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Data normalization is a crucial step in the gene expression analysis as it ensures the
validity of its downstream analyses. Although many metrics have been designed to
evaluate the existing normalization methods, different metrics or different datasets by
the same metric yield inconsistent results, particularly for the single-cell RNA sequencing
(scRNA-seq) data. The worst situations could be that one method evaluated as the
best by one metric is evaluated as the poorest by another metric, or one method
evaluated as the best using one dataset is evaluated as the poorest using another
dataset. Here raises an open question: principles need to be established to guide the
evaluation of normalization methods. In this study, we propose a principle that one
normalization method evaluated as the best by one metric should also be evaluated
as the best by another metric (the consistency of metrics) and one method evaluated
as the best using scRNA-seq data should also be evaluated as the best using bulk
RNA-seq data or microarray data (the consistency of datasets). Then, we designed a
new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it
with another metric mSCC to evaluate 14 commonly used normalization methods using
both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and
the consistency of datasets. Our findings paved the way to guide future studies in the
normalization of gene expression data with its evaluation. The raw gene expression data,
normalization methods, and evaluation metrics used in this study have been included
in an R package named NormExpression. NormExpression provides a framework and
a fast and simple way for researchers to select the best method for the normalization
of their gene expression data based on the evaluation of different methods (particularly
some data-driven methods or their own methods) in the principle of the consistency of
metrics and the consistency of datasets.
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INTRODUCTION

Global gene expression analysis provides quantitative
information about the population of RNA species in cells
and tissues (Lovén et al., 2012). High-throughput technologies
to measure global gene expression levels started with Serial
Analysis of Gene Expression (SAGE) and are widely used with
microarray and RNA-seq (Gao et al., 2014). Recently, single-cell
RNA sequencing (scRNA-seq) has been used to simultaneously
measure the expression levels of genes from a single cell,
providing a higher resolution of cellular differences than what
can be achieved by bulk RNA-seq, which can only produce
an expression value for each gene by averaging its expression
levels across a large population of cells (Gao, 2018). Raw gene
expression data from these high-throughput technologies must
be normalized to remove technical variation so that meaningful
biological comparisons can be made. Data normalization is a
crucial step in the gene expression analysis as it ensures the
validity of its downstream analyses (Lovén et al., 2012). The
differential expression analysis or the co-expression analysis
using the same dataset could produce significant different
genes using different data normalization methods. Although
the significance of data normalization in the gene expression
analysis has been demonstrated (Bullard et al., 2010), how to
select a successful normalization method is still an open question,
particularly for scRNA-seq data.

Basically, two classes of methods are available to normalize
gene expression data using global normalization factors. They
are the control-based normalization and the average-bulk
normalization. The former class of methods assumes the total
expression level summed over a pre-specified group of genes
is approximately the same across all the samples. The latter
class of methods assumes most genes are not significantly
Differentially Expressed (DE) across all the samples. The control-
based normalization often uses RNA from a group of internal
control genes (e.g., housekeeping genes) or external spike-
in RNA [e.g., ERCC RNA (Jiang et al., 2011)], while the
average-bulk normalization is more commonly used for their
universality. Five average-bulk normalization methods designed
to normalize bulk RNA-seq data are library size, median
of the ratios of observed counts that is also referred to as
DESeq (Anders and Huber, 2010), Relative Log Expression
(RLE), upper quartile (UQ), and Trimmed Mean of M values
(TMM) (Robinson et al., 2010). Recently, three new methods
were introduced as Total Ubiquitous (TU), Network Centrality
Scaling (NCS), and Evolution Strategy (ES) with the best
performance among 15 tested methods (Glusman et al., 2013).
To improve scRNA-seq data normalization, Lun et al. (2016)
introduced a new method using the pooled size factors (Pooled)
and claimed that their method outperformed the library size
method, DESeq and TMM. Bacher et al. (2017) addressed
that using existing normalization methods on scRNA-seq data
introduced artifacts that bias downstream analyses. Then,
another new method SCnorm was introduced and claimed
to outperform MR, Transcripts Per Million (TPM), scran,
SCDE, and BASiCS using both simulated and case study data
(Bacher et al., 2017).

