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Gene expression profiling has been widely used to characterize cell status to reflect the 
health of the body, to diagnose genetic diseases, etc. In recent years, although the cost of 
genome-wide expression profiling is gradually decreasing, the cost of collecting expression 
profiles for thousands of genes is still very high. Considering gene expressions are usually 
highly correlated in humans, the expression values   of the remaining target genes can 
be predicted by analyzing the values   of 943 landmark genes. Hence, we designed an 
algorithm for predicting gene expression values   based on XGBoost, which integrates 
multiple tree models and has stronger interpretability. We tested the performance of 
XGBoost model on the GEO dataset and RNA-seq dataset and compared the result 
with other existing models. Experiments showed that the XGBoost model achieved a 
significantly lower overall error than the existing D-GEX algorithm, linear regression, and 
KNN methods. In conclusion, the XGBoost algorithm outperforms existing models and 
will be a significant contribution to the toolbox for gene expression value prediction.

Keywords: gene expression value, landmark gene, target gene, regression method, XGBoost, absolute error

INTRODUCTION
Characterizing gene expression patterns in cells under various conditions is an important problem 
(Aigner et al., 2010). Gene expression profiling is a vital biological tool commonly used to capture 
the response of cells to disease or drug treatments (Celis et al., 2000; Mclachlan et al., 2005; Wang 
et al., 2006; Mallick et al., 2009; Zeng et al., 2016). Although the cost of gene expression profiling 
is steadily decreasing in recent years, it is still very expensive when dozens or hundreds of samples 
need to processed (Chen et al., 2016).

Genes expression are closely related, and some methods for gene co-expression have also been 
extensively studied in recent years to further explore the relationship between gene expression. 
(Ozerov et al., 2016; Borisov et al., 2019). Considering that gene expressions are usually highly 
correlated, researchers conducted an in-depth analysis of gene expression profiles and found that 
~1,000 genes can capture about 80% of the entire gene expression profile (Lamb et al., 2006). These 
genes are called landmark genes, and the remaining genes are called target genes (Penfold and Wild 
2011). Inspired by this, many scholars have suggested that the expression value of the landmark 
gene can be used to predict the expression value of the target gene, which will greatly reduce the 
cost of the gene expression profiling (Chen et al., 2016). The cost of measuring expression profiles 
containing only ~1,000 landmark genes will be much lower, compared with profiles across the whole 
human genome. If researchers want to study the expression of a particular target gene, it can be 
inferred by the landmark genes.
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However, this task is very difficult because, in principle, gene 
expression value prediction is a multi-task regression problem. In 
2016, Yifei Chen et al. proposed the D-GEX algorithm based on 
Back Propagation neural network (Chen et al., 2016), in which 943 
landmark genes correspond to 943 input units, and 9,520 target 
genes correspond to 9,520 output units. However, the prediction 
accuracy of this algorithm still has a large room for improvement. 
Besides, deep network has poor interpretability, and for each target 
gene, we cannot know which landmark genes have much greater 
impact on its expression. Last but not the least, deep network 
needs to read all the data into the memory at the time of training, 
and therefore, the algorithm is prone to occupy excessive memory 
in actual use, and has high demand for GPU too.

In addition to deep network, some researchers also used linear 
regression, KNN and other classical algorithms for target gene 
expression prediction (Chen, 2014), but the prediction results of 
these algorithms were less accurate.

Among the Boosting Tree models, XGBoost (Chen and 
Guestrin, 2016) has a very strong expansion and flexibility. 
It integrates multiple tree models to build a stronger learner 
model. Furthermore, XGBoost is characterized by its ability to 
automatically use the multithreading of the CPU for parallel 
computing, which can speed up the calculation.

Based on the above research background, we proposed a new 
gene expression value prediction algorithm based on XGBoost, 
and established a regression prediction model for each target gene 
independently. The results showed that the XGBoost algorithm 
significantly improved the prediction accuracy, which is superior 
to D-GEX, LR, KNN, and other algorithms. It also had better 
predictive ability and generalization ability. Lastly, the XGBoost 
algorithm had stronger interpretability than other algorithms.

MATERIAls AND METhODs
In this section, we first introduced the dataset we used for this 
task. Then, we gave an introduction of XGBoost algorithm, and 
finally, we showed three competing methods.

