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Gene expression profiling is a useful tool to predict and interrogate mechanisms of
toxicity. RNA-Seq technology has emerged as an attractive alternative to traditional
microarray platforms for conducting transcriptional profiling. The objective of this
work was to compare both transcriptomic platforms to determine whether RNA-
Seq offered significant advantages over microarrays for toxicogenomic studies. RNA
samples from the livers of rats treated for 5 days with five tool hepatotoxicants
(α-naphthylisothiocyanate/ANIT, carbon tetrachloride/CCl4, methylenedianiline/MDA,
acetaminophen/APAP, and diclofenac/DCLF) were analyzed with both gene expression
platforms (RNA-Seq and microarray). Data were compared to determine any potential
added scientific (i.e., better biological or toxicological insight) value offered by RNA-Seq
compared to microarrays. RNA-Seq identified more differentially expressed protein-
coding genes and provided a wider quantitative range of expression level changes
when compared to microarrays. Both platforms identified a larger number of differentially
expressed genes (DEGs) in livers of rats treated with ANIT, MDA, and CCl4 compared
to APAP and DCLF, in agreement with the severity of histopathological findings.
Approximately 78% of DEGs identified with microarrays overlapped with RNA-Seq data,
with a Spearman’s correlation of 0.7 to 0.83. Consistent with the mechanisms of toxicity
of ANIT, APAP, MDA and CCl4, both platforms identified dysregulation of liver relevant
pathways such as Nrf2, cholesterol biosynthesis, eiF2, hepatic cholestasis, glutathione
and LPS/IL-1 mediated RXR inhibition. RNA-Seq data showed additional DEGs that
not only significantly enriched these pathways, but also suggested modulation of
additional liver relevant pathways. In addition, RNA-Seq enabled the identification of
non-coding DEGs that offer a potential for improved mechanistic clarity. Overall, these
results indicate that RNA-Seq is an acceptable alternative platform to microarrays for rat
toxicogenomic studies with several advantages. Because of its wider dynamic range as
well as its ability to identify a larger number of DEGs, RNA-Seq may generate more
insight into mechanisms of toxicity. However, more extensive reference data will be
necessary to fully leverage these additional RNA-Seq data, especially for non-coding
sequences.
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INTRODUCTION

Toxicogenomics has been used as a tool in pre-clinical toxicity
assessment for almost two decades (Kolaja and Kramer, 2002;
Suter et al., 2004; Yang et al., 2004). The objective of
toxicogenomics in pharmaceutical research and development
(R&D) is to identify differentially expressed genes (DEGs) in
tissues or cells exposed to test agents in order to predict
toxic effects, to generate a mechanistic understanding of toxic
effects, or to identify biomarkers of toxicity (Buck et al.,
2008). Traditionally, hybridization-based approaches such as
microarrays have been the standard gene expression profiling
technology for use in toxicogenomics (Nuwaysir et al., 1999;
Yang et al., 2004; Liguori et al., 2005; Waring et al., 2006).
More recently, RNA-Seq has emerged as an alternative method
for gene expression profiling (Merrick et al., 2013). The main
difference between RNA-Seq and microarrays is that the former
allows for full sequencing of the whole transcriptome while
the latter only profiles predefined transcripts/genes through
hybridization. This implies that RNA-Seq can help identify more
differentially modulated transcripts of toxicological relevance,
splice variants, and non-coding transcripts [e.g., microRNA
(miRNA), long non-coding RNA (lncRNA), pseudogenes] and
that these additional data may be informative for toxicity
prediction, mechanistic investigations or biomarker discovery
(Wang et al., 2010; Iyer et al., 2015; Li et al., 2015; Yan et al.,
2015). Due to these advantages and general advancement of the
field, there has been an increasing interest in using RNA-Seq
platforms for toxicogenomic studies (Chen et al., 2012; Bisgin
et al., 2018).

Several studies have compared DEGs identified from RNA-
Seq and microarray platforms (Xu et al., 2013; Wang et al., 2014;
Zhao et al., 2014; Hung and Weng, 2017). Likewise, there have
been considerable advances in sample handing, data capture, and
analytics of RNA-Seq data (Li and Dewey, 2011; Ritchie et al.,
2015; Bray et al., 2016; Conesa et al., 2016; Ghosh and Chan,
2016). However, the RNA-Seq approach has a few disadvantages
compared to microarrays, namely (1) a lack of optimized and
standardized protocols for analysis in spite of the availability
of multiple computational tools (Chandramohan et al., 2013;
Hayer et al., 2015), and (2) the size of RNA-Seq files, which
are considerably larger than microarray files. Finally, RNA-Seq
entails an extensive and more complex bioinformatic analysis,
which results in highly intensive and expensive computation
infrastructure and analytics, as well as longer analysis times
(Robinson and Oshlack, 2010; Esteller, 2011; Garber et al., 2011;
Trapnell et al., 2012). However, these limitations are gradually
improving.

While RNA-Seq appears to be an attractive technology,
it is unclear whether the technology results in substantial
benefits compared to microarrays when used in toxicogenomic
studies. Published studies have not systematically and
thoroughly evaluated the concordance and discordance
of DEGs between the two technologies in toxicological
studies. Therefore, the objective of the current study was to
compare the two technologies using RNA samples extracted
from the liver of rats dosed with several prototypical

hepatotoxicants selected for their distinct mechanisms of
toxicity. Both technologies were assessed using a combination
of bioinformatics tools and within the context of liver biology
pathways.

MATERIALS AND METHODS

Dose Selection
The DrugMatrix toxicogenomic database was used to select the
doses for a-naphthylisothiocyanate (ANIT), carbon tetrachloride
(CCl4), methylenedianiline (MDA), acetaminophen (APAP),
and diclofenac (DCLF) (Ganter et al., 2005). This database
holds comprehensive results from hundreds of highly controlled
and standardized toxicological experiments in which rats or
primary rat hepatocytes were treated with therapeutic, industrial,
and environmental chemicals over multiple doses/time periods.
Based upon the DrugMatrix database, in male rats, ANIT, APAP,
MDA, CCl4, and DCLF alter the expression of genes involved in
liver toxicity and/or increased serum transminases at 60, 1175, 81,
972, and 10 mg/kg, respectively. Thus, doses close to these values
were selected for our in vivo experiments.

In-Life Studies
All animal experiments for this study were conducted in
accordance with the Guide for the Care and Use of Laboratory
Animals. All studies were approved by AbbVie’s Institutional
Animal Care and Use Committee (IACUC). Briefly, male Sprague
Dawley rats were purchased from Charles River Laboratories, Inc.
(Portage, MI, United States). The rats were typically 6 to 8 weeks
of age and weighed 250–350 g at the start of the study. The
animals were acclimated for a minimum of 2 days after receipt
and randomized into treatment and control groups. Rats were
permitted certified rodent chow and water ad libitum and were
fasted overnight prior to necropsy.

