-seq data,
but evaluation of their applicability to scRNA-seq data is still
uncommon and different studies have reported opposite results.
For example, authors in a recent study (Jaakkola et al., 2017)
compared five DE methods, including two single-cell–based
methods and three bulk-cell−based methods. They concluded
that the original DESeq (Anders and Huber, 2010) and limma
(Law et al., 2014) are not suitable for scRNA-seq data. In
contrast, another comparative study (Miao and Zhang, 2016)
declared that DESeq tends to outperform other methods on
scRNA-seq data. Most comparative studies (Miao and Zhang,
2016; Dal Molin et al., 2017; Jaakkola et al., 2017; Soneson and
Robinson, 2018) agree that bulk-cell–based methods are
applicable to scRNA-seq even though there is a lack of
agreement in finding DE genes by these DE methods (Wang
et al., 2019) and it is difficult to identify the best performing tool
for DE analysis of scRNA-seq data (Dal Molin et al., 2017).
Therefore, further evaluations of these DE methods, including
both bulk-cell– and single-cell–based methods in different
aspects, are warranted for better understanding of the
methodologies when applied to scRNA-seq studies.
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To compare the DE methods, previous studies have used
conventional statistics such as type-I error rate, false discovery
rate (FDR) and receiver operating characteristic (ROC) curve.
Notably, these metrics are applied to the full collection of genes.
Reproducibility is also an important metric, although it is
sometimes calculated differently in the different studies. For
example, a recent study (Miao and Zhang, 2016) assesses the
reproducibility of the methods by looking at the average of the
overlap of top 1,000 DE genes (ranked by p-value) across 20
replicates. In each replicate, a control group and a testing group
are sampled with a different random seed. Another measure of
reproducibility (Jaakkola et al., 2017) compares the precision and
recall of the detection of all DE genes between the full data set
and its subsets.

In this study, we compare the performance of nineDEmethods,
includingbothbulk-cell and single-cell–based approaches aswell as
general statistical tests not specifically designed for RNA-seq data.
We focus on the reproducibility of the methods in terms of
rediscovery rate (RDR) (Ganna et al., 2014) of top-ranking genes.
RDR is defined as the proportion of top-ranking findings detected
from a training sample that are replicated in a validation sample. In
high-throughput studies, the RDR is determined by both the false
positive rate (FPR) and power (Ganna et al., 2014), so it is a
convenient and easily understood metric for the comparison of
methods. Limiting the assessment to top-ranking genes turns out to
be important. Firstly, it follows the data analytic processweperform
in practice, where the top-ranked genes are usually considered the
most interesting ones for further biological analyses or
interpretation. Secondly, some methods perform differently for
the top-ranked genes and across all genes. Besides the RDR, type-
I error rate or FPR, and ROC are also used as extra metrics for
the comparisons.

To get realistic distributional characteristics and capture some
diversity in single-data data, we utilize three real scRNA-seq data
sets; in addition, we use simulated data from the beta-Poisson
model (BPSC), which has been suggested for scRNA-seq data in
a recent study (Vu et al., 2016). Because of their distinct
distributions, the groups of highly and lowly expressed genes
are also considered separately, as the latter is more affected by
single-cell specific events such as dropouts.
RESULTS

We compare nine methods for detecting differentially expressed
isoforms, including edgeR (Robinson et al., 2010), DESeq2 (Love
et al., 2014), DEsingle (Miao et al., 2018), monocle (Qiu et al.,
2017), BPSC (Vu et al., 2016), MAST (Finak et al., 2015), t-test
(Welch, 1947), Wilcoxon rank sum test (Hollander et al., 2013),
limmatrend (Law et al., 2014). Among those, edgeR, DESeq2 and
limmatrend are designed for bulk-cell RNA-seq analysis; and
DEsingle, monocle, BPSC, and MAST are developed based on
scRNA-seq data. T-test and Wilcoxon rank-sum test are general
comparison tests not specific to RNA-seq data. Table 1 compares
the methods in terms of (i) distribution assumption, (ii) original
data motivation (bulk-cell or single-cell data), (iii) test statistic,
January 2020 | Volume 10 | Article 1331
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and (iv) run time for a typical data set used in the comparisons.
We also state the exact version of each software tool used in
the comparisons.