Although many metrics have been designed to evaluate
the relative success of these methods, different metrics or
different datasets yield inconsistent evaluation results. Here raises
another open question: principles need to be established to
guide the evaluation of normalization methods. Glusman et al.
(2013) proposed that a successful normalization method should
simultaneously maximize the number of uniform genes and
minimize the correlation between the expression profiles of
gene pairs. Based on this criterion, they presented two novel
and mutually independent metrics to evaluate 15 normalization
methods and achieved consistent results using bulk RNA-seq data
(Glusman et al., 2013). In this study, we designed a new metric
named Area Under normalized CV threshold Curve (AUCVC)
and applied it with another metric mSCC (see section “Materials
and Methods”) to evaluate 14 commonly used normalization
methods using both scRNA-seq and bulk RNA-seq data from
the same library construction protocol. The evaluation results
by both AUCVC and mSCC achieved consistency. In addition,
the evaluation results using both scRNA-seq and bulk RNA-
seq data also achieved consistency. So, we propose a principle
that one normalization method evaluated as the best by one
metric should also be evaluated as the best by another metric
(the consistency of metrics) and one method evaluated as the
best using one dataset should also be evaluated as the best
using another dataset (the consistency of datasets). The datasets
using different protocols (RNA-seq, scRNA-seq, or microarray)
need to be used to validate the consistency, which is beyond
the scope of this study. As many new normalization methods
are being developed, researchers need a fast and simple way
to evaluate different methods, particularly some data-driven
methods or their own methods, rather than obtain information
from published evaluation results, which could have biases or
mistakes, e.g., misunderstanding of RLE, UQ and TMM (see
section “Results”). To satisfy this demand, we developed an R
package NormExpression including the raw gene expression data,
normalization methods and evaluation metrics used in this study.
This tool provides a framework for researchers to select the
best method for the normalization of their gene expression data
based on the evaluation of different methods in the principle
proposed in this study.

RESULTS

Basic Concepts
In total, 14 normalization methods have been evaluated in this
study. They are Housekeeping Genes (HG7), External RNA
Control Consortium (ERCC), Total Read Number (TN), Total
Read Count (TC), Cellular RNA (CR), Nuclear RNA (NR),
median of the ratios of observed counts (DESeq), Relative Log
Expression (RLE), UQ, Trimmed Mean of M values (TMM),
Total Ubiquitous (TU), Network Centrality Scaling (NCS),
Evolution Strategy (ES), and SCnorm (see section “Materials
and Methods”). Currently, most methods with a few exceptions
(e.g., SCnorm) are used to normalize a raw gene expression
matrix (n samples by m genes) by multiplying a global
normalization factor to each of its columns, yielding a normalized
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gene expression matrix (Figure 1A). In different methods,
the definitions of normalization factor, scaling factor and size
factor are inconsistent and need to be explained here. Both the
normalization factor defined in the package NormExpression and
the scaling factor defined in a previous study (Glusman et al.,
2013) are the global normalization factors (Figure 1A). As the
library size methods, TN, TC, CR, or NR can be used to estimate a
library size, which represents the amount of total RNA in a cDNA
library from a sample. HG7, ERCC, DESeq, TU, NCS, and ES
produce a pseudo library size (in Figure 1B), which represents
the relative amount of total RNA. Library size is also named
as size factor in the Bioconductor package DESeq (Anders and
Huber, 2010). In general, HG7, ERCC, TN, TC, CR, NR, DESeq,
TU, NCS, and ES produce the global normalization factor by

FIGURE 1 | Basic concepts. (A) A raw gene expression matrix can be
transformed into a normalized gene expression matrix by the multiplication of
a global factor fj to each column. Each column represents the expression
levels of all genes from a sample and each row represents the expression
levels of a gene across all samples. (B) As the library size methods, TN, TC,
CR, or NR can be used to estimate a library size Nj. The library size methods
(TN, TC, CR, and NR) produce the global normalization factor fj by the
reciprocal of library size Nj. HG7, ERCC, DESeq, TU, NCS, and ES produce a
pseudo library size Nj

