- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism) via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.
Introduction
Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions (Mertz, 1981; Santamaria and Sulsky, 2010). However, chronic environmental or occupational exposures to high levels of Mn are often neurotoxic, and a well-established risk factor for severe, atypical parkinsonian syndrome (manganism) in humans (Lucchini et al., 2009; Racette, 2014; Dorman, 2017). The exact cellular and molecular mechanisms that mediate the specific neurotoxic effects of Mn exposure to neuronal pathways associated with motor and cognitive functions are still not well understood. However, studies in humans, and in primate and rodent animal models suggest that chronic Mn exposure leads to its accumulation in the basal ganglia, pallidum, and striatum regions of the mammalian brain, with subsequent neurotoxic effects on the dopaminergic, GABAergic, and glutamatergic signaling pathways (Olanow, 2004; Fordahl et al., 2010; Peneder et al., 2011; Karki et al., 2013; Sidoryk-Wegrzynowicz and Aschner, 2013). Surprisingly, more recent studies have indicated that chronic exposures to Mn at levels that are below the known risk threshold for manganism, could still cause behavioral, cognitive, and motor dysfunctions in humans, non-human primates, and rodents (Schneider et al., 2006; Claus Henn et al., 2010; Al-Lozi et al., 2017). Yet, whether these effects are mediated by the same neuroanatomical regions and neural signaling pathways that induce manganism remains somewhat unresolved (Gwiazda et al., 2002; Khalid et al., 2011; Li et al., 2017).
Although much of the research focus on metal biology in general, and Mn neurotoxicity in particular, has been in mammalian models, emerging data indicate that invertebrate species such as the worm C. elegans and insects such as the fruit fly Drosophila melanogaster, the honey bee Apis mellifera, and others are also highly sensitive to Mn toxicity, with negative impacts on behavior and higher brain functions (Orgad et al., 1998; Ben-Shahar et al., 2004; Mogren and Trumble, 2010; Chen et al., 2015a,b; Horning et al., 2015; Søvik et al., 2015, 2017). Nonetheless, in spite of significant advances in understanding the direct impact of environmental Mn exposure on human health, its environmental impact on neural functions and behavior of other animals, especially invertebrates, remains mostly unexplored. Consequently, the long-term effects of environmental Mn on food webs via its impact on the physiology of plants and pollinators are likely to play an important role in the health of ecosystems (Gall et al., 2015).
Manganese and Insect Biology
Like vertebrates, all insects require Mn as a metal co-factor for the catalytic actions of diverse enzymes (Burnell, 1988; Schramm, 2012), including the universal mitochondrial Mn-superoxide dismutase (Holley et al., 2012). In addition to its more general role as an enzymatic metal co-factor, Mn also plays a direct role in various molecular and physiological processes specifically associated with insect development and behavior. One of the first studies to describe the effect of Mn on insect physiology was the description of increased melanism in moth larvae exposed to food laced with Mn (Harrison, 1928). Later studies of the chemical composition of the insect cuticle revealed that in some species, Mn and zinc (Zn) constitute up to 10% of the total dry weight of the cuticle (Eric Hillerton et al., 1984; Quicke et al., 1998; Morgan et al., 2003; Broomell et al., 2008). Studies of the process of cuticle sclerotization in these species revealed that Mn and Zn are required for the formation of mechanically hard cuticular regions in the ovipositor of females, the female organ used for egg laying, which helps them penetrate hard plant materials such as fruit skins, as well as for development of the abrasion-resistant cutting edge of chewing mandibles in insects that feed on hard-to-chew foods such as dry seeds (Eric Hillerton et al., 1984; Cribb et al., 2008; Andersen, 2010).
Although essential, chronic dietary exposure to Mn is often toxic and detrimental to the fitness of most arthropod species, including insects, via effects on embryonic development, feeding behaviors, reproduction, immunity, and general survivability (Olsén, 2011; Kula et al., 2014; Ternes et al., 2014; de Barros et al., 2017; Martinek et al., 2018). For example, the collembolan Folsomia candida is highly sensitive to Mn in its diet (Kuperman et al., 2004). However, other arthropods, such as the fly Megaselia scalaris, show few adverse effects of Mn exposure, even at levels as high as 2,600 mg Mn/kg (Sorensen et al., 2009). While the exact mechanisms that affect the sensitivity threshold of insects to Mn exposure are mostly unknown, studies suggest that some species can actively avoid the consumption of Mn-contaminated foods (Rokytova et al., 2004), while others evolved mechanisms for efficient excretion of dietary Mn and/or its sequestration in specific body parts (Kula et al., 2014; Martinek et al., 2017, 2018).
To date, the majority of formal environmental risk assessments of toxic exposures to metals such as Mn have been characterized in the contexts of inhaled particles under specific human occupational conditions and practices, or controlled laboratory inhalation exposure studies by using mammalian animal models (Tjalve and Henriksson, 1999; Dorman et al., 2002; Antonini et al., 2006; Elder et al., 2006; Erikson et al., 2007; Bailey et al., 2017; Bevan et al., 2017). However, emerging data indicate that metal exposure via drinking water and its accumulation in aquatic environments represents a considerable risk as well (Kavcar et al., 2009; Bouchard et al., 2011). Yet, the possible broader ecological neurotoxic impact of Mn exposure either via inhaled or oral pathways on animal physiology, behavior, and overall fitness, remains mostly unknown.