To get realistic distributional characteristics, the following
three real scRNA-seq data sets are used as the basis for
simulations. (Different papers and projects use isoform- and
gene-level expressions. For simplicity, we shall use the terms
“isoform” and “gene” interchangeably.)

• Breast-cancer cell line MDA-MB-231 data set (Athreya et al.,
2017) has two groups: control and metformin-treated, 80 cells
in each group. The expression estimates of 26,775 isoforms
from Cufflinks are used in the analysis.

• Mouse embryonic stem cells (mESCs) belong to two groups
fromdifferent culture conditions, 94cells ingroup1and174 cells
ingroup2; see theMaterials andMethods section fordetails. The
expression estimates of 112,593 isoforms are provided by the
Conquer project (Soneson and Robinson, 2018).

• Neuronal progenitor cells (NPCs) also form two groups, one
from the patient and the other from a healthy donor (Iacono
et al., 2018), 360 cells in each group. The expression estimates
of 41,020 genes are provided by the bigSCale project (Iacono
et al., 2018).

In addition, we also simulate single-cell data based on the
beta-Poisson model (Vu et al., 2016). The variation in sample
sizes of the three real data sets, from 160 to 720, allows us to
compare the performance of each method at different sample
sizes. More details of the methods and data sets are given in the
Materials and Methods section.

In each experiment, the comparison focuses on the DE analysis
of two predefined groups of cells. Briefly, an equal number of
samples is randomly selected from the two groups in the original
data set to generate the training set. For each sampledcell froma real
data set, all isoforms are taken together; this preserves the statistical
dependencies between the isoforms. For the validation set, a
different set of samples from both groups is selected. The
selection of training and validation sets is repeated 50 times to
average out the effect of random selection. Note that the training
and validation sets are always disjoint. The nine DE methods are
then applied to the training and validation sets separately.

Type-I Error Control
For each real data set, we generate a null data set by randomly
sampling from the two groups combined (i.e., ignoring the group
labels). Thus, the null data sets are expected to have no true DE
Frontiers in Genetics | www.frontiersin.org 3
isoforms, and the p-value distribution of each method is
expected to be uniform. Theoretically, the p-values should
follow a uniform distribution if the null hypothesis is true
(Murdoch et al., 2008; Bland, 2013). The uniformity of p-value
distribution under the null hypothesis can be used to assess the
performance of methods. We calculate the type-I error rate by
recording the fraction of the detected DE isoforms that are
assigned a significant p-value (p < 0.05). This fraction is also
known as the FPR. To highlight the effects of the dropout events,
which tend to produce low expression and zero inflation, we split
the isoforms into two groups based on the expression level:
highly expressed isoforms and lowly expressed isoforms. The
former refers to the isoforms with an estimated expression above
1 transcripts-per-million (TPM) in more than 25% of the cells,
and the remaining isoforms are assigned to the latter. This
threshold was also suggested in a recent comparative study of
DE methods in scRNA-seq (Soneson and Robinson, 2018).

Results in Figure 1A show that for highly expressed isoforms,
most methods manage to control the FPR close to the target 0.05.
Two single-cell–based methods, monocle and DEsingle, are not
stable, as their FPRs fluctuate the most from the expected error
rate. As expected, the bulk-cell–based methods, edgeR, DESeq2,
and limmatrend, perform well on this group, and DESeq2 is the
most conservative.

For the lowly expressed isoforms, DESeq2 is also the most
conservative method, Figure 1B. It identifies fewer significant
isoforms, so the FPR is significantly lower than the expected level
(0.05) in all data sets. In contrast, edgeR has the highest FPR,
sometimes substantially above the target value. Similarly,
monocle also has a large number of false positive findings. The
FPR of DEsingle has a slight variation, as it is liberal for MDA-
MB-231 data set, conservative for NPCs data set, and performs
rather well in the other data sets. Thus, it seems the performance
of DEsingle is not stable and highly dependent on data sets. The
histograms of p-values (Figure S1 in the Supplementary report)
further illustrate that few methods returned uniformly
distributed p-values under the null hypothesis for the lowly
expressed isoforms, while most methods have a better
uniformity for the highly expressed isoforms.