∗, which represents the relative amount of total RNA.
RLE, UQ, and TMM produce a normalization factor sj to normalize the library
size Nj and the global normalization factor for data normalization should be
106/Njsj. Q75 represents the third quartile Q3. For all methods, log represents
the natural logarithm.

the reciprocal of library size or pseudo library size. RLE, UQ,
and TMM in the Bioconductor package edgeR (Robinson et al.,
2010) produce normalization factors to normalize the library
sizes and the global normalization factors for data normalization
should be calculated by one million multiplying the reciprocal of
normalized library sizes (Figure 1B). However, the normalization
factors produced by RLE, UQ, and TMM have been wrongly used
as the global normalization factors in previous studies (Li et al.,
2015). The NormExpression package includes such modifications
as below to integrate the above normalization methods. DESeq,
RLE, UQ, and TMM have been modified to ignore zero values
to be fit for the scRNA-seq data processing. As NR is the best
among the library size methods (TN, TC, CR, and NR), RLE, UQ,
and TMM use NR to estimate library sizes. As HG7 and ERCC
produce pseudo library sizes (Figure 1B) as TN, TC, CR, and
NR, their normalization factors are amplified by one million for a
uniform representation (Figure 1B). The resulting normalization
factors of all 14 methods except SCnorm need to be further
normalized by their geometric mean values (Figure 1B). After
further normalization, RLE is identical to DESeq and presented
as DESeq (RLE) or DESeq∗ in this study. It has been confirmed
that all the modifications do not change the evaluation results.

Evaluation of 14 Normalization Methods
In the previous study, Glusman et al. (2013) had quantified the
success of normalization methods by the number of uniform
genes (see section “Materials and Methods”) and used the
Coefficient of Variation (CV) cutoff 0.25 to determine the number
of uniform genes for each method. This metric was designed
based on the theory that the relative values among different
normalization methods are quite stable, although the absolute
number of uniform genes depend on the cutoff value. However,
it is almost impossible to determine a CV cutoff for scRNA-
seq data as CV in scRNA-seq data has a much larger dynamic
range than in bulk RNA-seq data. Inspired by Area Under the
receiver operating characteristic Curve (AUC) (Gao et al., 2009),
we designed a new metric named Area Under normalized CV
threshold Curve (AUCVC) to evaluate normalization methods.
Using one scRNA-seq dataset scRNA663 and one bulk RNA-
seq dataset bkRNA18 (see section “Materials and Methods”),
we applied AUCVC and another metric mSCC (see section
“Materials and Methods”) to evaluate 14 normalization methods
and then we compared the evaluation results by mSCC with
those by AUCVC to assess the consistency of datasets and the
consistency of metrics.

The non-zero ratio cutoffs (see section “Materials and
Methods”) from 0.2 to 0.9 for scRNA663 and from 0.7 to 1
for bkRNA18 were used to produce AUCVCs of all methods
(Figures 2A,B). Among 14 methods, TU, NCS, and ES are
parameter-dependent approaches, which use the occurrence
rate, upper and lower cutoffs as three parameters (see section
“Materials and Methods”). For each non-zero ratio cutoff, TU
used the maximum AUCVC to determine the optimal ones
by testing all possible combinations of three parameters. In
addition, the calculation only considered each combination of
three parameters which produced more than 100 ubiquitous
genes (see section “Materials and Methods”) for scRNA663 and
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FIGURE 2 | Consistency of metrics and consistency of datasets. The non-zero ratio cutoffs from 0.2 to 0.9 for scRNA663 and from 0.7 to 1 for bkRNA18 were used
to produce AUCVCs and mSCCs. All the normalization methods were classified into three groups based on their AUCVC values sorted in descending order (from the
best to the poorest) using one scRNA-seq dataset scRNA663 (A) and one bulk RNA-seq dataset bkRNA18 (B). These methods were also classified into three
groups based on their mSCC values sorted in ascending order (from the best to the poorest) using one scRNA-seq dataset scRNA663 (C) and one bulk RNA-seq
dataset bkRNA18 (D). GAPDH is not applicable to scRNA-seq data due to zero counts of GAPDH present in many samples. All the numbers are accurate to two
decimal places, the marginal differences are reflected by their orders. The raw gene expression data (None) was also used to produce AUCVCs and mSCCs for
comparison. After further normalization, RLE is identical to DESeq and presented as DESeq (RLE) or DESeq∗ in this study.