Evaluating true environmental risks for insects is further complicated by of the microscale features of their ecological niches, and their diverse feeding ecologies and complex life cycles. Nevertheless, although the direct sources of Mn accumulation in aquatic and terrestrial environments are often unknown, geographical proximity to anthropogenic activities associated with metal mining and processing, and the commercial use of Mn-containing fertilizers, is a well-established risk factor. Subsequently, because the salt forms of Mn, and similarly toxic metals, are often water soluble, they readily enter food chains via their accumulation in both marine and fresh water environments. Not surprisingly, several studies have found that aquatic insects exhibit rapid uptake and tissue accumulation of Mn and other divalent metal ions present in their environment (Poteat et al., 2012), which often have a direct negative effect on their fitness (Hernroth et al., 2004; Krång and Rosenqvist, 2006; Oweson et al., 2008). Although it is reasonable to assume that, due to its solubility, the toxic impact of Mn on insects and other invertebrates is primarily restricted to aquatic environments; data suggest that Mn exposure of insects with an aquatic larval stage could still carry fitness costs in the terrestrial adult phase. Furthermore, insects with a complex life cycle could bridge the negative impacts of metal exposure across the aquatic and terrestrial ecosystems and their associated food webs (Custer et al., 2008; Dittman and Buchwalter, 2010; Kraus et al., 2014).
Natural and anthropogenic sources of environmental Mn could also have direct negative impacts on terrestrial insects. Because many insects seem to have no aversive behavioral response to the presence of Mn and other metals in their food (Mogren and Trumble, 2010), one possible oral path to exposure is presented by the accumulation of specific metals in plants and their subsequent consumption by phytophagous insects (Devkota and Schmidt, 2000; Rodrigues et al., 2008). These exposure risks are further amplified in insect pollinators, which seem to be highly sensitive to metals (Ben-Shahar et al., 2004; Moroń et al., 2012; Vanbergen and Initiative, 2013; Søvik et al., 2015), most likely via the consumption of nectar and pollen by adult insects (Behmer et al., 2005), as well as throughout development in bee species that provision their larvae with pollen and nectar (Somerville and Nicol, 2002; Moroń et al., 2014). Because metals can accumulate in the nectar of flowering plants, insect pollinators seem to be especially sensitive to environmental metals, including Mn (Haarmann, 1998; Meindl and Ashman, 2013; Søvik et al., 2015). This particular concern is alarming because of the increase in global pollinator duress due to the negative pressure of various pathogens (Cox-Foster et al., 2007; Naug, 2014), parasites (Martin et al., 2012), and possibly insecticides (Woodcock et al., 2016; McArt et al., 2017), which together lead to major costs in pollinator fitness, which could carry major economic and ecological consequences (Khoury et al., 2011). Metal toxicity is further amplified in social pollinators, such as the honey bee, which consume nectar in the form of concentrated honey, which leads to a significant accumulation of contaminants such as heavy metals in both honey and bee tissues via prolonged exposure throughout development (Leita et al., 1996; Hladun et al., 2016; Herrero-Latorre et al., 2017; Klein et al., 2017).
Manganese and Insect Behavior
The recognition that excessive exposure to metals such as Mn could also have an impact on insect neurophysiology and behavior is not new. For example, some of the early laboratory studies of insect muscle physiology revealed that the membrane of these cells is highly permeable to Mn2+ and other divalent metal cations, possibly via the action of Ca2+ channels (Fukuda and Kawa, 1977). Specifically, several studies demonstrated that increased levels of Mn2+ in the extracellular bath significantly reduced the excitability and contractility of visceral muscles in diverse insect species (Deitmer, 1977; Cook and Mark Holman, 1979). However, whether under natural conditions, environmental exposure to Mn negatively affects the fitness of individual insects via its impact on muscle physiology and associated flight-related behaviors remains mostly unexplored.
Exposure to Mn can also have direct effects on the behavior of insects. Although some insect species seem to be able to detect toxic levels of Mn, and therefore behaviorally avoid the consumption of tainted foods, most insects seem to be unable to sense the presence of metals, and some increase the consumption of foods and water that contain harmful levels of some metals (Ben-Shahar et al., 2004; Mogren and Trumble, 2010; Søvik et al., 2015, 2017). Although the direct impact of Mn on insect behavior has been studied in just a few species, data suggest that Mn exposure affects general locomotion, as well as innate behaviors associated with feeding drive and food choices. One of the first clues that Mn might be involved in innate food choices in insects came from forward genetic screens for food choice behaviors in the fruit fly Drosophila melanogaster. One of the genes identified is the solute carrier Malvolio (Mvl), which contributes to the decision of flies to consume high sugar foods (Rodrigues et al., 1995). Subsequently, it was shown that Mvl is a divalent metal transporter homologous to the mammalian NRAMP transporters, and that supplementing standard fly food with Mn is sufficient to rescue abnormal food choices in adult flies (Orgad et al., 1998; D’Souza et al., 1999; Southon et al., 2008). Similarly, studies in the honey bee revealed that the brain expression of Mvl increases with the age-dependent division of labor exhibited by workers in honey bee colonies, and is associated with age-dependent decrease in the appetitive response threshold to sugar. Furthermore, feeding young bees with Mn resulted in a dose-dependent lowering of their response threshold to sugar, and a precocious transition from in-hive behaviors to foraging (Ben-Shahar et al., 2004). A follow up study revealed that Mn-treated bees were also poor foragers with shorter foraging career than untreated controls, further indicating that Mn exposure could lead to neurodevelopmental and cognitive deficits in pollinators (Søvik et al., 2015). Consequently, studies by us and others have shown that exposure of honey bees and other pollinators to Mn and other toxic metals could affect their behavioral responsiveness to sucrose, foraging activity, and possibly increase their foraging on metal-contaminated nectars due to abnormally low appetitive response thresholds (Ben-Shahar et al., 2004; Hladun et al., 2012, 2013, 2016; Meindl and Ashman, 2013; Søvik et al., 2015). Although the specific molecular and cellular mechanisms that mediate the effects of environmental exposure to Mn on the behavior of insect pollinators remain mostly understudied, we describe some recent insights into the cellular and molecular bases for its effects on the nervous systems of insects.
