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In this work, we provide a comparative study of the main available association measures

for characterizing gene regulatory strengths. Detecting the association between genes

(as well as RNAs, proteins, and other molecules) is very important to decipher their

functional relationship from genomic data in bioinformatics. With the availability of more

and more high-throughput datasets, the quantification of meaningful relationships by

employing association measures will make great sense of the data. There are various

quantitative measures have been proposed for identifying molecular associations. They

are depended on different statistical assumptions, for different intentions, as well as with

different computational costs in calculating the associations in thousands of genes. Here,

we comprehensively summarize these association measures employed and developed

for describing gene regulatory relationships. We compare these measures in their

consistency and specificity of detecting gene regulations from both simulation and real

gene expression profiling data. Obviously, these measures used in genes can be easily

extended in other biological molecules or across them.

Keywords: gene regulatory network, gene coexpression, association measure, high-throughput data,

bioinformatics

INTRODUCTION

The high-throughput technologies, such as microarray (Schena et al., 1995) and RNA-Seq (Wang
et al., 2009) in transcriptomic level, generate bunch of data of describing various perspectives of cell
state. These data provide unprecedented opportunity to quantify molecular expressions and their
relationships. From a systematic perspective, the molecules in a cell orchestrate together to form
various integrated and condense network systems of performing comprehensive functions (Liu,
2015). For instance, transcriptional interactions between transcription factor (TF) and target genes
are often formulated into gene regulatory network of modeling biological processes (Liu et al., 2014,
2015). Deciphering gene relationships from high-throughput data are crucial to reversely engineer
their inner interaction scenarios, as well as profoundly reveal the dysfunctions in certain disorders,
such as complex diseases (Liu et al., 2012).

Quantifying the relationship between molecular components becomes fundamental in the new
research paradigm from data to knowledge. The data analysis techniques of association support
the kind of investigation. Traditionally, when we explore the relationship between two variables,
Pearson’s correlation coefficient (PCC) is employed to qualify their linear relationship (Zou et al.,
2003). From entropy aspects, mutual information (MI) is often used for defining the non-linear
relationship between gene variables (Butte and Kohane, 2000). Mathematically, the assumptions
underlying these measures are considerable in real applications. Association measures have been
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developed to meet the requirements of appropriateness and
precision in defining relationships from various perspectives.

Detecting gene associations is a fundamental method to
reconstruct gene regulatory network from gene expression
profiling data (Liu, 2015). Although more integrated methods
such as ordinary differential equations are available to model
the differential dynamics among genes, the association-based
methods are direct, simple, and easy for interpretation as
well. With introducing the independence, these measures have
been extended to quantify the associations between many
genes simultaneously (Stuart et al., 2003). In typical microarray
experiments, the gene expression data can often be represented
by matrix G,

G =
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Where Gij represents the gene expression value of the i-th gene
(1 ≤ i ≤ m) in the j-th experiment (1 ≤ j ≤ n). It is
noted that j refers to a sample or a time point with specific
phenotype meaning. The association between gene X and gene
Y (X,Y ∈ {G1,G2, · · · ,Gm}) is often to indicate their regulatory
relationship (Zhang and Horvath, 2005). Let gene expressions
be X = (X1,X2, ...,Xn) and Y = (Y1,Y2, ...,Yn). Based on
the two vectors, we employ or define an association measure to
assess their regulatory strength. Recently, some novel measures
besides PCC andMI have been proposed to define the association
between two variables (Reshef et al., 2011). It is of great
interest to investigate their performances in the reconstruction
of gene regulatory network from gene expression data. Figure 1
demonstrates the strategy of inferring gene regulatory network by
gene coexpression analysis. Gene regulation, in a particular form
of transcriptional regulation, often specifies the regulation from
TF to target gene. The quantified gene coexpression evaluates
the simultaneous patterns of two gene’s redundancy across
samples. The expression level of upstream TF’s gene is often
to approximate its downstream protein product. As shown in
Figure 1C, if we set up which ones are TFs by prior knowledge
in the gene association network, we can infer a directed gene
regulatory network via an undirected association measure.