Male rats (n = 3/group) were treated by oral gavage for 5 days
with ANIT, 100 mg/kg in corn oil; APAP, 1000 mg/kg/day in corn
oil; DCLF, 10 mg/kg/day in water; CCl4, 1582 mg/kg/day in corn
oil; MDA, 100 mg/kg/day in 35% ethanol (EtOH) (v/v). Corn oil-,
EtOH- (n = 3/group) or water- (n = 2/group) vehicle treated
rats served as controls. Rats were anesthetized 24 h after the last
dose with isoflurane and blood samples were collected through
the posterior vena cava for clinical pathological examinations.
Rats were then humanely sacrificed through exsanguinations and
necropsied. Liver samples (left lateral lobe) were flash frozen at
necropsy. A portion of the liver from each animal was also fixed
in 10% neutral buffered formalin and subsequently embedded
in paraffin blocks for sectioning. Slides for hematoxylin and
eosin (H&E) staining were prepared according to the well-
established methods and examined by a veterinary pathologist
certified by the American College of Veterinary Pathologists
(WRB). Histopathological analyses were performed on these
livers to confirm the presence of toxicity (Supplementary Figures
S1A–E). Serum clinical chemistry parameters were quantified
using an Abbott Aeroset clinical chemistry analyzer (Abbott
Laboratories, Abbott Park, IL, United States) and individual
animal data are provided in Supplementary Table S1.
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RNA Sample Preparation
Total RNA from ∼50 mg of flash frozen liver for all treated
(n = 15) and vehicle (n = 11) animals was isolated by
Qiazol extraction with on-column DNase I treatment (Qiagen,
Redwood City, CA, United States) and evaluated for quality
(RIN scores ≥ 9) by BioAnalyzer (Agilent, Santa Clara, CA,
United States). Aliquots of the same total RNA samples were used
as input for each platform.

RNA-Seq Data Generation
Seventy five ng total RNA/liver was used as input for RNA-
Seq library construction using the TruSeq Stranded mRNA
Library Prep Kit (Illumina, San Diego, CA, United States) on
the Neo-Prep Library Prep System. The library preparation kit
used was optimized for enriching coding mRNAs. Libraries
were normalized, pooled and loaded on a NextSeq500 for single
read sequencing at 1 bp × 75 bp using a HI Output flowcell
according to manufacturer’s protocols (Illumina, San Diego, CA,
United States). FastQ files were generated and uploaded to Array
Studio (OmicSoft, Cary, NC, United States) for analysis. On
average 25 to 26 million NGS short reads were generated per
sample (Supplementary Table S1).

The efficiency and accuracy of the alignment of NGS
RNA-Seq short reads to a reference genome is an important
component in any DEGs comparison studies. Computational
alignment methods for RNA-Seq data analysis are constantly
improving. OSA4 (Omicsoft, Cary, NC, United States) was used
for alignment of RNA-Seq short reads to the rat reference genome
(Hu et al., 2012).

The percentage of total reads uniquely mapped to
the reference genome using OSA4 (Omicsoft, Cary, NC,
United States) was between 86 and 91% for all 26 samples,
supporting the good quality for the RNA-Seq reads. About
5.5 to 7.5% of the samples non-uniquely mapped and only
3 to 4% did not map (Supplementary Table S1). The NGS
short reads mapped well onto 32,663 Ensembl.R83 annotated
genes of the rat reference genome (Rat B6.0); of these, 22,271
were protein-coding sequences and the remaining 10,392 were
non-coding transcripts. After removing redundant genes from
the microarray probes, only approximately 18,700 annotated
protein-coding genes overlapped between the two technologies.
For platform comparison purposes, the gene symbol was used
for this protein-coding set.

Maximum likelihood (ML) expression levels were estimated
using an Expectation–Maximization (EM) algorithm integrated
within the Omicsoft suite of programs (Hu et al., 2012).
Generally, RNA-Seq reads do not span entire transcripts, and the
transcripts from which they are derived are not always uniquely
determined. Paralogous gene families, low-complexity sequences
and high sequence similarity between alternatively spliced
isoforms of the same gene are primary factors contributing to
mapping uncertainty. Due to these factors, a significant number
of reads are multi-reads. Two strategies have been previously used
for handling gene multi-reads. First, simply discarding them,
keeping only uniquely mapped reads for expression estimation.
Second, rescuing multi-reads by allocating fractions of them to
genes in proportion to coverage by uniquely mapping reads.

The rescue strategies have been shown to give expression
estimates that are in better agreement with microarrays than
those from only using uniquely mapping reads (Hu et al., 2012)
Consequently, we used an Omicsoft implemented rescue strategy
for gene quantification. Raw Illumina RNA-Seq FASTQ files
are available in the Gene Expression Omnibus (GEO) database
(Edgar et al., 2002) with an Accession No. GSE122315.

Microarray Data Generation
Microarray hybridization was performed using the standard
protocol provided by Affymetrix, Inc. (Santa Clara, CA,
United States). Briefly, 5 µg of total RNA from each rat liver
was reverse transcribed into cDNA using a Superscript
II Double-Strand cDNA synthesis kit (Invitrogen Life
Technologies, Carlsbad, CA, United States) according to
the manufacturer’s instructions, except that the primer
used for the reverse transcription reaction was a modified
T7 primer with 24 thymidines at the 5′ end (Affymetrix).
The sequence was 5′-GGCCAGTGAATTGTAATACGAC-
TCACTATAGGGAGGCGG-(dT)24-3′. cDNA was purified via
MinElute filtration (Qiagen, Redwood City, CA, United States)
and then used to synthesize biotin-labeled cRNA using the
Enzo RNA Transcript Labeling Kit (Enzo Life Sciences,
Farmingdale, NY, United States) according to the manufacturer’s
instructions. Labeled cRNA was purified using RNeasy kits
(Qiagen, Redwood City, CA, United States), and the cRNA
concentration was evaluated. Labeled cRNA (20 µg) was then
fragmented in a solution of 40 mM Tris-acetate, pH 8.1, 100 mM
KOAc, and 30 mM MgOAc at 94◦C for 35 min, and then
hybridized to an Affymetrix rat genome RAE230 2.0 array, which
contains sequences to approximately 31,000 probe sets, at 45◦C
overnight using an Affymetrix Hybridization Oven 640. We have
consistently used this Affymetrix chip platform for toxicology
studies for ease of cross-study comparison (Liguori et al.,
2016), which is consistent with others in the pharmaceutical
industry including much of the Drug Matrix database (Ganter
et al., 2005; Sutherland et al., 2017). Arrays were subsequently
washed, and stained with strepavidin-phycoerythrin (Molecular
Probes, Carlsbad, CA, United States) using the GeneChip R©

Fluidics Workstation 450 (Affymetrix), and finally scanned
using the Affymetrix GeneChip R© Scanner 3000. CEL files were
generated and uploaded to ArrayStudio (Omicsoft, Cary, NC,
United States) for gene expression analysis. The microarray
probes were annotated with both Refseq and Ensembl.R83
(Omicsoft, Cary, NC, United States). Raw microarray CEL data
files are also available in the GEO database with an accession
number GSE122184.

Principal Component Analysis (PCA)
Principal component analysis (PCA) calculations were
performed to assess the quality of the RNA-Seq and microarray
data using Array Studio (Omicsoft, Cary, NC, United States)
and SAS Enterprise Guide 6.1 (SAS Institute, Cary, NC,
United States). Using SAS Enterprise Guide 6.1, a two sample
t-test was performed to compute a p-value for the major
principal component of RNA-Seq and microarray datasets
(toxicant treated samples vs. control). The computed p-values
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were 0.002 and 0.004 for the RNA-Seq and microarray datasets
(toxicant treated samples vs. control), respectively. The principal
components were visualized in the Spotfire (Tibco, Inc., Palo
Alto, CA, United States) data analysis tool.