Dataset
The dataset used in this paper is the same as the dataset used by Yifei 
Chen et al. in the proposed D-GEX algorithm in 2016, which is the 
GEO (Gene Expression Omnibus, GEO) dataset selected by the 
Broad Institute from the published gene expression database (Edgar 
et al., 2008), and the RNA-Seq expression data which was from the 
Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013; 
GTEx Consortium, 2015). In both dataset, each of sample has 943 
landmark genes and 9,520 target genes after pre-processing.

The GEO dataset has a total of 129,158 gene expression profiles 
of cell line samples, and it should be noted that we refer to each 
profile as a sample in this article. The original GEO dataset was 
generated by the Affymetrix microarray platform, and the 
expression values are in a numerical range between 4 and 15. 
Since some of the samples are repetitive or highly similar, we first 
removed the duplicate samples from the 129,158 samples in order 
to avoid unnecessary calculations. All samples were clustered into 
100 classes using the k-means algorithm (Hartigan and Wong 1979; 

Chen et al., 2016). In each class, the pairwise Euclidean distance 
between the two samples was calculated. If the pairwise Euclidean 
distance was less than 1.0, one of the samples was removed. After 
removing the duplicate samples, 111,009 samples were obtained, 
which were divided into training set, validation set and test set 
according to the ratio of 8:1:1 after randomly shuffling (Figure 1). 
Therefore, there were 88,807 samples in the training set, 11,101 
samples in the validation set, and 11,101 samples in the test set.

We used the training set to train the models, and adjusted 
the parameters based on the performance on the validation set. 
Finally, we used the results on the test set to evaluate the model.

We also performed experiments on RNA-Seq expression data 
to further evaluate the reliability of the model. The RNA-Seq 
expression data includes GTEx expression data and 1,000 Genomes 
expression data (1,000G). The GTEx expression data consist of 
2921 profiles, which were obtained from various tissue samples 
(GTEx Consortium, 2015), and the 1,000G expression data have 
462 profiles of lymphoblastoid cell line samples (Lappalainen 
et al., 2013). They were both obtained from the Illumina RNA-
Seq platform and measured based on Gencode V12 annotations 
(Lappalainen et al., 2013; GTEx Consortium, 2015).

Like Chen et al. designed before, we still used the training set 
of the GEO dataset as the training set, then used 1,000G data 
as the validation set, and finally employed GTEx dataset as the 
test set to further evaluate the generalization ability of the models 
based on this cross-platform experiment (Chen et al., 2016).

FIGURE 1 | Division of Gene Expression Omnibus (GEO) dataset. Firstly, 
we removed the duplicate samples from the original GEO dataset, and then 
divided it into training set, validation set, and test set in a scale of 8:1:1 after 
randomly shuffling.
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However, the GEO dataset and the RNA-seq dataset were 
obtained from different platforms, so the numerical scales were 
different as well. Therefore, we performed quantile normalization 
on all the datasets, which means that all the datasets were 
standardized by subtracting the mean and then dividing by the 
standard deviation of each gene (Chen et al., 2016).

XGBoost Algorithm
XGBoost (Extreme Gradient Boosting) is a model that was first 
proposed by Tianqi Chen and Carlos Guestrin in 2011 and has 
been continuously optimized and improved in the follow-up 
study of many scientists (Chen and Guestrin, 2016). The model 
is a learning framework based on Boosting Tree models.

The traditional Boosting Tree models uses only the first 
derivative information. When training the nth tree, it is difficult 
to implement distributed training because the residual of the 
former n-1 trees is used. XGBoost performs a second-order 
Taylor expansion on the loss function and it can automatically 
use the multithreading of the CPU for parallel computing. 
Besides, XGBoost uses a variety of methods to avoid overfitting.

The XGBoost algorithm is briefly introduced as follows 
(Chen and Guestrin, 2016), and the details are given in the 
Supplementary Material.

Integrate the tree model with addition method, assuming a 
total of K trees, and use F to represent the basic tree model, then:
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where l is the loss function, which represents the error between 
the predictive value and the true value; Ω is the function used for 
regularization to prevent overfitting:
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where T represents the number of leaves per tree, and w 
represents the weight of the leaves of each tree.