The coexpression pattern between two genes implies their
regulatory aspects. As shown in Figure 1C, it firstly indicates
a direct regulatory interaction. In some biological state, gene
coexpression exactly responds to the activation or inhibition
regulation from a TF to its target gene. The regulation
between them is reflected by their highly-related gene expression
redundancy. Secondly, gene coexpression is about gene co-
regulation. That is to imply the two genes are regulated by
the same TF(s) and then they contain highly-related gene
expression patterns. Third means that the two genes are
functionally-related by participating in the same regulatory
circuit or particular signaling pathway. Generally, the dynamic
regulations in a cell are inherently embedded with temporal

features. Gene regulation is often reflected by time-delayed
gene expression patterns from the activation of TF’s gene to
the downstream target responds (Bar-Joseph et al., 2012). For
the simplicity of association measure, the coexpression-based
methods are popular in inferring gene regulatory network from
gene expression data (Zhang and Horvath, 2005).

In this paper, we provide a comparative study on these
available association measures of quantifying gene relationships
in regulatory network. Fourteen most-popular association
measures or indices will be summarized and compared. Based on
some benchmark datasets of gene regulatory network inference
challenges, we evaluate their individual performances in the
reconstruction of gene regulatory networks. This provides a
concise comparison of accuracy and quality in network inference
by the association measures. In a case study, we compare the
differences of these inferred regulations during the infection of
hepatitis C virus on host cells. In data-driven network inference,
the characteristics of the association measures in statistics and
computations are also analyzed and discussed.

ASSOCIATION MEASURES

Numerous associationmeasures have been proposed to define the
relationship between two random variables. For gene regulations,
we collect 14 of them for our assessments of network inference
power from data. Table 1 lists the 14 association measures
with brief introduction of their statistical assumptions and
fundamental properties individually. Some measures are well-
known such as PCC, while some become available recently such
as maximal information correlation (MIC). For the completeness
of introduction and reference, we describe them in details
respectively in this section.

Pearson’s Correlation Coefficient
PCC describes the linear relationship between two variables X
and Y (Pearson, 1895). In the microarray data of gene expression,
it defines the correlation coefficient between gene X and Y as

r(X,Y) =

n
∑

i= 1
(Xi − X̄)(Yi − Ȳ)

(n − 1)SXSY
,

where X̄ =
n
∑

i= 1
Xi, Ȳ =

n
∑

j= 1
Yj refer to the mean of two

variables of gene expression in samples, and SX =

√

n
∑

i= 1
(Xi−X̄)

2

n− 1 ,

SY =

√

n
∑

j= 1
(Yj−Ȳ)

2

n− 1 are their standard deviations. Generally, it
assesses their linear relationship into a value between −1 and 1,
where 1 refers to total positive correlation and −1 refers to total
negative correlation, and 0 refers to no correlation.

When we implement the statistical test of its significance, PCC
assumes the two variables are from two normal distributions and
the two vectors are the corresponding pairs with independence
in the observations (Zou et al., 2003). It has been widely used
to quantify the gene coexpression relationships in many studies,
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FIGURE 1 | The strategy of building gene coexpression-based regulatory network from gene expression data. (A) The gene expression patterns of m genes in n

samples. (B) The gene coexpression patterns quantified by association measure. (C) With some prior knowledge of TFs, the gene coexpression relationships can be

improved to be a gene regulatory network.

TABLE 1 | Summary of some association measures used to quantify gene regulations.

Abbre. Method Symbol Description References

Pearson Pearson’s r Linear, widely-used, no parameter, coeff. ∈ [−1, 1] Pearson, 1895

Spearman Spearman’s ρ Monotonic, rank-based, no parameter, coeff. ∈ [−1, 1] Spearman, 1904

Kendall Kendall’s τ Monotonic, rank-based, no parameter, coeff. ∈ [−1, 1] Kendall, 1938

Hoeffding Hoeffding’s D Non-linear, rank-based, no parameter, coeff. ∈ [0, 1] Hoeffding, 1948

Blomqvist Blomqvist’s β Monotonic, rank-based, no parameter, coeff. ∈ [−1, 1] Blomqvist, 1950

Goodman Goodman and Kruskal’s γ Monotonic, cross classifications, rank-based, no

parameter, coeff. ∈ [−1, 1]

Goodman and Kruskal,

1954

WWH Wang, Waterman, Huang’s wwh Monotonic, rank-based, no parameter, coeff. ∈ [0, +∞] Wang et al., 2014