The RDR
The RDR is the proportion of the top-ranking DE isoforms in the
training set that is found to be significant (p < 0.05) in the
validation set. The RDR is calculated based on the top 5%, 10%,
20% DE and all isoforms in the training set.
TABLE 1 | List of the differential expression analysis methods.

Method Distribution assumption Designed for Test statistic Run time Version [Ref.] Input

BPSC Beta-Poisson Single cell z-test Hours 0.99.2 (Vu et al., 2016) CPM
DEsingle Zero-Inflated Negative Binomial Single cell Likelihood ratio test Hours 1.2.1 (Miao et al., 2018) raw counts
MAST Normal (Generalized linear hurdle) Single cell Likelihood ratio test Minutes 1.8.2 (Finak et al., 2015) log2(CPM+1)
monocle Normal (Generalized additive model) Single cell Likelihood ratio test Minutes 2.10.1(Qiu et al., 2017) raw counts
DESeq2 Negative Binomial Bulk cell Wald test Minutes 1.22.2 (Love et al., 2014) raw counts
edgeR Negative Binomial Bulk cell Quasi-likelihood F-test Minutes 3.24.3 (Robinson et al., 2010) raw counts
limmatrend Normal (linear model) Bulk cell Empirical-Bayes Moderated t-statistics Seconds (Law et al., 2014) log2(CPM+1)
t-test Normal General t-test Seconds (Welch, 1947) log2(CPM+1)
Wilcoxon Nonparametric General Wilcoxon Minutes (Hollander et al., 2013) log2(CPM+1)
January 2020 | Volume 10
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RDR Analysis Under the Null Hypothesis
The RDR of the null data sets from the real data in Section 2.1 are
reported in Figure 2. Panels A and B present the results for the
groups of highly expressed isoforms and lowly expressed
isoforms, respectively. Under the null hypothesis of no group
effect, the expected RDR is 0.05. Similar to the results from the
type-I error control in Section 2.1, the RDRs of all methods are
generally better for highly expressed isoforms. Monocle and
DEsingle are the worst, as their RDRs are often far from 0.05.
However, the performances improve for the larger number top
DE isoforms. For example, the RDR of monocle for all isoforms
in the NPCs data set is very close to the expected value, but it is
much higher than 0.05 among the top 5% DE isoforms. Similarly,
for the mESCs data set, the RDR of edgeR for all isoforms is close
to 0.05, but it is consistently higher than this target value for the
smaller number of top DE isoforms. Thus, comparing the
performances based on all isoforms could be misleading.
Frontiers in Genetics | www.frontiersin.org 4
These patterns are much more pronounced for lowly expressed
isoforms; see Figure 2B. In this case, edgeR performs worst in all
data sets; this result is consistent with other studies (Soneson and
Robinson, 2018). The performances of DESeq2 still tend to be
conservative in both groups of isoforms, while other methods
generally have RDR around the expected value.

We further evaluate RDR of the DE methods in the simulated
beta-Poisson data set. Results from 50 replicates of the null data
sets from the simulated data are reported in the rightmost plots
of Figures 2A, B. The similar patterns of RDR of DEmethods for
both isoform groups confirm the results from the real data sets.
In particular, monocle has poor performances in both groups,
and edgeR does not perform well with lowly expressed isoforms.