Cellular and Molecular Targets of Manganese in the Insect Nervous System
Although the specific molecular and cellular mechanisms by which Mn exposure leads to abnormal behaviors are not completely understood (Racette et al., 2012; Andruska and Racette, 2015), human pathology and laboratory studies in rodent models indicate that environmental or occupational exposure to high levels of Mn are often associated with the symptoms of an atypical parkinsonian syndrome (Chen et al., 2014; Andruska and Racette, 2015). As in the classic Parkinson’s Disease (PD), these studies clearly demonstrate that exposure to high levels of Mn leads to the specific loss of dopaminergic neurons and associated signaling pathways in the mammalian striatum (Chen et al., 2006, 2014, 2015a; Zhao et al., 2009; Andruska and Racette, 2015). However, why Mn is specifically neurotoxic to these neuronal populations is not yet understood. Previous studies indicated that Mn directly interacts with the neurotransmitter dopamine (Parenti et al., 1988; Prabhakaran et al., 2008), which may explain, at least in part, the specificity of Mn neurotoxicity. At the subcellular level, several studies have suggested that Mn could affect dopaminergic neurons by directly interacting with PD-related proteins such as α-Synuclein and PARK9 (Gitler et al., 2009). Other studies in mammalian models suggested that Mn exposure leads to dopaminergic cell death via the upregulation of mitochondrial-derived oxidative stress (Kitazawa et al., 2002; Erikson et al., 2004; Ávila et al., 2014). Recently, increased oxidative stress in response to Mn exposure has also been identified in the insect Drosophila melanogaster (Mohandas et al., 2017). However, why this mechanism would specifically affect dopaminergic neurons is not clear. Mn is also likely to affect the dopaminergic system indirectly via its impact on the production of reactive oxygen species (ROS) in non-neuronal microglia (Zhang et al., 2009). Other indirect mechanisms include the inhibition of glutamate uptake by astrocytes, which subsequently could lead to dopaminergic excitotoxicity (Karki et al., 2014; Streifel et al., 2014; Sidoryk-Wegrzynowicz and Aschner, 2015), or the possibility of Mn-dependent epigenetic modifications (Tarale et al., 2017). Overall, these findings suggest that chronic exposure to high levels of Mn disrupts dopaminergic signaling, possibly by modulating the homeostatic relationship between excitatory and inhibitory neurotransmission pathways (Sidoryk-Wegrzynowicz and Aschner, 2013).
Similarly to humans and rodents, studies in insect models such as the fruit fly and the honey bee have indicated that chronic exposure to Mn is toxic to flies in a dose-dependent manner (Mohandas et al., 2017). Furthermore, these studies demonstrated that Mn accumulates in brain tissues even at sub-lethal exposure levels (Ben-Shahar et al., 2004; Søvik et al., 2015, 2017). However, in contrast to the effects of exposure to high levels of Mn, chronic exposure to low levels are associated with a surprising increase in brain levels of dopamine in flies and bees, as well as a transcriptional upregulation of the rate-limiting enzymes in the biosynthesis pathways of dopamine (Søvik et al., 2015). A broader analysis of the brain neurogenomic response to chronic Mn exposure, at levels that are sufficient to induce precocious foraging in honey bees, revealed a unique transcriptional response that was different from that induced by other known pharmacological inducers of foraging behavior such as cGMP (Whitfield et al., 2006).
Furthermore, in vivo knockdown of the Mn2+transporter Malvolio specifically in dopaminergic neurons leads to dramatic changes in the neural architecture of the dopaminergic circuit, which can be rescued by feeding flies Mn2+ (Søvik et al., 2017). Because the effects of Mn on dopaminergic signaling seem to be conserved across insects and mammals, future genetic studies in Drosophila and other insect models will likely reveal important mechanistic insights into the impact of Mn exposure on neurobiological functions across animals, including humans. Together, the findings that Mn-induced changes in insect brain gene expression patterns represent a unique transcriptional network indicate that the effects of Mn on neuronal and behavioral phenotypes is not due to general neurotoxicity (Sinha et al., 2006).