Gene Expression Analysis
Differentially expressed genes for each platform were identified
by comparison of the mean of expression intensities or counts of
compound-treated samples to the mean of expression intensities
or counts of the corresponding vehicle-treated samples with a
fold change (FC) > 1.5 and p < 0.01. The resulting genes were
analyzed for concordance and discordance using Array Studio
10.1, SAS Enterprise Guide 6.1, Spotfire (Tibco, Inc., Palo Alto,
CA, United States) and JMP 10 (Cary, NC, United States). Further
pathway and gene-enrichment analyses were conducted using
Ingenuity Pathway Analysis (IPA) version 31813283 (Qiagen,
Redwood City, CA, United States) and SAS EG. 6.1 (SAS
Institute, Cary, NC, United States). In IPA, the significance of
the association between the DEGs and the canonical pathway
was computed using two parameters, namely: (1) a ratio of the
number of DEGs from the data set that map to the pathway
divided by the total number of genes that constitute the canonical
pathway and (2) a −log10 (p-value) determining the probability
that the association between the DEGs in the data set and the
canonical pathway is due to chance alone. In the present analysis,
the computed −log10 (p-value) of 3.0 (p < 0.001) and above was
considered as statistically significant.

The Causal analysis (upstream analysis) of IPA examines
how many known targets of each transcription regulator are
present in the DEGs identified by RNA-Seq and microarrays,
and also compares their direction of change (i.e., expression
in the experimental sample(s) relative to control) to what is
expected from the literature in order to predict likely relevant
transcriptional regulators. IPA used z-score algorithm to make
predictions (Krämer et al., 2013) – with z-scores greater than 3
(activated) or smaller than−3 (inhibited) being considered to be
significant.

Statistical Analyses
Microarray
All chips were normalized using the Robust Multi-array Average
(RMA) method (Bolstad et al., 2003) implemented in Array
Studio. All data processing was performed using Array Studio
software. Mean expression levels were obtained by calculating
the geometrical means of the RMA-normalized data for toxicant
treated and control sample groups, respectively. A two-sided
t-test was performed using the inference module of Array
Studio, to determine which genes were significantly differentially
expressed between the toxicant treated and control groups, and
Benjamini–Hochberg false discovery rate (FDR) multiple testing
correction and alpha level of 0.05 was applied.

RNA-Seq
Voom module implemented within Array Studio (Omicsoft,
Cary, NC, United States) was used. This module transforms
count data log 2 transformed counts per million (logCPM),
robustly estimates the mean-variance relationship and generates

a precision weight for each individual normalized observation.
Inference tests based on the Voom algorithm were applied to
adjust read depth differences between samples and estimate
changes or differences of gene expression when comparing
sample groups. Genes with little or no expression [average
transcripts per million (TPM) < 0.1] were excluded from
inference tests. DEGs from the inference test were selected
according to expression changes of more than 1.5 and Benjamini–
Hochberg FDR multiple correction and alpha level of 0.05 was
applied.

RESULTS

Histopathology
Administration of ANIT, MDA, and CCl4 resulted in expected
hepatotoxicity characterized by changes in relevant serum
chemistries at necropsy. Increases (>2X) in serum activities of
hepatocellular leakage enzymes [alanine aminotransferase (ALT),
aspartate aminotransferase (AST), glutamate dehydrogenase
(GLDH)] were observed with ANIT, CCl4, and MDA. Increases
in total serum bilirubin were also observed for ANIT and
MDA, and minimally for APAP. A complete listing of
serum chemistry values is presented in Supplementary
Table S2. These changes in serum chemistry values were
consistent with the histopathologic findings which were
detected in the livers from rats treated with ANIT, MDA,
and CCl4, but not APAP and DCLF. Supplementary Figures
S1A–E provides representative photomicrographs illustrating the
histopathological appearance of the liver from a representative
rat in each dose group. ANIT (Supplementary Figure S1A)
and MDA (Supplementary Figure S1B) treatment resulted in
biliary toxicity characterized by hypertrophy and hyperplasia
of the bile duct epithelium, and infiltration of neutrophils
into the pericholangiolar space and bile duct lumina. CCl4
(Supplementary Figure S1C) treatment resulted in widespread
centrilobular hepatocellular macrovesicular and microvesicular
steatosis. Neither APAP (Supplementary Figure S1D), nor
DCLF treatment (Supplementary Figure S1E) resulted in
histological findings, suggesting that higher dose levels would
have been required for these hepatotoxicants to induce liver
effects in male rats after five daily doses. The dose response
of tolerated hepatotoxicity of DCLF is narrow; 40 mg/kg/day
is poorly tolerated, with only one of three animals surviving
after five daily doses (data not shown). The APAP and DCLF
samples were nonetheless further analyzed since they were
considered useful to better understand the sensitivity and utility
of transcriptomic changes in rat toxicity studies.

Principal Component Analysis of
RNA-Seq and Microarray Data
In toxicogenomic studies, PCA is generally used to analyze
the complex multi-dimensional gene expression datasets. PCA
results for the RNA-Seq and microarray datasets are summarized
in Figures 1A,B. The first and second principal components (PC1
and PC2) accounted for 30 and 12% variability in the RNA-Seq
dataset (i.e., matrix of 32,663 transcripts X 26 samples). A similar
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FIGURE 1 | (A) Principal component analysis (PCA) of the RNA-seq and microarray dataset for 26 liver samples. (1) Two-component PCA for Microarray dataset of
ANIT, MDA, and CCL4 (left) (2) RNA-Seq dataset of ANIT, MDA, and CCl4 (right). Percentages represent variance captured by each principal components 1 and 2 in
each analysis. Controls are shown in green color circle and hepatotoxicants are colored differently. (B) Principal component analysis of APAP and DCLF liver samples
(1) two-component analysis of microarray data for APAP and DCLF (left). The beige color represents water treated control samples. The red colored samples are
DCLF treated. The light and dark green circles represent corn oil control and APAP treated samples respectively. (2) RNA-Seq data analysis on APAP and DCLF
(right). The drug treated samples are shown within the closed circle or oval shaped ring.

assessment of the microarray dataset (i.e., matrix of 21,419 X 26
samples) showed a smaller degree of separation (18 and 13%).
A clear segregation of ANIT-, MDA-, CCl4-, and DCLF-treated
samples from their corresponding controls was observed in both
the RNA-Seq and microarray datasets (Figures 1A,B), reflecting
the differential gene expression patterns observed with these
hepatotoxicants. APAP-treated samples did not separate from
their respective control samples with either microarray or RNA-
Seq, reflecting the low level of gene expression changes, which was
highly consistent with the lack of observed histopathological and
serum chemistry findings (Supplementary Figures S1A–E and
Supplementary Table S2). The computed additional principal
components, such as PC3 to PC10 for APAP on both RNA-Seq
and microarray data also provided similar inseparable results (for
example, PC3 7.69%, PC4 4.49%, PC5 3.56%, PC6 3.2%, PC7
3.2%, PC8 2.8%, PC9 2.7%, and PC10 2.7%).