more than 1,000 for bkRNA18. The occurrence rate cutoff was
tested from 0.2 to 0.6 for scRNA663 at interval of 0.1 and set to
1 for bkRNA18. The lower cutoff was tested from 5 to 40% and
the upper cutoff was tested from 60 to 95% at interval of 5%. For
each non-zero ratio cutoff, NCS and ES used the occurrence rate,
lower and upper cutoffs determined by TU, when TU achieved
the maximum AUCVC.

The evaluation results using both scRNA663 and bkRNA18
showed consistency (the consistency of datasets) that all methods
except HG7, TN and SCnorm were classified into three groups,
based on their AUCVC values sorted in descending order
(Figures 2A,B). The first group including TU, NCS and ES
achieved the best performances. TU, NCS and ES, which had only
been evaluated using bulk RNA-seq data in the previous study
(Glusman et al., 2013), were evaluated by our new metric AUCVC
as the best normalization methods using both scRNA-seq and
bulk RNA-seq data. The second group including ERCC, TC, CR,
NR, DESeq, RLE, UQ, and TMM achieved medial performances
using both scRNA663 and bkRNA18. In the second group, ERCC,
TC, CR, and NR outperformed DESeq, RLE, UQ, and TMM
using scRNA663 but underperformed them using bkRNA18. The
third group achieved the poorest performances, including TN,
SCnorm and None (the raw gene expression data) for scRNA663
(Figure 2A), and HG7, GAPDH and None for bkRNA18
(Figure 2B). The evaluation results of HG7, TN, and SCnorm did
not achieve the consistency using scRNA663 and bkRNA18. HG7
and GAPDH achieved the poorest performances using bkRNA18,
suggesting that a predefined set of housekeeping genes may not be
appropriate guides for the normalization of bulk RNA-seq data.
However, it could be coincidental that HG7 was classified into
the first group using scRNA663. TN underperformed the second
group of methods using scRNA663 but outperformed it using
bkRNA18. SCnorm was designed to improve the normalization
of scRNA-seq data but it performed poorer using scRNA-seq data
than bulk RNA-seq data. Particularly, SCnorm ranked the first
in the best group by its AUCVC to normalize bkRNA18 when
the non-zero ratio cutoffs were set to 0.7 or 0.8 (Figure 2B),

but ranked the last in the poorest group to normalize scRNA663
when the non-zero ratio cutoffs were set to 0.2–0.4 (Figure 2A).
SCnorm claimed that it is not designed to process datasets
containing more than 80% zero counts. However, scRNA663 was
build using the Smart-seq2 scRNA-seq protocol, which contained
the least zero counts among current scRNA-seq protocols.