MI Mutual information I Non-linear, entropy-based, no parameter, coeff. ∈ [0,

+∞]

Shannon, 1948

MIC Maximum information correlation mic Non-linear, entropy-based, 1 parameter, coeff. ∈ [0, 1] Reshef et al., 2011

Wilks Wilks’ W Linear, covariance-based, no parameter, coeff. ∈ [0, 1] Wilks, 1935

KCCA Kernel canonical correlation analysis kcca Non-linear, covariance-based, 1 parameter, coeff. ∈ [0, 1] Bach and Jordan, 2002

dCor Distance correlation dCor Non-linear, covariance-based, 1 parameter, coeff. ∈ [0, 1] Szekely and Rizzo, 2009

CMMD copula-based maximum mean discrepancy cmmd Non-linear, copulas-based, 1 parameter, coeff. ∈ [0, 1] Poczos et al., 2012

RDC Randomized dependence coefficient rdc Non-linear, copulas-based, 2 parameters, coeff. ∈ [0, 1] Lopez-Paz et al., 2013

such as WGCNA (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008).

Spearman’s Rank Correlation
Spearman’s rank correlation ρ is a non-parametric measure of
the relationship between two variables (Spearman, 1904). The
association between two variables X and Y is formulated as a
monotonic function

ρ = 1−

6
n
∑

i= 1
d2i

n(n2 − 1)
.

Where di = Xi − Yi, 1 ≤ i ≤ n. Instead of using the
element values directly, it transforms the two vectors to the two
rank vectors of these elements respectively. The differential rank
vector is generated by the difference between two rank vectors.

When there are no repeated values in X and Y (no
duplicated ranks), ρ reaches 1 and −1 when a variable is a
perfect monotone function of the other variable. The statistical
independence between them refers to ρ = 0. In the statistical

test, it still requires the dependence between the two ranking
of two variables (Zar, 1972). Compared to PCC, it contains a
larger application scope because it does not require the normal
distribution assumptions. It is equivalent to PCC between two
ranked variables (Conover and Iman, 1981). The following non-
linear rank-based correlations contain the similar properties.

Kendall’s Tau Coefficient
Similar to the former coefficients, Kendall’s tau coefficient
(Kendall, 1938) is another measure of rank correlation between
X and Y. It is defined as

τ =
nc − nd

n(n− 1)/2
,

where nc = #(concordant pairs) and nd = #(discordant pairs).
Any pair of observations (Xi,Yi) and (Xj,Yj) in X and Y, where
i 6= j, are defined as concordant if the ranks for both elements
agree, i.e., if both Xi > Xj and Yi > Yj or if both Xi < Xj and
Yi < Yj. They are classified to be discordant if Xi > Xj and
Yi < Yj or if Xi < Xj and Yi > Yj. If Xi = Xj or Yi = Yj, the pair
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is neither concordant nor discordant. Based on τ , Somers’ D of Y
with respect to X is defined as DYX = τ (X,Y)/τ (X,X), where
τ (X,X) is the number of pairs with unequal values (Somers,
1962). It is easy to find that the order of ranks in the two variables
plays critical roles in the calculation of these non-parametric
estimators.

Hoeffding’s Dependence Coefficient
The original idea of Hoeffding’s dependence measure D is to
assess the independence of two datasets by their distance between
distributions for continuous variables (Hoeffding, 1948). It has
been extended for the samples of X and Y as

D =
(n − 2)(n − 3)D1 + D2 − 2(n− 2)D3

n(n − 1)(n − 2)(n − 3)(n − 4)
,

where D1 =
∑

i
(Qi − 1)(Qi − 2), D2 =

∑

i
(Ri − 1)(Ri − 2)(Si − 1)(Si − 2) and D3 =

∑

i
(Ri − 2)(Si − 2)(Qi − 1), Ri is the rank of Xi, Si is the

rank of Yi, and Qi is the bivariate rank, which refers to the
number of points with both X and Y values less than the ith
point, i.e., Qi = #(Xj,Yj) s.t. Xj < Xi and Yj < Yi.