Absolute Gene Expression Concordance
Between the RNA-Seq and Microarray
Platforms
To identify a general linear relationship between the RNA-Seq
counts to the corresponding microarray fluorescence intensities
for all the expressed genes, a Spearman’s correlation coefficient
was computed to check the data consistency between the two
platforms (Figure 2, Comparison 1). A quantitative comparison
of the relative raw expression profile of the 18,776 genes present
in both platforms is shown in Figure 3 for livers treated
with ANIT, APAP, MDA, DCLF, and CCl4. Encouragingly, the
measured gene abundance derived from these two different gene
expression methods showed a correlation of 0.65, 0.67, and
0.65 for ANIT, MDA, and CCl4, respectively, indicating a good
concordance between the platforms. However, the computed

Frontiers in Genetics | www.frontiersin.org 5 January 2019 | Volume 9 | Article 636

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00636 January 18, 2019 Time: 16:27 # 6

Rao et al. Toxicogenomics Assessment of Rat Liver

FIGURE 2 | Overall computational process of RNA-Seq and microarray data analysis. 26 liver samples (15 drug treated and 11 controls) were assessed by
microarray and RNA-Seq platform. Comparison at raw expression, differentially expression and pathway stages are indicated. A statistical criteria of p < 0.01 and
FC < –1.5 or FC > 1.5 were used to obtain DEGs from raw expression data.

FIGURE 3 | Scatter plot showing the relative expression levels of genes in terms of log2FCs for 18,776 consensus genes, determined by RNA-Seq and microarray.
Log2FC is computed by taking average of three samples. Blue indicates RNA-Seq’s down-regulated and red is up-regulated protein coding genes. The graphs show
that the overall FC dynamic ranges (log2 transformed) for 18,776 genes.

TABLE 1A | Summary of number of DEGs from RNA-Seq and Microarray.

Microarray Microarray Microarray RNA-Seq RNA-Seq RNA-Seq

Treatment (up-regulated) (down-regulated) (total) (up-regulated) (down-regulated) (total)

ANIT 507 507 1014 1634 1505 3139

APAP 54 38 92 275 237 512

CCl4 361 328 689 1091 1036 2127

DCLF 3 13 16 93 103 196

MDA 569 512 1081 1899 1773 3672
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TABLE 1B | Concordance of DEGs between RNA-Seq and microarray platforms.

Microarray Overlapping DEGs % of DEGs

Treatment (total) with RNA-Seq overlap

ANIT 1014 785 77

APAP 92 71 77

CCl4 689 541 78

DCLF 16 2 12

MDA 1081 824 76

TABLE 1C | Comparison of dynamic range of RNA-Seq and microarray.

Microarray Microarray RNA-Seq RNA-Seq

Treatment Max FC Min FC Max FC Min FC

ANIT 41 −40.2 577.5 −884.9

APAP 20.3 −6.3 363.8 −156.4

CCl4 12.9 −14.1 143.8 −262

DCLF 2.1 −3.4 50.9 −28.3

MDA 15.7 −15.1 226.5 −260.5

Spearman’s correlation for APAP and DCLF were 0.44 and
0.30, respectively, indicating a weak correlation between the
platforms. An additional computational analysis on the APAP
and DCLF gene expression datasets revealed the presence of
significant variability for genes expressed at low absolute levels
in the microarray platform, likely explaining, at least in part, the
poorer correlation for these samples with minimal toxic changes
(Supplementary Figures S2A,B).

DEGs Concordance Between the
RNA-Seq and Microarray Platforms
The protein-coding DEGs identified by RNA-Seq and
microarrays were compared (Figure 2, Comparison 2).
Overall, the RNA-Seq platform captured a larger number of
protein-coding DEGs compared to the microarray platform
for all the tested hepatotoxicants (Table 1A: columns 4 and 7).
The RNA-Seq platform identified a modulation of expression
for 3139 (or 16.7% of the expressed protein-coding genes), 512
(2.7%), 3672 (19.5%), 2127 (9.5%), and 196 (1.0%) genes for
ANIT, APAP, MDA, CCl4, MDA, and DCLF, respectively. In
contrast, with the microarray platform, only 1014 (5.4% of the
expressed protein-coding genes), 92 (0.4%), 1081 (5.7%), 689
(3.6%), and 16 (0.1%) of the total protein-coding sequences
were differentially expressed for ANIT, APAP, MDA, CCl4,

and DCLF, respectively. Hence for all tested hepatotoxicants,
less than half of the DEGs were identified with microarrays
compared to RNA-Seq. Of these, 785, 71, 824, 541, and 2
DEGs were also found to be differentially expressed in the
RNA-Seq platform for ANIT, APAP, MDA, CCl4, and DCLF,
respectively, resulting in an overlap of ∼78% between the
two platforms except for DCLF (Figure 4 and Table 1B:
column 4). The computed Spearman’s correlation for these
overlapped DEGs of ANIT, APAP, MDA, and CCl4 were
0.83, 0.79, 0.70, and 0.83, respectively, revealing a significant
concordance between the platforms. For more than 95%
of these up- and down-regulated DEGs, both platforms
showed a similar directionality in expression changes, further
demonstrating the excellent concordance between the two
platforms (Figure 5).

The DEGs profiles in the ANIT, APAP, MDA, CCl4, and
DCLF samples as detected by both platforms were also visually
compared using a heatmap combined with two-way hierarchical
clustering (Figure 6). The computed dendrogram shows three
distinct groups for both microarray and RNA-Seq DEGs. In
group 1, DEGs from the ANIT, MDA, and CCl4 samples clustered
together, while the APAP and DCLF clustered separately in
groups 2 and 3, consistent with the lack of obvious hepatotoxicity
with these two toxicants. However, the DEGs from the ANIT
and CCl4 samples were close to each other in group 1 with
the RNA-Seq platform compared to the microarray platform,
where the ANIT and MDA samples grouped together (Figure 6).
This dendrogram also showed a comparable distribution of up-
and down-regulated DEGs for ANIT, APAP, MDA, and CCl4
with both platforms, in spite of the fact that the set of DEGs
that were up- and down-regulated with the two platforms was
different.

Table 1C compares the dynamic range of expression for the
DEGs detected with the two platforms and supports the better
performance of the RNA-Seq platform for the identification of
genes across a broad expression range. Particularly, the computed
FC values for 239, 10, 134, and 86 DEGs of ANIT, APAP, MDA,
and CCl4, respectively were at least two times higher with RNA-
Seq compared to microarrays, confirming the higher sensitivity
of the RNA-Seq platform. Furthermore, with microarrays, the
FC saturated at the high end and increased background noise
was noted at the low end. Overall, these results showed that
RNA-Seq is better at capturing the gene expression changes
for genes expressed at overall low levels and more precise
in quantifying expression changes for the highly dysregulated
genes.

TABLE 1D | Summary of DEGs unique to RNA-Seq and microarray platforms.

Treatment Overlapping DEGs between
RNA-Seq and microarray

Microarray unique (total
microarray – overlapping DEGs)

RNA-Seq unique (total protein coding
RNA-Seq – overlapping DEGs)

RNA-Seq/microarray

ANIT 785 229 2354 10.2

APAP 71 21 441 21.0

CCl4 541 148 1586 10.7

DCLF 2 14 194 13.8

MDA 824 257 2842 11.0
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FIGURE 4 | Concordance of protein-coding DEGs from RNA-Seq and Microarray. Blue and green bars indicate total number of microarray platform identified DEGs
and number of inter-platform overlapping DEGs, respectively.