The evaluation results (Figures 2C,D) by mSCC were
consistent with those by AUCVC (the consistency of
metrics). This proved that a successful normalization method
simultaneously maximizes the number of uniform genes and
minimizes the correlation between the expression profiles of gene
pairs. We selected the best evaluation results using scRNA-seq
data (the none-zero ratio cutoff = 0.2) and bulk RNA-seq data
(the none-zero ratio cutoff = 1) in Figure 2 for visualization
using NormExpression (Figure 3). Then, we calculated the
Spearman’s rank Correlation Coefficients (SCCs) between all
the normalization factors except that using SCnorm. Using
1-SCCs as distances, hierarchical clustering of 13 normalization
factors showed equivalent classification into the same groups
(Figures 3E,F) as those by AUCVC and by mSCC (Figure 2).
From Figure 3, it can be seen that while all normalization
methods except HG7, GAPDH and None performed without
much differences using bulk RNA-seq data (Figures 3B,D),
they had significant differences in the performances using
scRNA-seq data (Figures 3A,C). These differences suggest that
although scRNA-seq provides a higher resolution of cellular
differences, it is more challenging to select the best method
for the normalization of scRNA-seq data. In addition, these
differences provided an explanation as to why scRNA-seq data
and bulk RNA-seq data from the same samples resulted in
different results in many previous studies. From Figure 3, it
also can be seen that the best mSCC (TU-normalized) using
scRNA-seq data still had a certain distance from 0 (Figure 3C),
while the best mSCC (TU-normalized) using bulk RNA-seq data
was close to 0 (Figure 3D). Therefore, further studies need to be
conducted to investigate whether we can obtain the best mSCC
using scRNA-seq data close to 0 as that using bulk RNA-seq
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FIGURE 3 | Visualization of evaluation results. A normalization method with a higher AUCVC produced a lower median of Spearman’s rank Correlation Coefficient
(mSCC) between the normalized expression profiles of ubiquitous gene pairs using both scRNA-seq (A,C) and bulk RNA-seq data (B,D). Using 1-SCCs as
distances, hierarchical clustering of 13 normalization factors showed equivalent classification into the same groups (E,F) as those by AUCVC and by mSCC
(Figure 2). SCnorm was not applicable to be used to calculate SCCs, as it produced a factor matrix rather than a factor vector as 13 other methods. GAPDH is not
applicable to scRNA-seq data due to zero counts of GAPDH present in many samples. The raw gene expression data (None) was also used to produce AUCVCs
and mSCCs for comparison. After further normalization, RLE is identical to DESeq and presented as DESeq (RLE) or DESeq∗ in this study.

data. If we cannot, what is the reason? And is it the nature of
scRNA-seq data that result in this bias from 0?

To further test our principle, we searched other performance
metrics in the published papers. The Bioconductor package
scone (Cole et al., 2018) provides eight metrics to evaluate the
normalization methods using scRNA-seq data. Among eight
metrics, three are based on clustering properties and three
other metrics are associated with control genes or QC metrics.
Only two metrics based on global distributional properties
can be used as general metrics. These two metrics are named
as mean squared median relative log-expression (RLE_MED)
and variance of inter-quartile range (IQR) of RLE (RLE_IQR).
The evaluation results (Supplementary File 1) of three groups
(particularly TU and ES) by RLE_MED were consistent with
those by mSCC and by AUCVC using both scRNA-seq and bulk
RNA-seq data. However, the evaluation results (Supplementary
File 1) by RLE_IQR were not consistent with those by mSCC
and by AUCVC. This suggests that mSCC, AUCVC, RLE_MED
can be used together for method evaluation to test the
consistency of metrics.

Implementation and Availability
The raw gene expression data, normalization methods
(except NCS, ES and SCnorm) and evaluation metrics
(AUCVC and mSCC) have been included in the R package
NormExpression. The data process in this study is provided in
detail (Supplementary File 1). All the methods except NCS and

ES have been implemented in R programs for their running on
R platforms of any version. DESeq uses an R program from the
Bioconductor package DESeq (Anders and Huber, 2010), which
has been modified to process scRNA-seq data. RLE, UQ and
TMM use R programs from the Bioconductor package edgeR
(Robinson et al., 2010), which have been modified to process
scRNA-seq data. NCS and ES had been implemented in Perl
programs with multiple dependencies on Perl modules (Glusman
et al., 2013), which have been modified into stand-alone programs
for Linux systems (Supplementary File 2). SCnorm uses the
Bioconductor package SCnorm (Bacher et al., 2017).

NormExpression can be used in three modes: normalization
without evaluation, normalization with simple evaluation or
normalization with complete evaluation. In the first mode, TU is
recommended for the normalization of gene expression data, as
it has been already ranked as the best method for both scRNA-seq
and bulk RNA-seq data. In the second mode, AUCVC is used to
select the best method from 10 normalization methods, which are
HG7, ERCC (if available), TN, TC, CR, NR, DESeq (RLE), UQ,
and TMM. TN, NCS, ES, and SCnorm are not used in the second
mode, as the evaluation results of TN and SCnorm cannot achieve
consistency, and NCS and ES have similar performances to TU
but are much more time consuming. In the third mode, AUCVC
and mSCC are used to select the best method from TU and at
least 10 normalization methods. The normalization with simple
evaluation determines the best method based on AUCVC values,
while the normalization with complete evaluation determines the
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best method in the principle of the consistency of metrics and
the consistency of datasets. As a result of a complete evaluation,
the tables of AUCVC and mSCC (Figure 2) are required for the
method selection.