After the second-order Taylor expansion of the objective 
function and other calculations which are detailed in 
Supplementary Material, we can finally get the information gain 
of the objective function after each split is:
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As can be seen from (4), in order to suppress the growth 
of the tree and prevent the model from overfitting, a splitting 
threshold γ is added. The leaf node is allowed to split if 
and only if the information gain is greater than γ. This is 
equivalent  to  pre-pricing the tree while optimizing the 
objective function.

In addition, we also used the following two excellent 
techniques of XGBoost to avoid overfitting in the experiment:

1. If all sample weights on the leaf nodes are less than the 
threshold, the splitting is stopped. This prevents the model 
from learning special training samples.

2. Sample features randomly when building each tree.

These methods all make XGBoost more generalizable and get 
better performance in practical applications.

In the experiment, the regression model based on XGBoost 
was independently trained for each target gene, and the number 
of input landmark genes was 943, which means the input feature 
dimension was 943, and this dimension is very high. However, 
many techniques in XGBoost for avoiding overfitting can help 
reduce the degree of overfitting and improve the accuracy of 
regression prediction.

When the XGBoost model was actually used in the 
experiment, the following parameters were adjusted to make the 
model perform its best performance:

1. n_estimators
  n_estimators is the number of iterations in training. A too 

small n_estimators can lead to underfitting, which makes the 
model not fully perform its learning ability. However, a too 
large n_estimators is usually not good either, because it will 
cause overfitting.

2. min_child_weight
  As we mentioned earlier, min_child_weight defines the sum of 

sample weight of the smallest leaf nodes to prevent overfitting.
3. max_depth
  It is the maximum depth of the tree. The greater the depth of 

the tree, the more complex the tree model is, and the stronger 
the fitting ability is, but at the same time, the model is much 
easier to overfit.

4. subsample
  This parameter means the sampling rate of all training samples.
5. colsample_bytree
  The last parameter that we need to config is colsample_bytree. 

It is the feature sampling rate when constructing each tree. 
In this task, this is equivalent to the sampling rate of the 
landmark gene.

6. learning_rate
  In most algorithms, learning rate is a very important parameter 

that needs to adjust, as well as in XGBoost. It greatly affects 
the performance of the model. We can reduce the weight of 
each step to make the model more robust.

The details of parameters configuration were introduced in 
Section 3.
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Other Existing Methods
There are other methods that researchers have previously 
proposed that could be used in the gene expression value 
prediction task. In this section, we briefly describe these 
methods, and in next section, we evaluate the performance of 
XGBoost model by comparing the predictive results of XGBoost 
model with results of these existing models.

D-GEX
D-GEX (Chen et al., 2016) is the algorithm proposed by Yifei 
Chen and other researchers in 2016, which uses the classical 
BP neural network model. The number of landmark genes is 
943 and the number of target genes is 9,520, so theoretically the 
number of input and output neurons of the network is 943 and 
9,520, respectively. However, in actual training, Yifei Chen et al. 
randomly divided 9,520 target genes into two groups due to GPU 
memory limitation, and each group contained 4,760 target genes. 
Therefore, the network was also divided into two independent 
networks, corresponding to 943 input neurons and 4,760 output 
neurons, and trained independently on two GPUs.

Besides, the network used mean square error as the 
loss function:
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where T was the number of target genes and N was the number 
of training samples. The D-GEX algorithm selected one, two, 
or three hidden layers, respectively. The number of neurons in 
each hidden layer of the network was all the same, 3,000, 6,000, 
or 9,000,respectively. In addition, they added Dropout Layer 
(Srivastava et al., 2014) to the network to reduce the overfitting, and 
Momentum Method (Sutskever et al., 2013) was used to accelerate 
training, making the model approach the optimal much faster.

Linear Regression
A linear regression model was independently established for 
each target gene t as follows (Chen et al., 2016):
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where w(t) and bt can be calculated by the following formula:
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On the basis of (16), by adding the L1 or L2 regularization 
term, the LR-L1 model and LR-L2 model can be obtained.

KNN
KNN is a non-parametric learning algorithm. For each target gene, 
the training samples were used to calculate the Euclidean distance 
of this target gene to all the landmark genes during training, and 
the k landmark genes with the smallest Euclidean distance were 

determined as the k-nearest neighbor landmark genes of the target 
gene (Hartigan and Wong, 1979; Chen et al., 2016). The average of 
the expression values of the k-nearest neighbor landmark genes of 
the target gene will be used as the predictive value.