RDR Analysis Under the Alternative Hypothesis
Results of RDR analysis for the simulated beta-Poisson data
under the alternative hypothesis are presented in Figure 3. As
FIGURE 1 | Type-I error control for the groups of highly expressed isoforms (A) and lowly expressed isoforms (B) of the three real scRNA-seq data sets and the
simulated data set. The values in the y-axis are the fractions of isoforms with p < 0.05 under the null hypothesis. The horizontal line indicates the expected error rate
at 0.05. Box plots of the methods in the x-axis are the collection from 50 replicates. The methods are ordered by median false positive rate (FPR) across all
replicates. The number of highly expressed isoforms in MDA-MB-231, mESCs, NPCs and simulated data sets are 8,299, 31,895, 10,422, and 8077, respectively.
The corresponding number of lowly expressed isoforms are 18,476, 80,698, 30,378, and 1,923.
January 2020 | Volume 10 | Article 1331
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hypothesis calculated from the top 5%, 10%, 20% DE and all isoforms.
ighly expressed isoforms in MDA-MB-231, mESCs, neuronal progenitor cells
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FIGURE 2 | Rediscovery rate (RDR) of differential expression (DE) isoforms in the real and simulated scRNA-seq data sets under the null
(Panels A and B) present the results of groups of highly expressed isoforms and lowly expressed isoforms, respectively. The number of h
(NPCs), and simulated data sets are 8,299, 31,895, 10,422, and 8,077, respectively. The corresponding number of lowly expressed isofo
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FIGURE 3 | Observed rediscovery rate (RDR) and true rediscovery rate (TrueRDR) of differential expression (DE) isoforms in the simulated beta-Poisson data set
under the alternative hypotheses calculated among the top 5%, 10%, 20% DE and all isoforms. (Panels A and B) present the rediscovery rate in the groups of highly
and lowly expressed isoforms, respectively. (Panels C and D) display the true rediscovery rate collected from highly and lowly expressed isoforms separately. (Panels
E) displays the true rediscovery rate collected from both highly and lowly expressed isoforms. (Panels F) presents the ratio between true RDR and observed RDR.
The number of highly expressed isoforms in the simulated data set is 8,077, and the number of lowly expressed isoforms is 1,923.
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described in more detail in the Materials and Methods section,
5% of the isoforms are randomly selected to be differentially
expressed between the two groups (hence true DE isoforms). For
highly expressed isoforms (Figure 3A), monocle and BPSC have
the highest RDRs across the top 5%, 10%, 20% and all DE
isoforms, while edgeR is comparable to the rest. DESeq2 is
conservative for the null data sets and the group of lowly
expressed isoforms, but its performance is comparable to other
methods. For lowly expressed isoforms, edgeR and monocle
produce the highest RDRs compared to other methods (Figure
3B). However, remember that from the previous subsection we
know these two methods have high false positive rates.

In the simulated data, we in fact know the true DE status, so
we can evaluate the true RDR, which is defined as the proportion
of the true positives in the validation set among the top DE
isoforms identified in the training set. In other words, the true
RDR is the intersection of rediscovered genes and true DE genes.
This is shown in Figures 3C, D. First, let us consider panel D.
While there are 5% true DE isoforms, the statistical power for the
lowly expressed isoforms is tiny, so very few of the true DE
isoforms appear among the top-ranking genes and these
isoforms do not produce significant p-values in the validation
set. Hence the rediscoveries are mostly false positives. This
means that there are reproducible features of the data, such as
zero inflation, that consistently create problems for monocle and
edgeR to the point of producing false positives in validation data.
These results highlight the challenge in finding true DE among
lowly expressed isoforms, or equivalently, the ease of producing
false positives.

From Figure 3C, the true RDRs of 3 methods including
BPSC, monocle and DESeq2 are better than the other methods.
The overall true RDRs are given in Figure 3E, which in this case
look similar to the result for highly expressed isoforms, but do
not reflect the results for lowly expressed ones. Figure 3F shows
the ratio of true RDR to observed (RDR). DESeq2 has the highest
ratio among the comparing methods, indicating a good
specificity in detecting DE isoforms. However, DEseq2
generally discovers fewer true DE isoforms, i.e., lower
sensitivity, compared to BPSC. Two methods of edgeR and
monocle have a lower ratio than the other methods since they
have more false discoveries. In the next section, the balance
between sensitivity and specificity of the methods are taken into
account via the ROC curve.

For the real data sets, there are no significant differences in
RDR performance for the top 5%, 10%, 20% DE isoforms
between nine DE methods in the group of highly expressed
isoforms (Figure S2A in the Supplementary report). However,
similar to the results of the simulated data set, RDRs of edgeR
and monocle are highly liberal, while DESeq2 tends to be too
conservative for the lowly expressed isoforms (Figure S2B). We
have performed other simulations and analyzed two other
datasets that confirmed this observation. This is given in the
Supplementary Material and described in the Discussion section.