MATERIALS AND METHODS

Datasets
In a previous study (SRA: SRP113436), 831 single-cell samples
and 18 bulk samples had been sequenced using the Smart-
seq2 scRNA-seq protocol. In this study, we built a scRNA-seq
dataset including 663 single cells from colon tumor tissues and
10 single cells from distal tissues (>10 cm) as control. The
data of 166 single-cell samples were removed, as each of them
contained NR less than 100,000 reads. The data of two single-
cell samples were removed, as each of them contained simulated
ERCC RNA less than 0 reads. We also built a bulk RNA-seq
dataset including nine samples from colon tumor tissues and
nine samples from distal tissues. The cleaning and quality control
of both scRNA-seq and bulk RNA-seq data were performed
using the pipeline Fastq_clean (Zhang et al., 2014) that was
optimized to clean the raw reads from Illumina platforms. Using
the software STAR (Dobin et al., 2013) v2.5.2b, we aligned all
the cleaned scRNA-seq and bulk RNA-seq reads to the human
genome GRCh38/hg38 and quantified the expression levels of
57,992 annotated genes (57,955 nuclear and 37 mitochondrial).
Mitochondrial RNAs should have been, but were not discarded
to test the robustness of normalization methods. Non-polyA
RNAs and small RNAs (<200 bp) were not discarded either,
although the Smart-seq2 protocol theoretically had only captured
polyA RNAs. In addition, the expression levels of 92 ERCC RNAs
and the long non-coding RNA (lncRNA) MDL1 in the human
mitochondrial genome (Gao et al., 2017) were also quantified.
ERCC RNA had been spiked into 208 single-cell samples before
library construction; the expression levels of 92 ERCC RNAs
in other 455 single-cell samples and 18 bulk samples were
simulated by linear regression. Finally, the two datasets were
named scRNA663 (58085 × 663) and bkRNA18 (58085 × 18),
and used as raw gene expression data in this study. As these two
datasets were obtained by sequencing the libraries using the same
protocol and samples from the same group of patients, they had
great values to be used to evaluate normalization methods and
assess the consistency of datasets. Researchers can select the best
method for the normalization of their gene expression data or
evaluate different methods using the data of 57,955 nuclear genes.

Normalization Methods
The library size methods (TN, TC, CR, and NR) use the gene
expression level summed over total genes in a sample as the
library size to calculate the normalization factor. HG7, ERCC and
TU use the gene expression level summed over these pre-selected
genes in a sample as the pseudo library size (see section “Results”).
NR only counts reads which can be aligned to nuclear genomes,
while CR counts reads which can be aligned to both nuclear
and mitochondrial genomes. TC counts reads which can be
aligned to 92 ERCC RNAs, nuclear and mitochondrial genomes

(TC = CR + ERCC). TN uses the number of all reads which
can be aligned to 92 ERCC RNAs, nuclear and mitochondrial
genomes. The pre-selected genes used by HG7, ERCC and TU are
seven housekeeping genes, 92 ERCC RNAs and the ubiquitous
genes (described below), respectively. Seven genes (UBC, HMBS,
TBP, GAPDH, HPRT1, RPL13A, and ACTB) in HG7 had been
used to achieve the best evaluation result among those using
all possible combinations of tested housekeeping genes in the
previous study by Glusman et al. (2013). ERCC RNA is a set of
commonly used spike-in RNA consisting of 92 polyadenylated
transcripts with short 3′ polyA tails but without 5′ caps (Jiang
et al., 2011). A single housekeeping gene GAPDH was used for
comparison in the evaluation of normalization methods using
bulk RNA-seq data, but it was not applicable to scRNA-seq data
due to zero counts of GAPDH present in many samples. The raw
gene expression data (None) was also used to produce AUCVCs
and mSCCs for comparison.