Blomqvist’s β
A measure referred as Blomqvist’s β has been developed for the
medial correlation coefficient (Blomqvist, 1950). For two random
variables X and Y, let “x − y”-plane be divided into four regions
by the median lines of x̃ and ỹ. The relationship of X and Y
can be obtained from the number of sample points in the four
quadrants. In gene regulations, suppose the sample size takes
even number (with minor modifications in odd number), it is
defined as

β =
n1 − n2

n1 + n2
=

2n1

n1 + n2
− 1,

where n1 refers to the number of data in the first or third
quadrant, and n2 refers to that in the second or fourth quadrant.
It has some advantages such as its explicit form and low
computational complexity in estimation (Blomqvist, 1950).

Goodman and Kruskal’s Gamma
Coefficient
The Goodman and Kruskal’s γ coefficient (Goodman and
Kruskal, 1954) is another widely-used rand-based coefficient to
measure the dependence between variables. It is defined as

γ =
Ps − Pd

Ps + Pd
,

where Ps, Pd are the probabilities that a randomly selected pair
of observations will relocate in the same or opposite order
respectively, when ranked by both variables. It represents the
symmetric distances between the two paired sets representing the
binary relation of ranks. It is very close to Kendall’s tau. In gene
samples, its maximum likelihood estimation can be regarded as

G =
ns − nd

ns + nd
,

where ns is the number of concordant pairs, which refer to
those pairs ranked in the same order one both variables. nd is
the number of discordant pairs, which are the number of pairs
of cases ranked in reversed order. It computes the normalized
difference between the numbers of concordant and discordant
pairs such that it will take values between −1 and +1. When it
is specified into 2 × 2 matrices, it is exactly Yule’s Q coefficient
(Yule, 1900).

WWH Order Correlation
The order statistics seems to provide a robust gene coexpression
measure by taking local patterns in gene expression profiles into
account. Wang, Huang, and Waterman (WWH; Wang et al.,
2014) proposed a count statistics method to define a new gene
coexpression regulatory measure, i.e.,

wwh =
∑

1≤i1<···<ik≤n

F(Xi1 , ...,Xik;Yi1 , ...,Yik ).

Where X = (X1, ...,Xn) and Y = (Y1, ...,Yn) are genes X
and Y with expression levels from n samples. The function F is
an indicator function comparing the rank patterns of the two
subsequences with a length parameter k. This method aims to
identify the consistency of rank orders of the two variables and
expect to highlight the local corresponding features in expression
profiles. The authors considered a special case in the time-
series samples by constraining the consecutive subsequences and
another general cases of samples (Wang et al., 2014).

Mutual Information
Mutual information is based on information theory (Shannon,
1948). Suppose P(X,Y) is the joint probability distribution
function of gene variables of X and Y , and P(X) and P(Y)
are their marginal probability distribution functions respectively.
The mutual information between X and Y is defined as

I = −
∑

Xi∈X,Yj∈Y

P(Xi,Yj) log
P(Xi,Yj)

P(Xi)P(Yj)
.

The mutual information can also be represented as a Kullback–
Leibler divergence (Kullback and Leibler, 1951), which is to
measure of the difference between two probability distributions.

Maximal Information Correlation
Based on mutual information, MIC is defined to evaluate the
margin probability by calculating the data point frequencies
(Reshef et al., 2011), i.e.,

MIC = max
|Xi||Yj|< B

I(X,Y)

log2(min(
∣

∣Xi

∣

∣,
∣

∣Yj

∣

∣))
,

where (Xi) and
(

Yj

)

are the two gene expressions across the
samples individually. I refers to their mutual information. The
B is a heuristically setting parameter such as B = N0.6, and N is
the cells of a grid G induced by X and Y .
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Wilks’ W
Wilks’W statistic is the covariance-based measure of two vectors
(Wilks, 1935). It is defined as

W = 1−
det(6)

det(611) det(622)
,

where 6 =

(

611 612

621 622

)

, and 6ij = cov(Xi,Yj). It has

close relationship with likelihood-ratio and multivariate analysis
of variance (MANOVA) by integrating the covariances of two
individual variables and their combinations. Similarly, Pillai’s
trace criterion performs similar ideas while with low popularity
(Pillai, 1955). Here, it is a special case only for two gene
expression vectors.

Kernel Canonical Correlation Analysis
Instead of directly calculating the relationship between X and Y,
the canonical correlation analysis (CCA) is a statistical technique
of maximizing the correlation between sets of projections of the
two original vectors.