Conclusion
Emerging data indicate that although high and low levels of chronic Mn exposure can lead to negative neurological and behavioral outcomes associated with dopaminergic functions, the cellular and molecular mechanisms that mediate their respective phenotypic outcomes are very different. Nonetheless, whether environmental exposure to Mn represents a broad and acute environmental risk for insects and related ecological networks remains mostly anecdotal. Yet, it is very unlikely that insects in affected habitats would not be negatively impacted by the presence of metals. Therefore, further studies of the impact of metals such as Mn on the behavior, physiology, and neural functions of insects would serve several important functions. First, although the specific molecular and cellular processes that are affected by the disruption of Mn homeostasis in the insect brain remain poorly understood, the apparent specific effects of both Mn depletion and saturation on dopaminergic signaling and its associated behavioral phenotypes suggest that this specific, highly conserved neuromodulatory network is key for understanding the role Mn is playing in regulating brain functions and behavior in health and disease in insects, with direct mechanistic implications for other animals, including humans. Therefore, insect models should be used to improve our general mechanistic understanding of the impact of Mn exposure on neural functions at the cellular and molecular levels. Second, understanding better the effects of Mn on insect behavior and physiology could be used for effective biomonitoring of Mn in affected habitats. Finally, studies of the biological impact of Mn exposure on insect behavior and physiology will help us understand better the broader ecological and environmental costs associated with anthropogenic environmental accumulation of metals, and their indirect impact on human society and health by negatively affecting insect pollinators and other important nodes of key food webs.
Author Contributions
The author confirms being the sole contributor of this work and approved it for publication.
Funding
Research in the Ben-Shahar laboratory is supported by NIH grants NS089834 and ES025991, and NSF grants 1545778 and 1707221 to YB-S.
Conflict of Interest Statement
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
Al-Lozi, A., Nielsen, S. S., Hershey, T., Birke, A., Checkoway, H., Criswell, S. R., et al. (2017). Cognitive control dysfunction in workers exposed to manganese-containing welding fume. Am. J. Ind. Med. 60, 181–188. doi: 10.1002/ajim.22675
Andersen, S. O. (2010). Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178. doi: 10.1016/j.ibmb.2009.10.007
Andruska, K. M., and Racette, B. A. (2015). Neuromythology of manganism. Curr. Epidemiol. Rep. 2, 143–148. doi: 10.1007/s40471-015-0040-x
Antonini, J. M., Santamaria, A. B., Jenkins, N. T., Albini, E., and Lucchini, R. (2006). Fate of manganese associated with the inhalation of welding fumes: potential neurological effects. Neurotoxicology 27, 304–310. doi: 10.1016/j.neuro.2005.09.001
Ávila, D., Puntel, R., Folmer, V., Rocha, J., Dos Santos, A., and Aschner, M.“Manganese neurotoxicity,” in Handbook of Neurotoxicity, ed. R. M. Kostrzewa (New York, NY: Springer), 843–864.
Bailey, L. A., Kerper, L. E., and Goodman, J. E. (2017). Derivation of an occupational exposure level for manganese in welding fumes. Neurotoxicology 64, 166–176. doi: 10.1016/j.neuro.2017.06.009
Behmer, S. T., Lloyd, C. M., Raubenheimer, D., Stewart-Clark, J., Knight, J., Leighton, R. S., et al. (2005). Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Funct. Ecol. 19, 55–66. doi: 10.1111/j.0269-8463.2005.00943.x
Ben-Shahar, Y., Dudek, N. L., and Robinson, G. E. (2004). Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J. Exp. Biol. 207(Pt 19), 3281–3288. doi: 10.1242/jeb.01151
Bevan, R., Ashdown, L., Mcgough, D., Huici-Montagud, A., and Levy, L. (2017). Setting evidence-based occupational exposure limits for manganese. Neurotoxicology 58, 238–248. doi: 10.1016/j.neuro.2016.08.005
Bouchard, M. F., Sauve, S., Barbeau, B., Legrand, M., Brodeur, M. E., Bouffard, T., et al. (2011). Intellectual impairment in school-age children exposed to manganese from drinking water. Environ. Health Perspect. 119, 138–143. doi: 10.1289/ehp.1002321
Broomell, C. C., Zok, F. W., and Waite, J. H. (2008). Role of transition metals in sclerotization of biological tissue. Acta Biomater. 4, 2045–2051. doi: 10.1016/j.actbio.2008.06.017
Burnell, J. N. (1988). “The biochemistry of manganese in plants,” in Manganese in Soils and Plants. Developments in Plant and Soil Sciences, Vol. 33, eds R. D. Graham, R. J. Hannam, and N. C. Uren (Dordrecht: Springer), 125–137.
Chen, M. K., Lee, J. S., Mcglothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., et al. (2006). Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology 27, 229–236. doi: 10.1016/j.neuro.2005.10.008
Chen, P., Chakraborty, S., Mukhopadhyay, S., Lee, E., Paoliello, M. M., Bowman, A. B., et al. (2015a). Manganese homeostasis in the nervous system. J. Neurochem. 134, 601–610. doi: 10.1111/jnc.13170
Chen, P., Chakraborty, S., Peres, T. V., Bowman, A. B., and Aschner, M. (2015b). Manganese-induced neurotoxicity: from C. elegans to humans. Toxicol. Res. 4, 191–202.