ROC Performance
Performances of the DE methods on the simulated data with the
alternative hypothesis are also evaluated using the area under the
Frontiers in Genetics | www.frontiersin.org 7
ROC curve (AUC). In Figure 4, the AUC and ROC curves of top
5% DE isoforms and all isoforms over 50 replicates are presented
in panels A and B, respectively. For edgeR and monocle, there are
obvious differences between their performances for top 5% DE
isoforms and for all isoforms. For the top 5% isoforms, these two
methods perform poorly compared to the other methods.
However, if all isoforms are considered, the two methods are
comparable with the other methods when more isoforms are
taken into account. Results for the top 10% and 20% DE isoforms
are given in Figure S3 in the Supplementary report. Among
these methods, BPSC and DESeq2 are consistently the top
performing methods with the highest AUC values for different
sizes of top DE isoform sets. Overall, these results are in
agreement with the results from RDR analyses.
MATERIALS AND METHODS

Experimental and Synthetic Data Sets
To capture the true distributional characteristics of real data, three
real scRNA-seq data sets are used for the evaluation of the nine DE
methods.Thefirst data set (MDA-MB-231) includes160 single cells
from a triple-negative breast cancer cell line, half of which are
treated with metformin. The cells are captured using the Fluidigm
C1 system and sequenced on Illumina HiSeq 2500 machines for 80
control and 80 treated cells separately. Then we use Cufflinks
(Trapnell et al., 2010) to estimate the isoform expression. This
data set contains a total of 26,775 isoforms across 160 single cells.
The average number of reads per cell is ∼649,000.

The second data set (mESCs) is collected from a public scRNA-
seq data (GSE60749-GPL13112) in the Conquer data set (Soneson
and Robinson, 2018), which provides expression estimates of
isoforms. The compared single cells are 94 individual v6.5 mouse
embryonic stem cells (mESCs) with culture conditions 2i+LIF
(group 1) vs. 174 v6.5 mESCs with culture conditions in serum
+LIF (group 2). The data are preparedwith theC1 Systemusing the
SMARTer Ultra Low RNA kit for Illumina Sequencing (Clontech)
and protocols provided by Fluidigm.More details of the data can be
found in the original paper (Kumar et al., 2014). Then the Conquer
pipeline estimates isoform abundances using Salmon (Patro et al.,
2017).Thisdata set contains 112,593 isoformsacross 174 single cells
in group 1 and 94 single cells in group 2. The average number of
reads per cell is ∼1.7M, the largest among the 3 data sets.

The third real data set (NPCs) is a subset of GSE102934 data
from the NCBI Gene Expression Omnibus (Iacono et al., 2018).
This data set has 720 NPCs derived from induced pluripotent
stem (iPS) cells, half of which are from a Williams-Beuren
patient and the other half are from a healthy donor. The data
are sequenced on Illumina HiSeq 2500 platform and then applied
massively parallel single-cell RNA sequencing (MARS-Seq) to
construct single-cell libraries. This data set contains a total of
41,020 isoforms from 720 single cell, and the average number of
reads per cell is 18,600. Thus, this data set has a relatively large
number of cells with low sequencing coverage.

The simulated data set for isoform expression of single cells is
generated by the beta-Poisson model (Vu et al., 2016). In
particular, we generate the counts for each isoform from a
January 2020 | Volume 10 | Article 1331
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beta-Poisson distribution with four parameters estimated from
the mESCs data set. The four-parameter beta-Poisson model is as
follows:

BP4(xja , b , l1, l2) = l2Poison (xjl1Beta(a , b)) (1)

The mean and variance of the model can be written as

m = E(X) = l1l2f1
and

V  ar(X) =  ml2 + m2f2,

where f1 =
a

a + b and f2 =
b

a(a + b + 1)
. Crucially, we can

modify the parameter l1 to create mean differences between
groups. A more detailed description of the model can be referred
to in the original study (Vu et al., 2016).

Beta-Poisson models fitted on the real mESCs data set are
used as baseline distributions for simulation. For each isoform,
expression values across samples in the control and the treated
group are generated from the same beta-Poisson model. To
mimic the biological variation, 5% of isoforms are selected to
Frontiers in Genetics | www.frontiersin.org 8
be differentially expressed between two groups (true DE
isoforms). Specifically, the parameter l1, which controls the
mean of the distribution, is fixed in the control group and
multiplied by log2 fold change of 1 unit in the treated group.
The effect direction is randomly determined for each DE
isoform, with equal probability of upregulation and
downregulation. In other words, the quantity change between
the two compared groups is either two- or half-fold change with
equal probability. The simulated data set consists of 80 samples
in each of control and treated groups and a total of 10,000
isoforms measured per sample. Library sizes of the single-cell
samples are randomly sampled from a range of 1–3 million. We
filter out isoforms with zero expression across all samples.