Let U = aTX, V = bTY , Var(U) = aT
∑

11 a, Var(V) =

bT
∑

22 b, Cov(U,V) = aT
∑

12 b,

where 6 = Var(X,Y) =

(

611 612

621 622

)

, 611 = Var(X),

622 = Var(Y), 612 = Var(X,Y), 621 = Var(Y ,X).
So

Cor(U,V) =
aT612b

√

aT611a
√

bT622b
.

We define the largest canonical correlation as ρ1 =

sup
a,b

Cor(U,V), where we set the second floor as a fix number.

When we maximize the first floor by solving an optimization
problem is to achieve the largest canonical correlation coefficient
between the original X and Y.

In CCA, the vector of U and V are linear combinations of X
and Y. When

KX =
∑

i
8(Xi)

T8(Xi),

KY =
∑

i
8(Yi)

T8(Yi),

where 8 : R
n → R

N(n ≤ N) is the kernel function of X and Y
(can be different for them).

Cor(U,V) =
αTKXKYβ

√

αTKXKYα
√

αTKXKYβ
,

and the kernel CCA is defined as kcca(X,Y) = sup
α,β

Cor(U,V).

Distance Correlation
Let (Xi,Yi), 1 ≤ i ≤ n be statistical samples for two random
variables (X,Y). The pairwise distances are

aj,k =
∥

∥Xj − Xk

∥

∥, j, k = 1, 2, ..., n,

bj,k =
∥

∥Yj − Yk

∥

∥, j, k = 1, 2, ..., n,

where ‖�‖ denotes Euclidean norm, Then, two n × n distance
matrices (aj,k) and (bj,k) are generated. For each element (j, k),
two transformed values are defined as

Aj,k = aj,k − āj,� − ā
�,k + ā

�,�,

Bj,k = bj,k − b̄j,� − b̄
�,k + b̄

�,�,

where āj,� is the j-th row mean, ā
�,k is the k-th column mean, and

ā
�,� is the grandmean of the distancematrix of theX samples. The
notations for b values have the similar meanings. The distance
covariance is defined as the square root of

V2
XY = 1

n2

n
∑

i,j=1

Ai,jBi,j.

Then, distance correlation (dCor; Szekely and Rizzo, 2009)
between X and Y is defined as the square root of

dCor = R2 =
V2
XY

VXVY
.

dCor satisfies 0 ≤ R ≤ 1, and R = 0 when X and Y are
independent.

Copula-Based Maximum Mean
Discrepancy
A copula is a multivariate probability distribution function
defined on the unit hypercube with known uniform marginals
(Nelsen, 2006). It is popular in high-dimensional statistics for
describing the relationships between variables. Specifically, the
copula of two random gene variables X and Y is defined as a
function

C(U,V) = C(FX(x), FY (y)) = FXY (x, y),

where FX(x) = P(X ≤ x), FY (x) = P(Y ≤ y), and FXY (x, y) =
P(X ≤ x, Y ≤ y) are the two marginal distributions and the joint
distributions (Sklar, 1959).

cMMD is a copula-based kernel association measure between
random variables (Poczos et al., 2012). It extends the maximum
mean discrepancy (MMD) method (Borgwardt et al., 2006) of
measuring dependence to the copula of the joint distribution.
Suppose two copulas transformations have been implemented
on the original variables, i.e., U = F1(X) and V = F2(Y), F1
and F2 are the empirical cumulative distribution functions for X
and Y respectively (Lopez-Paz et al., 2013). cMMD defines the
relationship between X and Y as

cmmd (X,Y) = mmd
[

F1(X), F2(Y)
]

=
1

n(n− 1)

n
∑

i6=j

K(Ui,Vj),

where K(Ui,Vj) = 8(Ui,Uj)+8(Vi,Vj)−8(Ui,Vj)−8(Uj,Vi),
and 8 is a specified kernel function, e.g., Gaussian kernel.
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Randomized Dependence Coefficient
Based on the former kernel CCA and copulas, the randomized
dependence coefficient (RDC) provides a computationally
efficient association measures between multivariate random
variables. In details, it is defined as

rdc(X,Y; k, s) = sup
α,β

Cor
{

αT8
[

F1(X); k, s
]

, βT8
[

F2(Y); k, s
]

}

,

where the functions are the same as the former ones, k ∈ N
+

and s ∈ R
+ are the parameters which are often set as 20 and 0.6

respectively. RDC is proved to be capable of discovering a wide
range of functional association patterns in multiple datasets.