Chen, P., Parmalee, N., and Aschner, M. (2014). Genetic factors and manganese-induced neurotoxicity. Front. Genet. 5:265. doi: 10.3389/fgene.2014.00265
Claus Henn, B., Ettinger, A. S., Schwartz, J., Téllez-Rojo, M. M., Lamadrid-Figueroa, H., Hernández-Avila, M., et al. (2010). Early postnatal blood manganese levels and children’s neurodevelopment. Epidemiology 21, 433–439. doi: 10.1097/EDE.0b013e3181df8e52
Cook, B. J., and Mark Holman, G. (1979). The pharmacology of insect visceral muscle. Comp. Biochem. Physiol. C Comp. Pharmacol. 64, 183–190. doi: 10.1016/0306-4492(79)90047-9
Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., et al. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287. doi: 10.1126/science.1146498
Cribb, B. W., Stewart, A., Huang, H., Truss, R., Noller, B., Rasch, R., et al. (2008). Insect mandibles–comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95, 17–23. doi: 10.1007/s00114-007-0288-1
Custer, C. M., Yang, C., Crock, J. G., Shearn-Bochsler, V., Smith, K. S., and Hageman, P. L. (2008). Exposure of insects and insectivorous birds to metals and other elements from abandoned mine tailings in three summit county drainages, Colorado. Environ. Monit. Assess. 153:161. doi: 10.1007/s10661-008-0346-y
de Barros, C. M., Da Fonte Carvalho Martins, D., Mello, A. D. A., Salgado, L. T., and Allodi, S. (2017). Nitric-oxide generation induced by metals plays a role in their accumulation by Phallusia nigra hemocytes. Mar. Pollut. Bull. 124, 441–448. doi: 10.1016/j.marpolbul.2017.06.043
Deitmer, J. W. (1977). Effects of cobalt and manganese on the calcium-action potentials in larval insect muscle fibres (Ephestia kühniella). Comp. Biochem. Physiol. A Physiol. 58, 1–4. doi: 10.1016/0300-9629(77)90002-0
Devkota, B., and Schmidt, G. H. (2000). Accumulation of heavy metals in food plants and grasshoppers from the taigetos mountains, Greece. Agric. Ecosyst. Environ. 78, 85–91. doi: 10.1016/S0167-8809(99)00110-3
Dittman, E. K., and Buchwalter, D. B. (2010). Manganese bioconcentration in aquatic insects: Mn oxide coatings, molting loss, and Mn(II) thiol scavenging. Environ. Sci. Technol. 44, 9182–9188. doi: 10.1021/es1022043
Dorman, D. C. (2017). “Chapter six - manganese neurodegeneration,” in Advances in Neurotoxicology, eds M. Aschner and L. G. Costa (Cambridge, MA: Academic Press), 157–183.
Dorman, D. C., Brenneman, K. A., Mcelveen, A. M., Lynch, S. E., Roberts, K. C., and Wong, B. A. (2002). Olfactory transport: a direct route of delivery of inhaled manganese phosphate to the rat brain. J. Toxicol. Environ. Health A 65, 1493–1511. doi: 10.1080/00984100290071630
D’Souza, J., Cheah, P. Y., Gros, P., Chia, W., and Rodrigues, V. (1999). Functional complementation of the malvolio mutation in the taste pathway of Drosophila melanogaster by the human natural resistance-associated macrophage protein 1 (Nramp-1). J. Exp. Biol. 202, 1909–1915.
Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., et al. (2006). Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178. doi: 10.1289/ehp.9030
Eric Hillerton, J., Robertson, B., and Vincent, J. F. V. (1984). The presence of zinc or manganese as the predominant metal in the mandibles of adult, stored-product beetles. J. Stored Prod. Res. 20, 133–137. doi: 10.1016/0022-474X(84)90020-1
Erikson, K. M., Dobson, A. W., Dorman, D. C., and Aschner, M. (2004). Manganese exposure and induced oxidative stress in the rat brain. Sci. Total Environ. 33, 409–416. doi: 10.1016/j.scitotenv.2004.04.044
Erikson, K. M., Dorman, D. C., Lash, L. H., and Aschner, M. (2007). Manganese inhalation by Rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicol. Sci. 97, 459–466. doi: 10.1093/toxsci/kfm044
Fordahl, S. C., Anderson, J. G., Cooney, P. T., Weaver, T. L., Colyer, C. L., and Erikson, K. M. (2010). Manganese exposure inhibits the clearance of extracellular GABA and influences taurine homeostasis in the striatum of developing rats. Neurotoxicology 31, 639–646. doi: 10.1016/j.neuro.2010.09.002
Fukuda, J., and Kawa, K. (1977). Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science 196, 309–311. doi: 10.1126/science.847472
Gall, J. E., Boyd, R. S., and Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environ. Monit. Assess 187:201. doi: 10.1007/s10661-015-4436-3
Gitler, A. D., Chesi, A., Geddie, M. L., Strathearn, K. E., Hamamichi, S., Hill, K. J., et al. (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315. doi: 10.1038/ng.300
Gwiazda, R. H., Lee, D., Sheridan, J., and Smith, D. R. (2002). Low cumulative manganese exposure affects striatal GABA but not dopamine. Neurotoxicology 23, 69–76. doi: 10.1016/S0161-813X(02)00002-5
Haarmann, T. K. (1998). Honey bees (Hymenoptera: Apidae) as indicators of radionuclide contamination: investigating contaminant redistribution using concentrations in water, flowers, and honey bees. J. Econ. Entomol. 91, 1072–1077. doi: 10.1093/jee/91.5.1072