FIGURE 5 | Spearman’s correlation plot for DEGs determined by RNA-Seq and microarray. Size of the filled circle is proportional to fold change difference (i.e., the
larger the circle the bigger the FC difference). The blue and red spheres indicate down and upregulated DEGs, respectively.
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FIGURE 6 | Hierarchically clustered genes (columns) and samples (rows) with dendrograms and clusters (blue colored bars). Red in the heatmap denotes
upregulation while blue denotes downregulation.

Unique Protein Coding DEGs Detected
by the RNA-Seq and Microarray
Platforms
Differentially expressed genes that are common to both platforms
were subtracted from the total number of protein coding DEGs
identified in each platform (Table 1D: columns 3 and 4). RNA-
Seq identified at least 10 times more unique DEGs compared
to microarrays for all the tested hepatotoxicants (Table 1D,
column 5).

RNA-Seq-specific DEGs are those that were shown to be
differentially modulated only with the RNA-Seq platform. To
obtain a complete perspective on these RNA-Seq specific protein-
coding DEGs, a statistical criterion of p < 0.01 with higher FC
such as ±1.5, 3, and 10 were used to generate a comprehensive
list of DEGs (Table 2). ANIT, APAP, CCl4, MDA, and DCLF
treatment differentially regulated 1367, 218, 835, 1621, and
193 protein-coding genes, translating to 7.2, 1.1, 4.4, 8.6,
and 1% of the total expressed protein-coding genes (with
FC ±1.5 criteria), respectively. Our analysis also identified a
set of DEGs that were uniquely detected with microarrays.
ANIT, APAP, MDA, and CCl4 treatment differentially regulated
the expression of 229, 21, 257, and 148 genes, translating
to 1.2, 0.1, 1.3, and 0.7% of the total expressed protein-
coding genes, respectively (Supplementary Excel File S1). The
computed FC for these genes generally ranged only from
−1.5 to 2.

Impacted Canonical Pathways by DEGs
Identified With the RNA-Seq and
Microarray Platforms
A major goal of this study was to understand whether the
biology of the DEGs detected by each platform would lead
to a similar understanding of the mechanism of toxicity
(Figure 2, Comparison 3). Hence, the DEGs of APAP, ANIT,
MDA, DCLF and CCl4, identified with either platform were
analyzed with IPA to identify statistically significant canonical
pathways. Supplementary Tables S3A–D summarizes the top

impacted pathways identified by RNA-Seq and microarrays for
ANIT, MDA, CCl4, and APAP treatments. Many of the top
scoring canonical pathways detected by microarrays and RNA-
Seq were similar for the most part and were relevant to liver
toxicity. However, RNA-Seq DEGs uniquely captured a few
additional liver relevant canonical pathways (Supplementary
Tables S3A–D, shown in italics). Finally, it is reassuring that
the DEGs of each tested hepatotoxicants detected with the
two different gene expression platforms captured distinct liver-
associated pathways for each drug, further confirming their
distinct mechanism of toxicity.

The IPA Upstream Regulator analytic was also used to identify
potential transcriptional regulators. Results showed, for example
that both microarray- and RNA-Seq-derived DEGs with ANIT
predicted a total of 113 (35 inhibition and 78 activation) and
73 (15 inhibition and 68 activation) regulators in RNA-Seq and
microarray, respectively. Key notable high scoring regulators
included (i) PPARα inhibition (2) OGA inhibition (3) let-
7 (miRNA) inhibition (4) miR-21 inhibition and (5) AGT
activation for the DEGs identified for ANIT in both platforms
(Supplementary Table S4A). The top scoring regulators for
MDA and CCl4 are listed in the Supplementary Tables S4B,C.
For APAP, only NFE2L2 was predicted to be an upstream
regulator. All the predicted upstream regulators (with z-score > 3
or < −3) for all the studied toxicants from microarray and
RNA-Seq are listed in the Supplementary Excel Files S5A,B.
Overall, these results indicate that the DEGs of RNA-Seq and
microarray impacted similar upstream regulators. Additionally,
the DEGs uniquely identified by RNA-Seq resulted in a few
non-overlapping upstream regulators for the toxicants studied
(Supplementary Excel File S6).

In a separate analysis, RNA-Seq and microarray specific
DEGs (Table 1D- columns 3 and 4) were queried in IPA
to identify statistically impacted canonical pathways. A large
number of additional canonical pathways were identified by
RNA-Seq alone (Supplementary Tables S5A,B). No additional
statistically significant canonical pathways were identified by the
microarray specific DEGs alone.
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TABLE 2 | Summary of RNA-Seq platform specific protein-coding DEGs.

Treatment Total No. of DEG with
FC > 1.5 or < −1.5

Dynamic range Total No. DEG with
FC > 3.0 or < −3.0

Total No. of DEG with
FC > 10 or < −10

ANIT 1367 (−25.8,112.6) 459 77

APAP 218 (−12,1,293.7) 65 5

CCl4 835 (−16.1,100.7) 180 21

DCLF 193 (−28.3,50.9) 110 22

MDA 1621 (−62.5,122.1) 507 68

Non-coding DEGs Detected by RNA-Seq
RNA-Seq can detect both protein-coding and non-coding
DEGs in a single experiment. A total of 10,392 non-coding
RNA transcripts were expressed in the rat liver samples. Of
these, 3038 (29%), 1654 (15%), 1588 (15%), 1475 (14%), 803
(7%), and 612 (5.8%) transcripts were categorized as lncRNA,
small nucleolar RNA (snoRNA), microRNA (miRNA), small
nuclear RNA(snRNA), and pseudogene/processed pseudo genes,
respectively. In total, 622 (i.e., 5.9% of the total expressed non-
coding transcripts) were identified as differentially regulated by
ANIT, APAP, CCl4, MDA, and DCLF combined (Figure 7).
Table 3 summarizes the total number of non-coding DEGs along
with the computed FC values for each category for each drug.
APAP, ANIT, CCl4, MDA, and DCLF impacted the expression
of 70, 167, 128, 177, and 80 non-coding genes, translating to
0.6, 1.6, 1.2, 1.7, and 0.7% of the total expressed non-coding
transcriptome, respectively.

Since the biology of lncRNAs is not clearly understood, we
analyzed the cis-protein-coding DEGs of differentially expressed
lncRNAs and inferred the potential biological insights for the
significantly modulated lncRNAs. The closest protein-coding
DEG to a differentially expressed lncRNA within the same
chromosome is generally referred as the protein-coding “cis-
gene” of a lncRNA. The highly impacted lncRNAs along
with the nearest cis-DEGs for ANIT, APAP, MDA, CCl4,
and DCLF are summarized in Supplementary Excel File S2.
A total of 37, 62, 5, and 19 cis-DEGs were identified for
ANIT, MDA, CCl4, and APAP, respectively (Supplementary
Figures S3A–D and Supplementary Excel File S2). The FC
values for most of the highly modulated lncRNAs positively
correlated with the expression of cis-DEGs, indicating possible
relationship between the lncRNA’s and its cognate protein-coding
mRNAs.