The range of k value we tried in the experiment were integers 
between 2 and 20. We found that when the k value changed from 
2 to 5, the prediction error was gradually decreasing; and from 5 
to 20, the error was gradually increasing. Therefore, the optimal 
k value we found in the KNN model is 5.

REsUlTs
In this section, we firstly introduced the process of parameters 
configuration of XGBoost algorithm and its high interpretability. 
Then, we showed the results of XGBoost model on both the 
GEO data and the GTEx data, and compared it with the 
previous methods.

Tuning Model Parameters
GridSearchCV, a sub-module of the sklearn module in Python 
(Pedregosa et al., 2011), was used in the experiment to conduct 
grid search on all parameters to find the optimal parameters. The 
details of the tuning parameters are shown in Table 1:

Take the target gene CHAD for example, we established its 
XGBoost regression model. We initialized all the parameters of the 
model as shown in the above Table 1, and adjusted them in order.

Firstly, we adjusted n_estimators, and the absolute error of 
CHAD gene changes with n_estimators as shown in Figure 2 below:

It can be seen that the absolute error of the validation set 
did not decrease after 350 iterations, and in order to prevent 
overfitting, the optimal value of n_estimators was set as 350.

Update the value of n_estimators to 350 and adjust the next 
parameter γ, Table 2 shows the absolute error of validation set 
corresponding to different γ values.

As can be seen from Table 2, 0.1 is the optimal value of γ. Then, 
we adjust the remaining parameters in turn, and we can finally get 
optimal values of all the parameters as shown in Table 3.

Using the optimal parameters in Table 3, the absolute error of 
CHAD on validation set is 0.1513 and is 0.1518 on test set. It can 
be seen that after the configuration of parameters, performance 
of the model was improved. Therefore, parameter adjustment is 
helpful for improving the accuracy.

In addition, XGBoost is highly interpretable. After the tree 
model is created, the importance score for each feature can be 
obtained directly. The importance scores are calculated and 

TABlE 1 | Detailed parameters configuration.

Parameters Initialization value search space

n_estimators 300 [300, 330, 350, 370, 400]
γ 0 [0, 0.1, 0.2, 0.3, 0.4]
min_child_weight 1 [1, 2, 3, 4, 5, 6]
max_depth 5 [6, 7, 8, 9, 10, 11]
subsample 0.6 [0.6, 0.7, 0.8, 0.9]
colsample_bytree 0.8 [0.6, 0.7, 0.8, 0.9]
learning_rate 0.1 [0.01, 0.05, 0.08, 0.1]
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ranked for each feature in the dataset. In a single tree model, the 
importance score of each feature is calculated by the amount of 
improved performance measures for the split-point. The larger 
the improvement of a feature to the split point (closer to the root 
node), the more important the feature is.

In general, importance scores measure the value of features in 
tree model construction. Figure 3 shows the top 10 landmark genes 
with the highest importance scores in the CHAD gene expression 
prediction task and their specific scores. It can be seen that three 
landmark genes: GATA3, PCMT1, and GNAS score the highest in 
the prediction task, which also suggests that these three genes are 
the key genes in the prediction of CHAD gene expression value.

Performance Comparison
Performance on GEO Data
In the experiment, we trained six models: LR, LR-L1, LR-L2, 
KNN, D-GEX, and XGBoost, respectively on the training set, 

and optimized parameters according to the performance on 
the validation set. Finally, we evaluated the prediction ability of 
various models according to their performance on the test set.

For each target gene t, we define the Mean Absolute Error as 
follows:

 
MAE

N
y yt i t i t

i

N

( ) ( ) ( )ˆ= −
=

∑1

1
 (8)

where N is the number of samples.
Figure 4 is the boxplot of MAE distribution of the predictive 

values of all the 9,520 target genes by six algorithms on the test 
set. As Figure 4 shows, the XGBoost algorithm outperforms 
LR, LR-L1, LR-L2, and KNN significantly, and has a better 
distribution than D-GEX.

Besides, we further explored MAE score in Figure 5 to 
prove our conclusion. Figure 5 showed the scatter plot of MAE 
of XGBoost compared with D-GEX on test set. Points above 
the diagonal indicated that the XGBoost model outperformed 

FIGURE 2 | The absolute error of CHAD validation set decreases as n_
estimators increases.

TABlE 2 | Absolute errors of validation set corresponding to different γ.