Harrison, J. W. H. (1928). A further induction of melanism in the lepidopterous insect, Selenia bilunaria esp., and its inheritance. Proc. R. Soc. Lond. B 102, 338–347. doi: 10.1098/rspb.1928.0009
Hernroth, B., Baden, S. P., Holm, K., André, T., and Söderhäll, I. (2004). Manganese induced immune suppression of the lobster, Nephrops norvegicus. Aquat. Toxicol. 70, 223–231. doi: 10.1016/j.aquatox.2004.09.004
Herrero-Latorre, C., Barciela-García, J., García-Martín, S., and Peña-Crecente, R. M. (2017). The use of honeybees and honey as environmental bioindicators for metals and radionuclides: a review. Environ. Rev. 25, 463–480. doi: 10.1139/er-2017-0029
Hladun, K. R., Di, N., Liu, T. X., and Trumble, J. T. (2016). Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.). Environ. Toxicol. Chem. 35, 322–329. doi: 10.1002/etc.3273
Hladun, K. R., Parker, D. R., Tran, K. D., and Trumble, J. T. (2013). Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ. Pollut. 172, 70–75. doi: 10.1016/j.envpol.2012.08.009
Hladun, K. R., Smith, B. H., Mustard, J. A., Morton, R. R., and Trumble, J. T. (2012). Selenium toxicity to honey bee (Apis mellifera L.) pollinators: effects on behaviors and survival. PLoS One 7:e34137. doi: 10.1371/journal.pone.0034137
Holley, A. K., Dhar, S. K., Xu, Y., and St Clair, D. K. (2012). Manganese superoxide dismutase: beyond life and death. Amino Acids 42, 139–158. doi: 10.1007/s00726-010-0600-9
Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., and Aschner, M. (2015). Manganese is essential for neuronal health. Annu. Rev. Nutr. 35, 71–108. doi: 10.1146/annurev-nutr-071714-034419
Karki, P., Lee, E., and Aschner, M. (2013). Manganese neurotoxicity: a focus on glutamate transporters. Ann. Occup. Environ. Med. 25:4. doi: 10.1186/2052-4374-25-4
Karki, P., Smith, K., Johnson, J. Jr., Aschner, M., and Lee, E. (2014). Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem. Int. 88, 53–59. doi: 10.1016/j.neuint.2014.08.002
Kavcar, P., Sofuoglu, A., and Sofuoglu, S. C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health 212, 216–227. doi: 10.1016/j.ijheh.2008.05.002
Khalid, M., Aoun, R. A., and Mathews, T. A. (2011). Altered striatal dopamine release following a sub-acute exposure to manganese. J. Neurosci. Methods 202, 182–191. doi: 10.1016/j.jneumeth.2011.06.019
Khoury, D. S., Myerscough, M. R., and Barron, A. B. (2011). A quantitative model of honey bee colony population dynamics. PLoS One 6:e18491. doi: 10.1371/journal.pone.0018491
Kitazawa, M., Wagner, J. R., Kirby, M. L., Anantharam, V., and Kanthasamy, A. G. (2002). Oxidative stress and mitochondrial-mediated apoptosis in dopaminergic cells exposed to methylcyclopentadienyl manganese tricarbonyl. J. Pharmacol. Exp. Ther. 302, 26–35. doi: 10.1124/jpet.302.1.26
Klein, S., Cabirol, A., Devaud, J.-M., Barron, A. B., and Lihoreau, M. (2017). Why bees are so vulnerable to environmental stressors. Trends Ecol. Evol. 32, 268–278. doi: 10.1016/j.tree.2016.12.009
Krång, A.-S., and Rosenqvist, G. (2006). Effects of manganese on chemically induced food search behaviour of the Norway lobster, Nephrops norvegicus (L.). Aquat. Toxicol. 78, 284–291. doi: 10.1016/j.aquatox.2006.04.001
Kraus, J. M., Walters, D. M., Wesner, J. S., Stricker, C. A., Schmidt, T. S., and Zuellig, R. E. (2014). Metamorphosis alters contaminants and chemical tracers in insects: implications for food webs. Environ. Sci. Technol. 48, 10957–10965. doi: 10.1021/es502970b
Kula, E., Martinek, P., Chromcová, L., and Hedbávný, J. (2014). Development of Lymantria dispar affected by manganese in food. Environ. Sci. Pollut. Res. 21, 11987–11997. doi: 10.1007/s11356-014-3075-5
Kuperman, R. G., Checkai, R. T., Simini, M., and Phillips, C. T. (2004). Manganese toxicity in soil for Eisenia fetida, Enchytraeus crypticus (Oligochaeta), and Folsomia candida (Collembola). Ecotoxicol. Environ. Saf. 57, 48–53. doi: 10.1016/j.ecoenv.2003.08.010
Leita, L., Muhlbachova, G., Cesco, S., Barbattini, R., and Mondini, C. (1996). Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environ. Monit. Assess. 43, 1–9. doi: 10.1007/BF00399566
Li, S.-J., Ou, C.-Y., He, S.-N., Huang, X.-W., Luo, H.-L., Meng, H.-Y., et al. (2017). Sodium p-aminosalicylic acid reverses sub-chronic manganese-induced impairments of spatial learning and memory abilities in rats, but fails to restore γ-aminobutyric acid levels. Int. J. Environ. Res. Public Health 14:E400. doi: 10.3390/ijerph14040400
Lucchini, R. G., Martin, C. J., and Doney, B. C. (2009). From manganism to manganese-induced parkinsonism: a conceptual model based on the evolution of exposure. Neuromolecular Med. 11, 311–321. doi: 10.1007/s12017-009-8108-8