A simple query within IPA of the ANIT impacted 37 cis-DEGs
showed that (1) histidine degradation III, IV, (2) Biotin-carboxyl
carrier protein assembly, (3) folate degradation and (4) protein
citrulination are possible impacted canonical pathways, revealing
possible mechanistic information related to ANIT toxicity with
these pathways. Moreover, 20 of these cis-DEGs are associated
with liver hyperplasia/hyperproliferation. Supplementary Excel
File S3 summarizes the differentially regulated 21 miRNAs
along with computed FC values. Of these, six miRNA’s have
been annotated with liver biological function. The functionally
annotated miRNAs include (1) mir3567 (MDA) and mir-
6326 (MDA); (2) mir-let78 (DCLF); (3) mir3064 (APAP); (4)
mir378b (ANIT); and (5) mir3791 (miR-122 family) (ANIT). The

tested hepatotoxicants also differently modulated the expression
of a total of 174 pseudogenes and processed pseudogenes,
translating to 1.67% of the total differentially expressed non-
coding transcripts (Supplementary Excel File S4).

DISCUSSION

The RNA-Seq and microarray platforms are fundamentally
different from each other in terms of gene expression
measurements. The former measures all RNA transcript counts,
a direct measurement of gene expression, while the latter
measures a fluorescence intensity that is due to hybridization
with anti-sense probe sequences, an indirect measurement of
gene expression. The advantage of RNA-Seq over microarrays
is that it provides an unbiased insight into all transcripts (Zhao
et al., 2014). Thus, RNA-Seq is generally reliable for accurately
measuring gene expression level changes. Nevertheless, the key
question is whether this improved reliability, accuracy, and
sensitivity is sufficient to justify a switch from microarrays to
RNA-Seq in the context of toxicogenomic studies.

Several studies have compared these two transcriptional
profiling platforms for various purposes (Bottomly et al., 2011;
van Delft et al., 2012; Merrick et al., 2013; Wang et al., 2014;
Zhao et al., 2014). These studies overall indicate that: (1) a
significantly larger number of DEGs and affected pathways
can be detected with RNA-Seq compared to microarrays; (2)
RNA-Seq has a wider dynamic range than microarrays; and (3)
a reasonable concordance of DEGs (50–60%) exists between
the two platforms. Our data are consistent with these studies
in terms of overall acceptable concordance between the two
platforms and regarding the higher sensitivity and better dynamic
range observed with RNA-Seq. However, our study showed a
higher level of concordance (>75%) between the two platforms
compared to other studies. In addition, our study evaluated
the potential utility of RNA-Seq for mechanistic toxicology
investigations with more depth by using carefully selected
hepatotoxicants with distinct mechanisms of toxicity and in a
context relevant to the conduct of exploratory toxicology studies
in the pharmaceutical industry.

There are at least three common approaches that map
expression data from different platforms [RefSeq, Ensembl,
University of California, Santa Cruz (UCSC)]. Additionally, some
researchers align probe sequences to a recent release of the
Genome or Transcriptome in an attempt to obtain the most
up-to-date results. Many commercial vendors release updated
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FIGURE 7 | Volcano plot summarizing RNA-Seq specific non-coding DEGs. The red dots on the right top quadrant are significantly up-regulated non-coding DEGs
and the dots within the top left quadrant shows highly down-regulated non-coding DEGs. Green color dots denote un-changed non-coding transcripts.

TABLE 3 | Summary of RNA-Seq specific non-coding DEGs.

RNA-type ANIT APAP CCl4 DCLF MDA

lncRNA 85 37 62 26 90

Pseudogene 37 9 23 17 38

snRNA 4 3 4 9 1

miRNA 4 2 3 8 4

processed_pseudogene 9 5 13 8 15

snoRNA 9 4 5 6 2

rRNA 0 0 0 2 0

TEC 0 0 0 1 1

misc_RNA 4 3 3 1 3

processed_transcript 4 2 3 1 11

unprocessed_pseudogene 9 3 11 1 9

transcribed_processed_pseudogene 2 0 1 0 0

transcribed_unprocessed_pseudogene 0 0 0 0 2

Antisense 0 1 0 0 1

Ribozyme 0 1 0 0 0

annotation files (with varying degrees of regularity) in an attempt
to keep these annotations current. Zhao and Zhang (2015)
have comprehensively compared these different annotations
within the context of the human genome. Abascal et al.
(2018) have also compared the gene annotation from Ensembl,
RefSeq, and UniprotKB and found an significant overlap of
genes, suggesting annotations from different databases are
somewhat in general agreement. Array Studio uses annotations
from both Ensembl.R83 and RefSeq for gene identification

from the microarray probes. For RNA-Seq transcripts, this
tool uses Ensembl.R83 for gene identification. The identified
genes from both platforms were used for comparison. It
may be possible that a few genes have been missed by
this annotation mismatch. However, within the context of
toxicology studies, these annotation differences may play a
limited role, as evidenced by the identification of similar
biological pathways and upstream regulators identified with
RNA-Seq and microarray DEGs.
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An interrogation of the dynamic range values for the DEGs
detected with the two platforms indicated that RNA-Seq has a
dramatically larger dynamic range extending from 577- to−884-
fold. In contrast, the dynamic range observed with microarrays
ranged only from 41- to−40-fold. This appealing dynamic range
feature of RNA-Seq effectively eliminated the saturation biases,
which is inherent to microarray platforms. Consequently, RNA-
Seq data have a tighter distribution of FC around 1.5, which
drastically lowers the signal-to-noise ratios for genes expressed
at low levels. Because of this sensitive nature, the RNA-Seq
platform detected at least three times more protein-coding DEGs
for all the hepatotoxicants compared to microarrays, in excellent
agreement with reported platform comparison studies (Bohman
et al., 2016). However, it should be noted that this observation is
partly biased, since microarrays do not cover all possible cellular
transcripts and since the gene coverage also differs across chip
patterns.

The DEGs detected with RNA-Seq resulted in more
significantly altered pathways compared to microarrays,
which suggests that RNA-Seq provides more information about
toxicant-induced transcriptomic perturbations. Nevertheless,
there was also a significant overlap in the top modulated
canonical pathways identified by the protein-coding DEGs
of both platforms, and for the most part, the toxicological
interpretation of these transcriptomic changes was quite similar,
in agreement with observations by others (Su et al., 2011).
However, the DEGs of RNA-Seq uniquely identified a few
additional pathways compared to microarrays, demonstrating
some additional benefits of RNA-Seq. For example, RNA-Seq-
derived DEGs induced by ANIT treatment uniquely identified
the PPARα/PXR pathway, in agreement with a previously
reported study that revealed this connection (Cui et al., 2009).

Although pathway analyses using analytical tools like IPA
help summarize and interpret the complex biology behind
drug-induced transcriptomic perturbations, these analyses are
also intrinsically biased by the published knowledgebase
without consideration for potential institutional knowledge and
omit alternate pathway routes for regulated DEGs. Pathway
annotation is mostly a manual process and all genes and
functional relationships are generally not yet fully covered.
Moreover, the pathways are not universally defined and different
tools identify different pathway results for the same datasets
(Khatri et al., 2012). For example, in the current study, a
significant number of highly regulated protein-coding DEGs
identified with RNA-Seq and microarrays were not associated
with any of the IPA annotated canonical pathways. Thus, the
development of an analysis environment that exploits both
canonical pathways and new extended network interactions may
improve our understanding of the significance of highly regulated
DEGs within the context of liver pathological processes (Cerami
et al., 2010; Khatri et al., 2012). There has been tremendous
progress in the pathway curation and integration process during
the past few years and that progress has resulted in novel
pathway tools (Fabregat et al., 2017; Huang et al., 2017; Uppal
et al., 2017; Wang et al., 2017; Forsberg et al., 2018; Pittman
et al., 2018; Ukmar et al., 2018). However, these tools are still
highly fragmented and not integrated into a single framework
for optimal DEGs analysis. Integration of multiple pathway

analysis tools may be needed to better extract the comprehensive
biological information present in the DEGs of RNA-Seq and
microarrays.