DE Analysis Methods
Nine DEmethods included in this study are categorized into four
groups based on different statistical models. These nine methods
are selected to cover most statistical models used in recent DE
analysis. Regarding other DE methods that are not included in
this study, they use similar approach comparing to the nine
selected methods. For instance, D3E (Delmans and Hemberg,
2016) utilizes beta-Poisson model which is similar to BPSC;
FIGURE 4 | Receiver operating characteristic (ROC) and AUC performances for top 5% DE isoforms (A) and all isoforms (B) from the simulated data. Left panels:
observed area under the ROC curve (AUC) for all methods; each method has 50 replicates. Right panels: the corresponding ROC curves averaged over 50 replicates.
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SCDE (Kharchenko et al., 2014) models the gene expression
values using a mixture of negative-binomial distribution for
amplification components and a Possion distribution for
dropout events, which is similar to DEsingle; Ballgown (Frazee
et al., 2015) is based on the linear modeling strategy which is
similar to limma. In this section, we give a brief summary of these
nine methods. For more details of the software packages and
statistical models, the reader is referred to original publications
and related software websites. When applying these tools, we
follow standard procedures and parameter settings suggested in
software manuals.

Negative-Binomial–Based Methods
The read counts of an isoform from the technical replicates
(repeated sequencing runs of the same sample) are usually
modeled to follow a Poisson law (Marioni et al., 2008).
However, those from the biological replicates are usually
assumed to follow a gamma distribution to accommodate the
overdispersion observed in empirical data (Chen et al., 2014).
Since the negative binomial (NB) model can be derived as a
gamma-Poisson mixture model, several DE methods based on
the NB distribution assumption have been developed to
accommodate the overdispersion among biological replicates.
Note, however, that these theoretical motivations come from
bulk-cell RNA-seq data. Two popular methods for this class are
edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 2014).
The setup is then to assume the expression read counts yij ~ NB
(μij,ji), where μij is the mean and ji is the dispersion parameter
for isoform i and sample j. Reliable estimation of the dispersion
parameter ji for each isoform is crucial for detecting DE
isoforms. Differences in the estimation of ji explain the main
differences between edgeR and DESeq2.

edgeR
A conditional maximum likelihood (CML) is used in edgeR
(Robinson et al., 2010) to estimate a common dispersion, which
is assumed to be the same for all isoforms. Then this procedure is
developed further to allow for the isoform-specific dispersion
estimates and an empirical Bayes procedure—approximated by a
weighted likelihood—is used to shrink the dispersions toward
the common dispersion. The amount of shrinkage is determined
by the neighbourhood set that is nearest to isoform i in average
log count-per-million (logCPM). For DE testing, edgeR allows
the user to select among different hypothesis tests including
quasi-likelihood F-test (edgeRQLF) for bulk-cell RNA-seq data
and likelihood ratio test (edgeRLFT) for scRNA-seq data as
suggested by the developer. However, a recent study (Soneson
and Robinson, 2018) shows that edgeRQLF performs
significantly better than edgeRLFT in scRNA-seq data.
Therefore, in this study, we report the results of edgeRQLF for
the evaluation of edgeR in DE analysis.

DESeq2
DESeq2 (Love et al., 2014) uses a similar negative-binomial
model as edgeR but facilitates more data-driven shrinkage
estimators for dispersion and fold change. DESeq2 assumes
the isoforms of similar average expression levels have similar
Frontiers in Genetics | www.frontiersin.org 9
dispersion and shrinks the isoform-specific dispersion toward a
fitted smooth curve by an empirical Bayes approach. To
overcome the difficulty in the log fold-change (LFC)
estimation for the lowly expressed isoforms, DESeq2 shrinks
LFC estimates toward zero when the expression level is low. The
shrinkage procedure may result in underestimates of
dispersion, thereby producing conservative estimate statistics
for the DE test. This helps reduce the FPR at the expense of
lower sensitivity.