Martin, S. J., Highfield, A. C., Brettell, L., Villalobos, E. M., Budge, G. E., Powell, M., et al. (2012). Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. doi: 10.1126/science.1220941
Martinek, P., Kula, E., and Hedbávný, J. (2017). Reaction of Leaf Weevil Phyllobius arborator (Coleoptera: Curculionidae) to manganese content in diet. Environ. Entomol. 46:nvw144. doi: 10.1093/ee/nvw144
Martinek, P., Kula, E., and Hedbávný, J. (2018). Reactions of Melolontha hippocastani adults to high manganese content in food. Ecotoxicol. Environ. Saf. 148, 37–43. doi: 10.1016/j.ecoenv.2017.10.020
McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L., and Boroczky, K. (2017). High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7:46554. doi: 10.1038/srep46554
Meindl, G. A., and Ashman, T.-L. (2013). The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environ. Pollut. 177, 78–81. doi: 10.1016/j.envpol.2013.02.017
Mertz, W. (1981). The essential trace elements. Science 213, 1332–1338. doi: 10.1126/science.7022654
Mogren, C. L., and Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomol. Exp. Appl. 135, 1–17. doi: 10.1111/j.1570-7458.2010.00967.x
Mohandas, G., Rao, S. V., Muralidhara, and Rajini, P. S. (2017). Whey protein isolate enrichment attenuates manganese-induced oxidative stress and neurotoxicity in Drosophila melanogaster: relevance to Parkinson’s disease. Biomed. Pharmacother. 95, 1596–1606. doi: 10.1016/j.biopha.2017.09.099
Morgan, T. D., Baker, P., Kramer, K. J., Basibuyuk, H. H., and Quicke, D. L. J. (2003). Metals in mandibles of stored product insects: do zinc and manganese enhance the ability of larvae to infest seeds? J. Stored Prod. Res. 39, 65–75. doi: 10.1016/S0022-474X(02)00019-X
Moroń, D., Grześ, I. M., Skórka, P., Szentgyörgyi, H., Laskowski, R., Potts, S. G., et al. (2012). Abundance and diversity of wild bees along gradients of heavy metal pollution. J. Appl. Ecol. 49, 118–125. doi: 10.1111/j.1365-2664.2011.02079.x
Moroń, D., Szentgyörgyi, H., Skórka, P., Potts, S. G., and Woyciechowski, M. (2014). Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conserv. Divers. 7, 113–121. doi: 10.1111/icad.12040
Naug, D. (2014). Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol. Lett. 10:20140731. doi: 10.1098/rsbl.2014.0731
Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Ann. N. Y. Acad. Sci. 1012, 209–223. doi: 10.1196/annals.1306.018
Olsén, K. H. (2011). “Effects of pollutants on olfactory mediated behaviors in fish and crustaceans,” in Chemical Communication in Crustaceans, eds T. Breithaupt and M. Thiel (New York, NY: Springer), 507–529.
Orgad, S., Nelson, H., Segal, D., and Nelson, N. (1998). Metal ions suppress the abnormal taste behavior of the Drosophila mutant malvolio. J. Exp. Biol. 201(Pt 1), 115–120.
Oweson, C., Sköld, H., Pinsino, A., Matranga, V., and Hernroth, B. (2008). Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus). Aquat. Toxicol. 89, 75–81. doi: 10.1016/j.aquatox.2008.05.016
Parenti, M., Rusconi, L., Cappabianca, V., Parati, E. A., and Groppetti, A. (1988). Role of dopamine in manganese neurotoxicity. Brain Res. 473, 236–240. doi: 10.1016/0006-8993(88)90852-9
Peneder, T. M., Scholze, P., Berger, M. L., Reither, H., Heinze, G., Bertl, J., et al. (2011). Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience 180, 280–292. doi: 10.1016/j.neuroscience.2011.02.017
Poteat, M. D., Díaz-Jaramillo, M., and Buchwalter, D. B. (2012). Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna. J. Exp. Biol. 215, 1575–1583. doi: 10.1242/jeb.063412
Prabhakaran, K., Ghosh, D., Chapman, G. D., and Gunasekar, P. G. (2008). Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res. Bull. 76, 361–367. doi: 10.1016/j.brainresbull.2008.03.004
Quicke, D. L. J., Wyeth, P., Fawke, J. D., Basibuyuk, H. H., and Vincent, J. F. V. (1998). Manganese and zinc in the ovipositors and mandibles of hymenopterous insects. Zool. J. Linn. Soc. 124, 387–396. doi: 10.1111/j.1096-3642.1998.tb00583.x
Racette, B. A. (2014). Manganism in the 21st century: the Hanninen lecture. Neurotoxicology 45, 201–207. doi: 10.1016/j.neuro.2013.09.007
Racette, B. A., Aschner, M., Guilarte, T. R., Dydak, U., Criswell, S. R., and Zheng, W. (2012). Pathophysiology of manganese-associated neurotoxicity. Neurotoxicology 33, 881–886. doi: 10.1016/j.neuro.2011.12.010
Rodrigues, A., Cunha, L., Amaral, A., Medeiros, J., and Garcia, P. (2008). Bioavailability of heavy metals and their effects on the midgut cells of a phytopaghous insect inhabiting volcanic environments. Sci. Total Environ. 406, 116–122. doi: 10.1016/j.scitotenv.2008.07.069
Rodrigues, V., Cheah, P. Y., Ray, K., and Chia, W. (1995). Malvolio, the Drosophila homologue of mouse NRAMP-1 (Bcg), is expressed in macrophages and in the nervous system and is required for normal taste behaviour. EMBO J. 14, 3007–3020.