RESULTS OF COMPARISON STUDY

For a comparative study of these association measures in
inferring gene regulatory relationships, we test these association
measures in DREAM3 in silico network challenge datasets
(Marbach et al., 2010). In the challenges, gene expression datasets
have been generated by some specified network structures. Then,
the datasets are open without any information about the network
structures. The task is to reconstruct the network structures
from the open datasets by developing new inference methods.
There are three sizes of networks with 10, 50, and 100 nodes
respectively, and multiple datasets for each size (4 for 10-node
network, 23 for 50-node network, and 46 for 100-node network).
The assessment is to evaluate the consistency between the
inferred network and the true network structure (gold standards).
Figure 2 illustrate the receiver operating characteristic (ROC)
curves of inference performance by these association measures
in the 10-node benchmark network. Due to the undirected
regulations identified by all these association measures, we omit
the regulatory directions when calculating the evaluation metrics
of sensitivity (SN), specificity (SP), accuracy (ACC), Matthews

correlation coefficient (MCC), F-measure, and area under ROC
curve (AUC). Table 2 demonstrates these detailed values of
evaluation metrics of these association measures. We find KCCA
performs the best in the 14 association measures for inferring 10-
node networks and it reaches the AUC of 0.623± 0.083 (mean±

standard deviation). Overall, the performances of these methods
are comparable with each other in the 10-node network.

For the association measures, it becomes more difficult to
achieve high inference performances when the network size
becomes bigger from 10, 50 to 100. Although each association
measure cannot achieve good inferences for big networks, the
performances of them decrease with the same tendency. For 50-
node networks, mutual information (MI) achieves the best AUC
of 0.569 ± 0.046. Blomqvist’s β performs the best for 100-node
networks in the inference, while it is not stable for the small-
size networks. Figure 3 shows the ranks of their performances
according to the mean AUCs in different size of networks
individually. From the comparative study, mutual information
(MI) performs relatively better with stable ranks for big networks
with 50 and 100 nodes. PCC is also stable in the 14 association
measures for various sizes of network, as well as KCCA and dCor.
This indicates their relative reliability in detecting gene regulatory
relationships from expression data. For the other association
measures, they accomplish unreliable and unstable regulatory
network inferences in the benchmarks.

From the inference performances, we find that most of
association-based methods can only achieve limited accuracies
in the reconstruction of gene regulatory network from the
benchmark datasets, especially for large-size networks. The
application scopes of these association measures are mainly
determined by the assumptions and characteristics of their
definitions listed in Table 1. For instances, PCC is for linear
regulatory relationship, MI is for non-linear relationship,
KCCA and dCor measure the genuine relationship based
on covariance, and the rank-based associations are robust

FIGURE 2 | The performances of different association measures in the inference of the 10-node regulatory network of DREAM challenges. (A) ROC curve of 14

association measures with maximum AUC in the four datasets. (B) Blox plots of AUC of 14 association measures.
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TABLE 2 | The performance details of inferring benchmark gene regulatory networks by 14 association measures.

Methods Node size SN SP ACC F-measure MCC AUC

Pearson 10 0.500 ± 0.093 0.545 ± 0.166 0.506 ± 0.098 0.518 ± 0.121 0.030 ± 0.162 0.592 ± 0.048

50 0.536 ± 0.102 0.510 ± 0.121 0.535 ± 0.099 0.507 ± 0.074 0.014 ± 0.044 0.554 ± 0.027

100 0.531 ± 0.047 0.487 ± 0.078 0.530 ± 0.046 0.504 ± 0.048 0.004 ± 0.021 0.536 ± 0.021

Spearman 10 0.617 ± 0.162 0.477 ± 0.155 0.600 ± 0.150 0.526 ± 0.141 0.074 ± 0.191 0.574 ± 0.055

50 0.511 ± 0.083 0.504 ± 0.071 0.510 ± 0.081 0.502 ± 0.059 0.005 ± 0.036 0.538 ± 0.031

