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Recently, human semen was shown to contain cell-free nucleic acids, such as DNA,

long single stranded RNA, and small RNAs–miRNA and piRNA. The RNAs have been

suggested to have potential biological roles as communication molecules between cells

and in the temporal and spatial regulation of gene expression in the male reproductive

system. Here we demonstrate that human seminal plasma contains a variety of cell-free

dsRNAs, describe a robust method to isolate this type of nucleic acid in preparative

amounts, and discuss the potential biological roles of these molecules in inheritance.

dsRNA plays a role in a variety of biological processes, including gene regulation, is

extremely stable and can gain access to cells from the extracellular medium. We suggest

that one of the possible functions of dsRNA in human seminal plasma may be to

influence human oocytes and therefore, influence the offspring. It also remains possible

that these dsRNAs might have potential use as biomarkers for the study of human

physiopathological conditions and genetic variation.

Keywords: double stranded RNA, human seminal plasma, phenotype of offspring, telegony, genetic molecular

markers

Semen, also called seminal liquid, is a fluid that is emitted from the male reproductive tract and
contains sperm cells capable of fertilizing the eggs of the female. The major component of semen is
seminal plasma, which helps to maintain the sperm cell viability. Sperm cells make up only a small
portion of the whole semen, from 1 to 5% of the total volume (Owen and Katz, 2005).

The seminal plasma is a mixture of components produced by several glands. These components
are incompletely mixed during ejaculation; hence, the initial ejaculate is not an entirely
homogeneous mixture. The chemical composition of human seminal plasma has been the subject
of many studies. Recently, cell-free nucleic acids, such as DNA, long single stranded RNA, and
small RNAs–miRNA and piRNA, were identified in human seminal plasma (Huang et al., 2009; Li
et al., 2009, 2012; Hu et al., 2014). The biological role of cell-free seminal DNA and RNA remains
unknown. One possible function of the cell-free RNAs in seminal plasma may be to contribute
regulatory information between cells (possibly including sperm cells) and contribute to changes
in gene expression. The RNA may provide key temporal and spatial regulation of gene expression
in the testis and epididymis required for normal spermatogenesis and sperm maturation (Li et al.,
2012).

Nucleic acids in human seminal plasma may also influence human oocytes. Genetic material
present in seminal plasma might contribute to phenotypic changes in the developing zygote, and
therefore, influence the offspring. This would constitute an additional level of gene regulation
and hereditary information and represents an intriguing idea. Nucleic acids that are stable for a
relatively long time, are resistant to the relatively aggressive environment of the female reproductive
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tract, and can penetrate into cells from the extracellular medium
could contribute to novel mechanisms of inheritance. Moreover,
penetration of these molecules into the precursors of mature
oocytes, i.e., into the cells of the female germ line located in
the ovary, could allow offspring to inherit the characteristics of
a previous mating of the female parent (telegony) (Crean et al.,
2014).

A likely candidate for the role of such molecules is double
stranded RNA (dsRNA). dsRNA is involved in numerous
biological processes and at least three different pathways
can respond to dsRNA in mammals, including sequence-
independent interferon response, editing by adenosine
deaminases, and sequence-specific RNA interference (RNAi)
(Chalupnikova et al., 2013). Mechanisms of RNAi, including
sequence-specific degradation of RNAs complementary to the
sequences of the dsRNA, translation inhibition, and RNAi-
mediated methylation of genomic DNA altering the pattern of
gene activities would likely be strong candidates for regulatory
molecules in seminal fluid (for reviews, see Carthew and
Sontheimer, 2009; Ghildiyal and Zamore, 2009). These RNAi
mechanisms can contribute to epigenetic inheritance influencing
the phenotype of future offspring (Waldron, 2016). Notably,
RNAi pathways are known to be active, for example, in mouse
oocytes (Wianny and Zernicka-Goetz, 2000; Grabarek et al.,
2002; Svoboda, 2004; Nejepinska et al., 2012), in human oocytes
(Homer et al., 2005), and in other human cells (Kawasaki and
Taira, 2004; Gantier and Williams, 2007). dsRNA is extremely
stable and is known to regulate gene expression in nematodes
and insects and has been introduced through feeding of dsRNA
or the microinjection of dsRNA solution under the cuticle
(Kaletta and Hengartner, 2006; Huvenne and Smagghe, 2010).
Semen dsRNA could be stable in the female reproductive tract
for a relatively long time and gain access to the female germ cells
and/or precursors thereby influencing the phenotype of future
offspring. However, to date it is not known whether dsRNA
is present in seminal fluid and whether it can gain entry into
oocytes. Studies on the effect of dsRNAmolecules onmammalian
oocytes, including human oocytes, have been carried out using
in vitro experiments based on microinjection or electroporation
techniques. However, several lines of evidence from a variety of
studies suggest that dsRNA can gain entry into cells (for reviews,
see Bumcrot et al., 2006; Czech et al., 2011).