Rokytova, L., Kula, E., Kodarova, L., and Peslova, A. (2004). Feeding of the willow leaf beetle Lochmaea capreae L. (Coleoptera, Chrysomelidae) on leaves of birch (Betula pendula Roth) contaminated by heavy metals. J. For. Sci. 50, 109–117. doi: 10.17221/4606-JFS
Santamaria, A. B., and Sulsky, S. I. (2010). Risk assessment of an essential element: manganese. J. Toxicol. Environ. Health A 73, 128–155. doi: 10.1080/15287390903337118
Schneider, J. S., Decamp, E., Koser, A. J., Fritz, S., Gonczi, H., Syversen, T., et al. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res. 1118, 222–231. doi: 10.1016/j.brainres.2006.08.054
Sidoryk-Wegrzynowicz, M., and Aschner, M. (2013). Manganese toxicity in the central nervous system: the glutamine/glutamate-gamma-aminobutyric acid cycle. J. Intern. Med. 273, 466–477. doi: 10.1111/joim.12040
Sidoryk-Wegrzynowicz, M., and Aschner, M. (2015). “Manganese toxicity and the glutamine–glutamate cycle,” in Glutamine in Clinical Nutrition, eds R. Rajendram, V. R. Preedy, and V. B. Patel (New York, NY: Springer), 401–413.
Sinha, S., Ling, X., Whitfield, C. W., Zhai, C., and Robinson, G. E. (2006). Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. Proc. Natl. Acad. Sci. U.S.A. 103, 16352–16357. doi: 10.1073/pnas.0607448103
Somerville, D., and Nicol, H. (2002). Mineral content of honeybee-collected pollen from southern New South Wales. Aust. J. Exp. Agric. 42, 1131–1136. doi: 10.1071/EA01086
Sorensen, M. A., Chase-Dunn, C. M., and Trumble, J. T. (2009). Chronic exposure to elevated levels of manganese and nickel is not harmful to a cosmopolitan detritivore, Megaselia scalaris (Diptera: Phoridae). Insect Sci. 16, 73–79. doi: 10.1111/j.1744-7917.2009.00256.x
Southon, A., Farlow, A., Norgate, M., Burke, R., and Camakaris, J. (2008). Malvolio is a copper transporter in Drosophila melanogaster. J. Exp. Biol. 211, 709–716. doi: 10.1242/jeb.014159
Søvik, E., Lamora, A., Seehra, G., Barron, A. B., Duncan, J. G., and Ben-Shahar, Y. (2017). Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions. Genes Brain Behav. 16, 506–514. doi: 10.1111/gbb.12375
Søvik, E., Perry, C. J., Lamora, A., Barron, A. B., and Ben-Shahar, Y. (2015). Negative impact of manganese on honeybee foraging. Biol. Lett. 11:20140989. doi: 10.1098/rsbl.2014.0989
Streifel, K. M., Gonzales, A. L., De Miranda, B., Mouneimne, R., Earley, S., and Tjalkens, R. (2014). Dopaminergic neurotoxicants cause biphasic inhibition of purinergic calcium signaling in astrocytes. PLoS One 9:e110996. doi: 10.1371/journal.pone.0110996
Tarale, P., Sivanesan, S., Daiwile, A. P., Stöger, R., Bafana, A., Naoghare, P. K., et al. (2017). Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson’s disease-associated genes. Arch. Toxicol. 91, 2629–2641. doi: 10.1007/s00204-016-1899-0
Ternes, A. P., Zemolin, A. P., Da Cruz, L. C., Da Silva, G. F., Saidelles, A. P., De Paula, M. T., et al. (2014). Drosophila melanogaster - an embryonic model for studying behavioral and biochemical effects of manganese exposure. EXCLI J. 13, 1239–1253.
Tjalve, H., and Henriksson, J. (1999). Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20, 181–195.
Vanbergen, A. J., and Initiative, T. I. P. (2013). Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11:251–259. doi: 10.1890/120126
Whitfield, C. W., Ben-Shahar, Y., Brillet, C., Leoncini, I., Crauser, D., Leconte, Y., et al. (2006). Genomic dissection of behavioral maturation in the honey bee. Proc. Natl. Acad. Sci. U.S.A. 103, 16068–16075. doi: 10.1073/pnas.0606909103
Woodcock, B. A., Heard, M. S., Jitlal, M. S., Rundlöf, M., Bullock, J. M., Shore, R. F., et al. (2016). Replication, effect sizes and identifying the biological impacts of pesticides on bees under field conditions. J. Appl. Ecol. 53, 1358–1362. doi: 10.1111/1365-2664.12676
Zhang, P., Wong, T. A., Lokuta, K. M., Turner, D. E., Vujisic, K., and Liu, B. (2009). Microglia enhance manganese chloride-induced dopaminergic neurodegeneration: role of free radical generation. Exp. Neurol. 217, 219–230. doi: 10.1016/j.expneurol.2009.02.013
Keywords: manganese, manganism, dopamine, Drosophila melanogaster, Apis mellifera, insects, arthropoda
Citation: Ben-Shahar Y (2018) The Impact of Environmental Mn Exposure on Insect Biology. Front. Genet. 9:70. doi: 10.3389/fgene.2018.00070
Received: 08 December 2017; Accepted: 16 February 2018;
Published: 01 March 2018.
Edited by:
David W. Killilea, Children’s Hospital Oakland Research Institute, United StatesReviewed by:
Suzanne Angeli, Buck Institute for Research on Aging, United StatesAntonio Meireles-Filho, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Copyright © 2018 Ben-Shahar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Yehuda Ben-Shahar, YmVuc2hhaGFyeUB3dXN0bC5lZHU=