γ Absolute error

0 0.1712
0.1 0.1701
0.2 0.1709
0.3 0.1718
0.4 0.1709
0.5 0.1714

The figure in bold represents the lowest absolute error.

TABlE 3 | Optimal values of all parameters.

Parameters Optimal value

n_estimators 350
γ 0.1
min_child_weight 1
max_depth 8
subsample 0.8
colsample_bytree 0.8
learning_rate 0.1

FIGURE 3 | Top 10 landmark genes with the highest importance scores in 
the CHAD gene expression prediction task and their specific scores.

FIGURE 4 | The Mean Absolute Error (MAE) distribution boxplot of the six 
algorithms on the test set.
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D-GEX on these target genes, and we found that the XGBoost 
model had a lower MAE than D-GEX on 91.5% of the entire set 
of target genes

In addition, we define overall error as follows, which represents 
the mean value of MAE on all target gene:

 

overallerror
T N

y t y ti i
i

N

t

= −










==

∑1 1

11

| ( ) ˆ ( )|
TT

∑  (9)

where N is the number of samples and T is the number of 
target genes.

Table 4 shows the overall errors of six algorithms on validation 
set and test set. It can be seen that the results of XGBoost 
algorithm on both validation set and test set have achieved lower 
overall error, indicating that the XGBoost algorithm used in this 
paper has a good prediction ability and generalization ability for 
gene expression value prediction task.

Performance on RNA-Seq Expression Data
To further study the practicality of XGBoost model in this task, 
we conducted a cross-platform experiment the same as Chen 
et al. (Chen et al., 2016). We used the training set of GEO data 
to train the models, and 1,000G expression data was used as 
validation set to tune parameters, and we finally evaluated the 
performance on the GTEx expression data. The results of all five 
models were shown in Table 5.

The overall errors on the RNA-seq expression data further 
indicate the XGBoost model surpassed all the other learning 
models. Although for this specific task, the training set and the 
test set were generated from different platforms. This suggested 
that the XGBoost model performs well in this task and has a 
good generalization ability.

DIsCUssION
The gene expression value prediction algorithm based on 
XGBoost outperforms the D-GEX algorithm, and is better than 
the traditional machine learning algorithms such as Linear 
Regression and KNN.

In the task of predicting gene expression values, the number of 
landmark genes is large, which leads to the high dimensionality of 
input features. This makes the model very easy to fall into overfitting. 
For the deep network of D-GEX, not only the input dimension 
is very high, the output dimension is even higher. Therefore, it 
is difficult to train a very accurate model, and the processing of 
parameter adjustment is extremely complicated as well. Apart from 
this, poor interpretability is also a disadvantage of deep network.

In the XGBoost algorithm, the control of the complexity of 
the model is added. Random sampling of samples and features 
during training time makes the trained model less likely to overfit, 
which improves the generalization ability of the model, and 
eventually, the predictive errors for the validation set and test set are 
significantly reduced. Furthermore, XGBoost is more focused on the 
interpretability of the model, so we can learn which landmark genes 
have greater influence on the expression value of each target gene.

At the same time, although there is a serial relationship 
between trees in the XGBoost algorithm, the same level nodes 
can be parallelized, and the multi-threading of the CPU is 
automatically used for parallel computing, which makes the 
XGBoost model faster than traditional tree models, and the 
XGBoost model has a higher practical value.

TABlE 5 | The overall error of six algorithms on 1,000G data and GTEx data.

Algorithm Overall error

1,000G data GTEx data

LR 0.805 0.470
LR-L1 0.746 0.567
LR-L2 0.805 0.470
KNN 0.747 0.652
D-GEX 0.749 0.453
XGBoost 0.733 0.439

The figures in bold represent the best results on 1000G data and GTEx data, respectively.

FIGURE 5 | The Mean Absolute Error (MAE) score of each target gene 
predicted by XGBoost model compared with D-GEX on the test set. The 
x-axis is the MAE score of XGBoost model, and the y-axis is the MAE score 
of D-GEX.

TABlE 4 | The overall error of six algorithms on validation set and test set.

Algorithm Overall error

Validation set Test set

LR 0.378 0.378
LR-L1 0.377 0.378
LR-L2 0.378 0.378
KNN 0.586 0.587
D-GEX 0.312 0.320
XGBoost 0.280 0.282

The figures in bold represent the best results on validation set and test set, respectively.
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