Little has been done to identify human seminal plasma cell-
free dsRNA. In this paper, we describe a robust method to
isolate this type of nucleic acid in preparative amounts and
demonstrate that human seminal plasma contains a variety of
extracellular dsRNAs. The described method will facilitate the
analysis of the biological role of these molecules. Moreover,
future comparative deep sequencing of seminal plasma dsRNA
of different individuals will enable searching for new potentially
informative genetic markers that could reveal the difference
between human male individuals due to differences in the
patterns of genome transcription and dsRNA formation in tissues
related to seminal plasma production.

Semen samples were obtained by masturbation from three 30-
year-old healthy men. All donors were fertile according to the
data given in the sperm donor questionnaire. Donors abstained

from sexual activity for >72 h before semen donation. Complete
ejaculate samples were collected in sterile containers. This study
was reviewed and approved by the Ethics committee of Vavilov
Institute of General Genetics, Russian Academy of Sciences. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

The extracellular dsRNA was enriched and purified from the
semen using fractionation by equilibrium centrifugation in a
CsCl-ethidium bromide density gradient. A similar approach has
been previously used in our laboratory for the purification of
dsRNA of a Drosophila reovirus-like virus with a segmented
genome (Pasyukova and Mukha, 2009).

To remove the cells and cell debris from the semen, we
used two different approaches. In the first approach, CsCl was
added to the freshly collected semen to give a saturated salt
solution. Under these conditions, proteins were denatured and an
amorphousmass was generated that contains all cellular material.
Centrifugation at 4◦C and 16,000 g for 10min was performed
to remove the cells and cellular debris. The supernatant was
carefully collected for subsequent assays. In the second approach,
the freshly collected semen was twice centrifuged at 4◦C at
1,600 g for 10min and then 16,000 g for 10min, respectively, to
remove cells and cell debris. The supernatant (seminal plasma)
was carefully collected, and CsCl was added to saturation. The
nucleic acids isolated appear identical from the two methods.

Samples saturated with CsCl were diluted to a refractive index
1.3865 and ethidium bromide added to 0.8 mg/ml, similar to
method used for purification of closed circular DNA (Sambrook
et al., 1989), and were centrifuged at 45,000 rpm for 48 h
(Beckman Spinco L2-65B, Ti50 rotor). After centrifugation,
two fractions corresponding to linear DNA generating a band
in the middle of the tube) and a pellet (on the bottom of
the tube) were observed under UV light (365 nanometers).
A broad diffuse fraction of nucleic acid was also observed
between the bandingDNA and pellet. A schematic representation
of the detected fractions is shown in Figure 1A. The diffuse
fraction (“Analysed fraction” in Figure 1A) was collected, CsCl
and ethidium bromide were removed using standard protocols,
nucleic acids were ethanol precipitated, and dissolved in nuclease
free water.

Electrophoretic separation of semen nucleic acid from
different donors on a 10% polyacrylamide gel looked the same
among the samples (Figure 1B illustrates this for two different
donors, lanes 1–2). Nucleic acids observed included material
near the top of the gel >1,000 bases, and more than a dozen
distinct bands over a background smear ranging from ∼100 bp
and smaller.

We next analyzed the nuclease sensitivity of these nucleic
acids using DNase I (Thermo Fisher Scientific, USA) and
RNase One Ribonuclease (Promega, USA) according to the
manufacturers’ instructions to determine the nature of the
nucleic acids. Electrophoretic separation of the semen plasma
nucleic acids after DNase I treatment is shown in Figure 1B,
lanes 3 and 4 (two different donors), and after treatment by both
DNase I and RNase One Ribonuclease in Figure 1B, lanes 5 and 6
(two different donors). The fraction located near the top of the gel
(Figure 1B, lanes 1 and 2) was digested with DNase I treatment,
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FIGURE 1 | Double stranded RNA from human seminal plasma. (A) Schematic representation of UV-visible fractions after equilibrium centrifugation of the human

seminal plasma from CsCl-ethidium bromide density gradients. (B) Electrophoretic separation on a 10% polyacrylamide gel of the isolated diffused fraction of nucleic

acids collected after centrifugation (“Analysed fraction” in A). Nucleic acids isolated from seminal plasma of two different individuals are shown in lanes with even and

odd numbers, respectively. 1, 2—Isolated material; 3, 4—Material treated with DNase I; 5, 6—Material treated with DNase I and RNase One Ribonuclease. The

fraction located near the top of the gel was digested with DNase I treatment. However, the distinct bands spread over the region from ∼100 bp to the bottom of the