Uniform Genes and Ubiquitous Genes
A gene is defined as uniform when the Coefficient of Variation
(CV, Formula 1) of its expression values across all samples is
not more than a cutoff (Glusman et al., 2013). To determine the
number of uniform genes using scRNA-seq data containing a
high frequency of zeros, NormExpression only considers genes
with non-zero ratios not less than a cutoff. The non-zero ratio of
one gene should be calculated as the number of its all non-zero
expression values divided by the number of total samples.

Ubiquitous genes are defined as the intersection of a trimmed
sets of all samples (Glusman et al., 2013). This trimmed set of
genes are selected for each sample by (1) excluding genes with
zero values, (2) sorting the non-zero genes by their expression
levels in that sample, and (3) removing the upper and lower ends
of the sample-specific expression distribution. Glusman et al.
(2013) determined the optimal parameters by testing all possible
combinations of lower and upper cutoffs at interval of 5% to
maximize the number of resulting uniform genes using one bulk
RNA-seq dataset. The size of a scRNA-seq dataset is usually very
large, which could result in a very small or even empty set of
ubiquitous genes, as the number of ubiquitous genes depends
on the sizes of datasets. To identify the ubiquitous genes using
scRNA-seq data, we defined a parameter named occurrence rate,
governing the minimal fraction of trimmed sets in which a gene
must appear to be considered ubiquitous. In NormExpression,
TU includes three parts. The first part determines the optimal
parameters by testing all possible combinations of occurrence
rate, lower and upper cutoffs to maximize AUCVC (described
below) instead of the number of resulting uniform genes. The
second part uses the optimal occurrence rate, upper and lower
cutoffs to obtain the ubiquitous genes. The third part uses
the ubiquitous genes to calculate the TU normalization factor.
NormExpression only use the raw gene expression data to
obtain the ubiquitous genes, which are used to calculate the TU
normalization factor and to evaluate all methods. In addition, the
same ubiquitous genes are used by NCS and ES to obtain the
NCS and ES normalization factors, respectively. These ubiquitous
genes are also used by TU, NCS and ES to produce their mSCCs
for method evaluation.
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AUCVC and mSCC
In the previous study, Glusman et al. (2013) designed two novel
and mutually independent metrics, which were the number of
uniform genes and Spearman’s rank Correlation Coefficients
(SCCs) between expression profiles of gene pairs. The basic
theory underlying these two evaluation metrics is that a successful
normalization method simultaneously maximizes the number
of uniform genes and minimizes the correlation between the
expression profiles of gene pairs. In this study, we designed a
new metric AUCVC instead of the number of uniform genes
and used the median of Spearman’s rank Correlation Coefficients
between the normalized expression profiles of ubiquitous gene
pairs (mSCC) instead of observation of SCC distributions
for method evaluation. On default settings, NormExpression
randomly selected 1,000,000 ubiquitous gene pairs to calculate
the mSCCs for method evaluation (Figures 3C,D).

AUCVC (Figures 3A,B) is created by plotting the number of
uniform genes (y-axis) at each normalized CV (Formula 2) cutoff
(x-axis). As a high or a low normalized CV cutoff produces more
false or less true uniform genes, it is reasonable to consider the
overall performance of each method at various cutoff settings
instead of that at one specific cutoff setting. In Formula 1 and
2, symbols have the same meanings as those in Figure 1 and n∗
does not count zero elements in each sample.

CVi =

√√√√ 1
n− 1

n∑
j=1

(
xij − x̄i

)2

/x̄i, x̄i =
1
n

n∑
j=1

xij (1)

Normalized CVi =

{
CVi −min

i
(CVi)

}/{
max

i
(CVi)−min

i
(CVi)

}
CVi =

(√
1

n∗−1
∑n∗

j=1
(
log2

(
xij
)
− x̄i

)2
)/

x̄i, x̄i = 1
n∗
∑n∗

j=1 log2
(
xij
)
,

(2)
xij > 0
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