An important advantage of RNA-Seq over microarrays is its
ability to measure almost all types of RNAs in a single experiment.
Recently, non-coding RNAs have generated significant interest in
toxicological and biomarker research (Dempsey and Cui, 2016;
Gong et al., 2016). These non-coding RNAs are not typically
detected with standard microarray chips based on design, but can
be captured and quantified by RNA-Seq. The RNA-Seq platform
in our study uniquely identified a total of 622 differentially
regulated non-coding transcripts for all toxicants combined
(about 5.9% of the total expressed non-coding transcripts).
These non-coding transcripts include miRNAs, miscRNAs and
lncRNAs, pseudogenes, snRNAs, snoRNAs, and unprocessed
transcripts. Despite this library preparation kit being optimized
for mRNAs, we still detected these non-coding RNAs. This
suggests that even more non-coding DEGs may be detected with
an alternative library prep kit. The tested hepatotoxicants mainly
impacted the expression of lncRNAs, pseudogenes and miRNAs
and these have a potential for use as toxicity biomarkers and may
offer additional mechanistic insight in some cases (Esteller, 2011;
Ling et al., 2013).

Long non-coding RNA represent a new class of biologically
important molecules with nucleotide length of > 200 bases
(Kapranov et al., 2007). These non-coding RNAs are generally
less stable and are expressed at lower levels compared to the
protein coding mRNAs. The relative abundance of mRNAs is
about 10 times greater than that of lncRNA (Djebali et al., 2012).
Moreover, lncRNA expression is highly restricted to certain tissue
types such as testis, heart, and liver (Derrien et al., 2012; Necsulea
et al., 2014) and lncRNAs are localized within the chromatin
compartment of the nucleus. Quantitatively, 80% of the expressed
lncRNAs have been characterized as tissue specific, in contrast to
<20% for mRNAs (Yan et al., 2013). The process of quantification
of these low abundant tissue-specific lncRNA transcripts remains
a challenging and on-going task.

Recent studies suggest that lncRNAs bind to chromatin,
chromatin modifying proteins, certain transcription factors, and
miRNAs. This binding event significantly regulates a wide range
of mechanisms like epigenetic signaling, disrupting polymerase
activities and altering miRNA stability (Baumgart et al., 2016).
Additionally, it is now also well-accepted that lncRNAs are
connected with various biological processes (Kung et al., 2013)
and diseases (Schmitt and Chang, 2016; Hon et al., 2017). Thus,
lncRNAs have been recognized as potential markers for liver
injury (Takahashi et al., 2014) and could serve as potential toxicity
biomarkers.

Long non-coding RNAs are generally identified using three
established criteria, namely: (1) lack of an open reading frame;
(2) sequence size of <200 bases; and (3) poor homology with
sequences of known proteins (Jalali et al., 2015). Our study
uniquely identified a total of 300 differentially regulated lncRNAs
across all toxicants combined. Almost 50% of these lnRNAs
displayed a large change in expression level (FC of −50 to 85
with p < 0.01). Although the biological function of these highly
modulated lncRNAs is unclear, there have been a number of
reports (Zhu et al., 2014) indicating a positive correlation between
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the expression of lncRNAs to the nearest protein-coding genes
within the same chromosome as confirmed by our analysis. For
example, ANIT upregulated the expression of AABR7003056.1
with a FC value of 3.09. The cis-gene of this lncRNA ccnE1 was
also upregulated with a FC value of 7.9. Increased expression
of ccnE1 has been reported in human and mouse liver fibrosis
(Nevzorova et al., 2012). Perhaps the high expression of ccnE1
may have contributed to the observed liver effects for ANIT.

miRNAs are small non-coding RNA molecules (containing
about 22 bases) that function in RNA silencing and post-
transcriptional regulation of gene expression. While the majority
of miRNAs are located within the cell, some miRNAs, commonly
known as circulating or extracellular miRNAs, have also been
found in the extracellular environment, including various
biological fluids (Wang et al., 2009). During the past decade,
miRNAs have generated a high level of interest in toxicology
(Clarke et al., 2014; Krauskopf et al., 2015). miRNAs are
not typically detected with standard microarray chips but can
be identified and quantified as part of a standard RNA-Seq
analysis. Our study identified a total of 21 differentially regulated
miRNAs across all toxicants combined. For example, ANIT
down-regulated miR3591 and miR378b (miR122 family) in rat
liver. ANIT treatment in mice for 48 h has been shown to reduce
the expression of hepatocyte nuclear factor 1-alpha (Hnf1a)
(Tanaka et al., 2009), consistent with our study where Hnf1a was
down-regulated by both RNA-Seq and microarrays. Interestingly,
miR3591 down-regulation correlates with Hnf1a gene down-
regulation (Coulouarn et al., 2009) and this is also consistent with
our study that showed miR3591 down-regulation.

Psesudogenes are generally produced through a wide range of
mechanisms (Zhang et al., 2010). A spontaneous mutation in a
protein-coding gene can generally prevent either transcription
or translation of the gene, resulting in the formation of
unitary pseudogene. Additionally, duplicated pseudogenes are
also generated through a tandem doubling of certain sequences.
These duplicated and unitary pseudogenes lose their protein-
coding capability due to either the loss of promoters or mutations
that create premature stop codons (Mighell et al., 2000) However,
these pseudogene sequences are released from selection pressure
and accumulate as non-gene-like features. These accumulated
pseudogene sequences and their cognate protein coding genes
form regulatory pairs that control each other’s activities (Kalyana-
Sundaram et al., 2012). For example, knock-down of pseudogene
ABCC6P1 has been shown to decrease the expression of
its cognate protein-coding gene ABC66 (Pink et al., 2011),
suggesting that pseudogenes can exert regulatory effects on their
protein coding genes. The co-expression of pseudogenes and
their cognate protein-coding genes have not been looked at
thoroughly within the context of toxicity assessment in a single
experiment, as pseudogenes probes are generally absent from
typical microarray chips. Our RNA-Seq data identified a total
of 174 pseudogenes with altered expression from all toxicants
combined. The identification of a possible link between liver
toxicity to these non-coding pseudogene/protein-coding gene
regulatory pairs may give us an additional mechanistic insight
into the roles of some of the highly impacted pseudogenes.
Altogether, although it is premature to draw conclusions, it

appears that measurement of non-protein-coding transcripts
(lncRNAs, miRNAs, and pseudogenes) may provide some useful
insights regarding mechanisms of liver toxicity. Future in vitro
and in vivo studies are clearly necessary to further understand the
utility for mechanistic molecular toxicology of these non-protein-
coding diagnostic and prognostic transcripts.