DEsingle
DEsingle (Miao et al., 2018) has another negative-binomial based
approach that employs the zero-inflated NB (ZINB) model to
discriminate the observed zero values into two parts—constant
zeros and zeros from the NB distribution. With the model,
DEsingle is designed to overcome the issues of the excessive
zero values observed in scRNA-seq data. To detect DE isoforms
between two groups, DEsingle first calculates the maximum
likelihood estimates (MLE) of two ZINB populations ’
parameters, then computes the constrained MLE of the two
models’ parameters under the null hypothesis (H0), and finally
uses the likelihood ratio test for testing H0.

Beta-Poisson–Based Methods
BPSC
BPSC (Vu et al., 2016) is an analytical procedure based on
the beta-Poisson mixture model, which is designed to capture
the property of scRNA-seq data. The model is integrated into the
generalized linear model (GLM) framework for DE analysis. The
sophisticated four-parameter beta-Poisson model is as shown in
Eq. (1). The iterative weighted least-squares (IWLS) algorithm is
used to estimate the model parameters.

Normal-Based Methods
Limma
Limma (Law et al., 2014) method is based on linear modelling
which was originally designed for gene expression microarray
data, but has recently been extended to RNA-seq data. In this
study, we use limmatrend (Law et al., 2014), a version of limma
where the empirical Bayes procedure is modified to incorporate a
mean-variance trend for DE analysis. In a recent study of DE
analysis of scRNA-seq data (Soneson and Robinson, 2018),
limmatrend has the best performances among other versions of
limma, such as voomlimma.

Monocle
Monocle (Qiu et al., 2017) is a tool originally designed for
scRNA-seq data for identifying DE genes that vary across
different cell types or across a so-called “pseudo-time.” The
mean expression level of each isoform is modeled by
generalized additive models (GAMs) which relate one or more
predictor variables to a response variable as

g(E(Y)) = b0 + f1(x1) + f2(x2) + � � � + fm(xm),

where Y is a response variable, and xi‘s are predictor variables.
The function g is a link function, typically the log function, and
fi‘s are nonparametric functions, such as cubic splines or other
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smoothing functions. Gene expression level across cells is
modeled by a Tobit model; with some approximations,
monocle’s GAM is thus

E(Y) = s(yt(bx , si)) + ϵ,

where yt(bx,si) is the assigned pseudo-time of a cell and s is a
cubic smoothing function with (by default) three effective
degrees of freedom. ϵ is the error term that is normally
distributed with a mean of zero. The DE test is performed with
a x2-approximation of the likelihood ratio test.

MAST
MAST (Finak et al., 2015) uses a hurdle model tailored to scRNA-
seq data. It is a two-part GLM that simultaneouslymodels the gene
expression rate (how many cells express the gene) by logistic
regression and the expression level by Gaussian distribution. The
DE testing is then done using the likelihood ratio test.

T-Test
T-test (Welch, 1947) is a general comparison method that is used
to compare the means of two groups. One of the most common
assumptions made when doing a t-test is the normality of data
distribution. Empirically, scRNA-seq data are highly skewed, but
the t-test is known to have a certain robustness against skewness,
so it is still worth comparing against other sophisticated methods.

Nonparametric Methods
Wilcoxon Rank Sum Test
Wilcoxon rank sum test (Hollander et al., 2013) (also known as
Mann-Whitney test) is a nonparametric test that is used to
determine whether the two independent samples come from
the same distribution. The main idea of the test is to compare the
sum of the ranks for the observations which come from
different samples.
DISCUSSION

We have performed a systematic comparison of nine different
statistical methods for DE analysis of scRNA-seq data. To get
realistic distributional characteristics, three real scRNA-seq data
sets are used as the basis for generating the data. A beta-Poisson
model–based simulated data set is also performed to assess the
performance of each method. The nine methods are evaluated by
the type-I error control, the ROC curve and the RDR under both
null and alternative hypotheses. Our results show that lowly
expressed isoforms are generally the source of strong differences
between methods. Most methods except monocle have good
RDR performances for highly expressed isoforms.