100 0.501 ± 0.055 0.506 ± 0.086 0.501 ± 0.053 0.497 ± 0.043 0.002 ± 0.019 0.533 ± 0.025

Kendall 10 0.601 ± 0.192 0.500 ± 0.117 0.589 ± 0.175 0.536 ± 0.125 0.082 ± 0.198 0.574 ± 0.057

50 0.499 ± 0.098 0.518 ± 0.083 0.500 ± 0.095 0.498 ± 0.053 0.005 ± 0.034 0.536 ± 0.031

100 0.509 ± 0.054 0.503 ± 0.085 0.509 ± 0.053 0.499 ± 0.040 0.003 ± 0.017 0.532 ± 0.025

Hoeffdings 10 0.519 ± 0.591 0.591 ± 0.091 0.528 ± 0.080 0.544 ± 0.042 0.073 ± 0.062 0.539 ± 0.039

50 0.507 ± 0.072 0.494 ± 0.102 0.507 ± 0.070 0.492 ± 0.064 0.00006 ± 0.038 0.544 ± 0.032

100 0.504 ± 0.071 0.523 ± 0.061 0.504 ± 0.069 0.508 ± 0.042 0.006 ± 0.018 0.535 ± 0.025

Blomqvist 10 0. 563 ± 0.069 0.409 ± 0.189 0.544 ± 0.060 0.451 ± 0.136 −0.019 ± 0.125 0.570 ± 0.030

50 0.457 ± 0.126 0.496 ± 0.134 0.458 ± 0.120 0.444 ± 0.069 −0.016 ± 0.028 0.535 ± 0.030

100 0.550 ± 0.066 0.583 ± 0.056 0.551 ± 0.065 0.560 ± 0.020 0.030 ± 0.008 0.574 ± 0.022

Goodman 10 0.411 ± 0.130 0.500 ± 0.053 0.422 ± 0.073 0.437 ± 0.073 −0.063 ± 0.073 0.539 ± 0.067

50 0.470 ± 0.086 0.454 ± 0.083 0.469 ± 0.082 0.448 ± 0.037 −0.0246 ± 0.0194 0.531 ± 0.026

100 0.531 ± 0.068 0.529 ± 0.059 0.531 ± 0.067 0.524 ± 0.027 0.014 ± 0.011 0.527 ± 0.018

WWH 10 0.411 ± 0.248 0.591 ± 0.174 0.433 ± 0.200 0.416 ± 0.148 −0.006 ± 0.103 0.569 ± 0.069

50 0.352 ± 0.116 0.660 ± 0.099 0.360 ± 0.111 0.437 ± 0.083 0.003 ± 0.019 0.532 ± 0.016

100 0.392 ± 0.137 0.619 ± 0.145 0.395 ± 0.134 0.442 ± 0.070 0.003 ± 0.009 0.522 ± 0.018

MI 10 0.557 ± 0.149 0.409 ± 0.241 0.539 ± 0.111 0.416 ± 0.115 −0.022 ± 0.111 0.534 ± 0.041

50 0.470 ± 0.100 0.443 ± 0.081 0.470 ± 0.098 0.448 ± 0.069 −0.028 ± 0.043 0.569 ± 0.046

100 0.468 ± 0.081 0.471 ± 0.069 0.468 ± 0.079 0.462 ± 0.046 −0.014 ± 0.020 0.544 ± 0.034

MIC 10 0.500 ± 0.051 0.636 ± 0.196 0.517 ± 0.042 0.547 ± 0.066 0.090 ± 0.121 0.573 ± 0.062

50 0.515 ± 0.120 0.494 ± 0.084 0.515 ± 0.116 0.492 ± 0.070 0.003 ± 0.044 0.551 ± 0.031

100 0.510 ± 0.058 0.502 ± 0.071 0.510 ± 0.057 0.501 ± 0.038 0.003 ± 0.017 0.531 ± 0.024

Wilks 10 0.522 ± 0.113 0.477 ± 0.087 0.517 ± 0.109 0.498 ± 0.098 0.0004 ± 0.13 0.592 ± 0.048

50 0.536 ± 0.102 0.509 ± 0.120 0.536 ± 0.099 0.507 ± 0.073 0.014 ± 0.044 0.554 ± 0.027