Microarrays measure the expression of only pre-defined
probes (genes) and typical arrays are designed to cover only a
portion of protein-coding genes. Thus, it is currently impossible
to detect regulation of non-coding genes (i.e., lncRNAs, miRNAs,
and pseudogenes), other important novel RNAs and biologically
relevant novel splice variants in addition to the complete protein-
coding transcriptome in a single array experiment. Furthermore,
hybridization can result in mismatch between probes and target
molecules, leading to increased noise and higher likelihood of
misidentified DEGs. Because of its added advantages, RNA-
Seq is progressively replacing microarray technology for many
transcriptomic applications (Lowe et al., 2017). However,
microarrays still offer some advantages. Firstly, microarray data
are more manageable in size: the size of RNA-Seq datasets
is generally about >50 times larger depending on the sample
size and sequencing depth. In the present study, we generated
39 and 0.5 GB of RNA-Seq and microarray data from the 26
samples, respectively, a difference of 78-fold in file size. Even
for this simple prototype study, this massive amount of data
introduced data management and analysis challenges. Secondly,
the overall computation time, data storage and management
time for a microarray experiment are much lower. Based on our
experience, to completely process and summarize the DEGs from
a set of microarray-generated gene expression data generally
take hours, depending on the amount of transcriptional change
in the experiment. Thirdly, a large number of toxicogenomic
studies have been conducted during the past two decades in
various R&D organizations, thereby generating large microarray-
based transcriptomic datasets. These datasets complemented by
public databases such as GEO, DrugMatrix and Array Express
have created easily accessible and analyzable databases, which
serve as a critical reference for new toxicogenomic data analytics
and interpretation. In contrast, there are no such reference
databases available for RNA-Seq data, which currently limits
toxicogenomic data interpretation. There is a clear need to
build these databases to better leverage microarray data to
facilitate RNA-Seq data interpretation and to enable the seamless
translation/comparison of RNA-Seq data and microarray data in
the context of toxicogenomic studies. Fourthly, data processing
and analyses are well-established with microarrays; in contrast,
as RNA-Seq is still new and evolving, there is not yet a
single standardized computational approach for performing an
RNA-Seq data analysis. However, with the recent advancement
in computing power, hardware and dedicated computational
workflows, this limitation will become rapidly obsolete. Finally,
cost has probably been an important consideration for not
switching from microarrays to RNA-Seq for toxicogenomic
studies. However, based on the current study, RNA-Seq data
generation was about 1.5 times less expensive than with
microarrays. Taken together, these findings suggest that RNA-Seq
should provide a comprehensive picture of protein-coding and
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non-coding DEGs as well as a more complete list of impacted
canonical pathways at a lesser cost than microarrays.

CONCLUSION

The present study indicates that RNA-Seq is a good alternative to
microarrays for toxicogenomic studies of rat liver. In addition of
detecting the majority of trancriptomic perturbations observed
with microarrays, RNA-Seq captured additional DEGs and
canonical pathways relevant to liver toxicity. The wider dynamic
range offered by RNA-Seq provides a higher level of sensitivity
and accuracy, as well as the ability to detect expression changes
in non-coding genes that may offer important new insights
into xenobiotic-induced liver toxicity. Given the critical role
of databases for the accurate interpretation of toxicogenomics
studies and the fact that institutional and public databases
are largely based on microarray data, generation of RNA-Seq-
based databases and better translation of microarray databases
for comparison to and interpretation of RNA-Seq data are
needed. However, the improved sensitivity, accuracy and ability
to evaluate non-coding genes of RNA-Seq may prove valuable for
studies designed to investigate mechanisms of toxicity.
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FIGURE S1 | (A) ANIT and (B) MDA administration resulted in bile duct epithelial
hyperplasia and hypertrophy with infiltration of neutrophils and mononuclear into

periportal spaces. Neutrophils are particularly prominent in MDA toxicity, with
many neutrophils in the bile duct lumina. The inset images demonstrate the
cytologic features of bile duct epithelial hypertrophy. (C) CCl4 administration
resulted in macrovesicular and microvesicular hepatocellular steatosis with a
centrilobular distribution. The inset image demonstrates a vacuolated hepatocyte.
(D) Diclofenac and (E) APAP, administration under the dosing regimen described
did not result in histopathological evidence of hepatocellular or bile duct injury. The
extent of vacuolization observed in some hepatocytes was not significantly
different from untreated control. Insets for (D,E) demonstrate individual
hepatocytes with cytoplasmic features not different from vehicle control. In each
panel, the scale bar represents 100 µm for the large figure and 10 µm for the
inset.

FIGURE S2 | (A,B) Fold change variation between RNA-Seq and Microarray for
low abundant genes of DCLF. (A) DEGs of DCLF: blue color bar denotes FC from
microarray and red color shows FC difference between RNA-Seq and microarray.
(B) Comparison of raw data of DCLF from RNA-Seq and Microarray. The red color
line shows the genes that are highly regulated in RNA-Seq compared to
microarray. The green line shows genes with comparable expression in both
platforms.

FIGURE S3 | Significantly modulated cis-genes of (A) ANIT (B) MDA (C) CCl4 and
(D) APAP. X-axis denotes cis-gene name and Y-axis is log2 transformed fold
change value.

TABLE S1 | Summary of RNA-Seq alignment statistics.

TABLE S2 | Summary of serum chemistries.

TABLE S3 | (A) ANIT impacted canonical pathways. The second column is
computed −log (p-value) for RNA-Seq and the third column is for microarray. The
RNA-Seq and microarray specific pathways are shown in italics. (B) APAP
impacted canonical pathways. The second column is computed −log (p-value) for
RNA-Seq and the third column is for microarray. The RNA-Seq and microarray
specific pathways are shown in italics. (C) MDA impacted canonical pathways.
The second column is computed −log (p-value) for RNA-Seq and the third column
is for microarray. The RNA-Seq and microarray specific pathways are shown in
italics. (D) CCl4 impacted canonical pathways. The second column is computed
−log (p-value) for RNA-Seq and the third column is for microarray. The RNA-Seq
and microarray specific pathways are shown in italics.

TABLE S4 | (A–C) Upstream regulator analysis using Ingenuity Pathway Analysis.
Top upstream regulators predicted based on the genes that were significantly
different for (A) ANIT, (B) MDA, and (C) CCl4 and MDA treatments in RNA-Seq
and microarray platforms are shown in column 1. The computed activation score
and p-value for microarray and RNA-Seq are given in columns 2–3 and 4–6,
respectively.

TABLE S5 | (A) Pathways impacted by RNA-Seq specific DEGs of ANIT and
APAP. Columns 1 and 2 corresponds to ANIT and third and fourth for APAP. (B)
Pathways impacted by RNA-Seq specific DEGs of CCl4 and MDA. Columns 1
and 2 corresponds to CCl4 and third and fourth for MDA.

FILE S1 | Summary of microarray specific DEGs.

FILE S2 | Summary of differentially regulated lncRNAs and cis-DEGs.

FILE S3 | Summary of differentially regulated miRNAs.

FILE S4 | Summary of differentially regulated pseudogenes.

FILE S5 | Top scoring upstream regulators for DEGs of (A) RNA-Seq and (B)
microarray.

FILE S6 | Summary of upstream regulators for RNA-Seq specific DEGs.
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