EdgeR and monocle tend to produce extremely small p-values
for lowly expressed isoforms, leading to many false positives.
Notably, these two methods perform very poorly compared to
the other methods for top DE isoforms. These results are
consistent with other recent studies(Dal Molin et al., 2017;
Soneson and Robinson, 2018). DESeq2, a bulk-cell–based
method with a shrinkage procedure, works rather well over all
Frontiers in Genetics | www.frontiersin.org 10
isoforms on both the real scRNA-seq data and the simulated
data. However, DESeq2 is highly conservative for lowly
expressed isoforms, so its sensitivity is always lower than the
other methods for all three real data sets. The performances of
BPSC are comparable to DESeq2 in all analyses but less
conservative. Other methods including limmatrend, t-test,
Wilcoxon, MAST, and DEsingle perform reasonably in both
real and simulated data sets.

To validate our results, we analyzed two extra public real
scRNA-seq data sets including one data set with 164 single cells
from H7 human cell-line generated by the SMARTer C1 prototol
and another big data set contain 2,027 intestinal single cells of
mouse from the CEL-Seq protocol. The results in Figure S6-S8
show the consistency of the comparison analyses for different
types of scRNA-seq data for the new small data set. But for the
new big data set, monocle and DESeq2 show particularly low
sensitivity for lowly expressed isoforms in Figure S6D-S8D. The
details of these data and results are referred to the
Supplementary Material.

We also investigated further the performances of the DE
methods for the group of lowly expressed isoforms. We first
checked the relationship between the performance of the
Wilcoxon test, one of the most stable DE methods, and the
signal strength in different log fold-change (LFC) 1, 2, 3, and 4
using the simulated dataset. Results in the Figure S4 show that
the RDR of Wilcoxon is a function of signal strength where it
achieves a higher RDR for the data with a higher LFC. The low
signal in the simulated data in Figure 3D had made the
differences of true RDR for different methods inconspicuous.
So we generated another simulation data set using the same
procedure described in 3.1 but with a high signal strength
LFC = ± 4, then applied all 9 methods on the simulated lowly
expressed genes. The results (Figure S5) confirmed that for the
lowly expressed isoforms, DESeq2 is too conservative and
consequently loses sensitivity compared to the other methods.

The nine methods compared in this study are selected to
cover most statistical models used in recent DE analysis.
Although some DE methods are not included in this study,
they use similar approach to those we included. For instance,
D3E (Delmans and Hemberg, 2016) utilizes beta-Poisson model
which is similar to BPSC; SCDE (Kharchenko et al., 2014)
models the gene expression values using a mixture of NB
distribution for amplification components and a Possion
distribution for dropout events, which is similar to DEsingle;
Ballgown (Frazee et al., 2015) is based on the linear modeling
strategy which is similar to limma.

The main strengths of our comparison method include (i) the
use of three real scRNA-seq data sets in order to capture the true
distributional characteristics and the diversity of single-cell data;
(ii) the use of the RDR metric for top-rank genes. This is
consistent with the data analysis process of identifying the list
of interesting genes. In some cases we show that considering the
full collection of genes will lead to misleading comparisons; (iii)
Separate results of highly and lowly expressed genes, as these two
groups have distinct distributions and the methods vary more in
their performances for lowly expressed genes. In summary,
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performances of DE methods do vary, so we need to pay
attention in choosing the method to use, and, at least for
highly expressed genes, some methods designed for bulk-cell
RNA-seq analysis do not necessarily perform worse than those
specifically designed for scRNA-seq data. Finally, as shown the
figures, the number of lowly expressed genes is not trivial, so our
results also highlight the need for further development of
methods to deal with these genes.
CONCLUSION

There are large differences in the performance of methods for
detecting DE in single-cell RNA-seq data. This is driven partly by
the expression level of genes. For highly expressed genes, many
bulk-cell–based DE methods perform well against single-cell–
based methods. But, for lowly expressed genes, the performance
of the methods varies, so a careful check of the gene expression
level should be made before choosing a DE method in analyses.
This is to ensure that the chosen method is appropriate for your
data. We found edgeR and monocle to have poor control of false-
positives on lowly expressed genes, so we do not recommend
these two methods for such genes. DESeq2 tends to be too
conservative, so it sacrifices sensitivity for higher specificity.
According to the simulation results, BPSC performs well
against the other methods, particularly when there is a
sufficient number of cells. RDR for top-rank genes is a useful
metric for assessing performance of DE methods, sometimes
giving different results compared to analysis of the full set of
genes. We suggest to be considered in choosing DE methods to
use, performances of DE methods in scRNA-seq data strongly
depend on the expression level of genes.
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