gel were resistant to both enzymatic treatments. (C) Enzymatic treatments of CsCl dsRNA fractions. Each sample was spiked with an in vitro synthesized ssRNA, see

arrow, as an internal control, treated with different nucleases, and then separated by electrophoresis and visualized. 1, DNase I treatment. 2, RNase One Ribonuclease

treatment. 3, RNase R treatment. Both RNase One and RNase R ribonucleases digest the spiked in ssRNA but do not act on the nucleic acid, dsRNA, from the

seminal fluid. (D) Electrophoretic separation of seminal plasma nucleic acids 1 without and 2 after treatment with RiboShredder RNase Blend. All RNAs in the sample

were completely degraded. M1 and M2—ladders (dsRNA Ladder and 50 bp DNA Ladder, respectively).

indicating that this fraction is represented by DNA molecules.
However, the distinct bands spread over the region from ∼100
bp to the bottom of the gel were resistant to both enzymatic

treatments. These data suggest that these molecules are not
DNA or single-stranded RNA and might correspond to dsRNA
molecules. To further evaluate the nature of the nucleic acid,
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a ssRNA (250 b) was synthesized using the Riboprobe in vitro
Transcription System (Promega, USA), mixed with the material
obtained after DNase I treatment of the semen plasma nucleic
acids, and the mixture was treated with RNase One Ribonuclease
(Promega, USA) and RNase R ribonuclease (Epicentre, USA).
Both RNase One and RNase R ribonucleases digested the
added ssRNA but did not act on the material isolated from
the seminal plasma (Figure 1C). Overall, this further suggests
that the seminal plasma material consists of dsRNA molecules
with 3′ overhangs shorter than seven nucleotides as RNase One
endoribonuclease digests all types of ssRNAs including circular
RNAs and the RNase R exoribonuclease digests all linear RNAs
except for double-stranded RNAs with 3′ overhangs shorter than
seven nucleotides (http://www.epibio.com/enzymes/nucleases-
glycosylases-dna-binding-proteins/rna-exonucleases/rnase-r?
details). Finally, RNA from the seminal plasma was treated by
RiboShredder RNase Blend (Epicentre, USA) (an RNase blend
that degrades both ssRNA and dsRNA, http://www.epibio.com/
docs/default-source/protocols/riboshredder-rnase-blend.pdf;
http://www.epibio.com/docs/default-source/forum-archive/
forum-08-1---riboshredder-rnase-blend-destroys-unwanted-
rna-quickly-and-efficiently.pdf?sfvrsn=6) which resulted in the
complete degradation of all RNAs in the sample (Figure 1D).

The origin of the dsRNAs in seminal fluid remains unclear.
They may be formed as a result of digestion of native duplex
RNAmolecules by a cellular RNase and thus correspond to native
RNA hairpins or derived from RNA duplexes derived from the
annealing of ssRNA molecules corresponding to the transcripts
of the “+” and “–” DNA strands of the genome. The smaller
dsRNA bands ranging from 18 to 32 bp may represent miRNA
and piRNA precursor duplex molecules. Some of the dsRNA
molecules may represent partially degraded dsRNAs from one or
few dsRNA species.

In summary, we have shown that human seminal plasma
contains a repertoire of cell-free dsRNA. We do realize
that the identity, source, and functioning of these dsRNA
are yet undetermined. We hypothesize that these dsRNAs
could influence the implementation of genetic information
or gene regulation in offspring and, if future sequencing
reveals polymorphisms in dsRNAnucleotide composition among
individuals, characterization of seminal fluid dsRNAs might be
potentially useful as non-invasive molecular markers.

To date, the effects of endogenously derived dsRNA
contributing genetic information or regulating gene expression in
somatic eukaryotic cells are not well-characterized. Furthermore,

the role of these molecules in the process of fertilization
and early embryonic development remain largely unexplored,
particularly with respect to the role of dsRNA in the process of
human fertilization and epigenetic regulation of the embryonic
development. The known properties and functions of dsRNAs
and their identification in seminal plasma now enables future
testing of a number of hypotheses including:

(i) The ability of dsRNAs to penetrate into mammalian oocytes
can be tested for example in experiments with fluorescently
labeled dsRNAs purified from human seminal plasma.

(ii) To explore potential differences in the dsRNA complexity
in different human male seminal plasma, which may be the
result of differences in the patterns of genome transcription
and dsRNA formation in tissues related to seminal plasma
production, sequencing of dsRNA samples obtained from
different individuals can be carried out.

(iii) To determine if dsRNA from a seminal plasma may
contribute to phenotypic traits of the progeny, experiments
with a mix of dsRNA and semen using different mammalian
species with various phenotypes (for example, dogs) may be
performed.

We believe that the initial description of dsRNAs in seminal
plasma and its possible influences offer intriguing perspectives
for further research.
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