100 0.523 ± 0.050 0.502 ± 0.080 0.523 ± 0.049 0.508 ± 0.048 0.006 ± 0.021 0.538 ± 0.025

KCCA 10 0.472 ± 0.267 0.432 ± 0.202 0.467 ± 0.231 0.393 ± 0.168 −0.067 ± 0.219 0.623 ± 0.083

50 0.442 ± 0.121 0.464 ± 0.119 0.442 ± 0.117 0.428 ± 0.070 −0.031 ± 0.037 0.541 ± 0.058

100 0.453 ± 0.100 0.502 ± 0.090 0.454 ± 0.098 0.462 ± 0.058 −0.011 ± 0.024 0.541 ± 0.036

dCor 10 0.506 ± 0.061 0.545 ± 0.166 0.511 ± 0.069 0.520 ± 0.102 0.034 ± 0.140 0.573 ± 0.060

50 0.529 ± 0.084 0.513 ± 0.103 0.529 ± 0.082 0.512 ± 0.067 0.014 ± 0.042 0.556 ± 0.031

100 0.514 ± 0.061 0.510 ± 0.091 0.514 ± 0.060 0.505 ± 0.049 0.006 ± 0.021 0.538 ± 0.025

CMMD 10 0.573 ± 0.201 0.545 ± 0.129 0.569 ± 0.176 0.540 ± 0.112 0.085 ± 0.164 0.611 ± 0.066

50 0.508 ± 0.081 0.491 ± 0.088 0.508 ± 0.079 0.494 ± 0.065 −0.00006 ± 0.041 0.547 ± 0.031

100 0.512 ± 0.071 0.505 ± 0.068 0.512 ± 0.070 0.503 ± 0.044 0.004 ± 0.019 0.532 ± 0.028

RDC 10 0.522 ± 0.147 0.568 ± 0.227 0.528 ± 0.139 0.527 ± 0.143 0.062 ± 0.203 0.599 ± 0.038

50 0.518 ± 0.085 0.522 ± 0.076 0.518 ± 0.083 0.515 ± 0.076 0.013 ± 0.039 0.551 ± 0.032

100 0.517 ± 0.070 0.515 ± 0.042 0.517 ± 0.069 0.051 ± 0.04 0.007 ± 0.018 0.534 ± 0.026
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to the noisy and outliers in gene expressions. In practical
applications, the selection of suitable association measures could
be subjectively determined by research purpose, experimental
design, phenotypic condition and data quality. An ensemble and
self-adaptive association measures selection strategy is desirable
to be proposed for the co-existence of different gene regulatory
relationships.

In real microarray data, we perform our comparative
study of quantifying gene regulations during hepatitis
C virus (HCV) infection on host Huh7 cells. The gene
expression data are downloaded from NCBI GEO (accession
ID GSE20948) (Edgar et al., 2002). There are 28 samples
of 14 HCV infected Huh7 hepatoma cell samples and 14
corresponding mock-infected samples, originally designed
three replicates at 6, 12, 18, 24, and 48 h post-infections,
respectively. Two samples at 6 h have not been enrolled
after quality control. The details can be accessed from Ref.
(Blackham et al., 2010). We also download the hepatocellular
carcinoma (HCC) gene set from KEGG (Kanehisa and
Goto, 2000). The gene set contains 123 genes with 94 genes
containing their expression profiles in GSE20948 (Edgar et al.,
2002).

For evaluating the inference consistency of these association
measures, we calculate the pairwise gene regulatory strengths in
the HCC genes by the 14 association measures respectively. In
the results of each association measure, the pairs with the top 5%
association values are regarded as the identified gene regulations
in the context of specific gene expression profiles after HCV
infection.

Figure 4 demonstrates the inferred gene coexpression
regulatory network in the HCC genes by PCC. There is no
information about direction, so we annotate the known human
TFs and display them by different color nodes (cyan) with
the other genes (green). From Figure 4, we can figure out the
regulatory information about positive and negative relationships
during HCV infection. As in the former comparisons, we
compare the overlapping status of these inferred coexpression
relationships by the four association measures with top
performances, i.e., Pearson, MI, KCCA and dCor. There exists
only one pair of genes (“IFNA1” and “IFNA13”) is identified
by the four measures, and the relationship between the two
genes can be detected by any of them. Interestingly, Pearson and
dCor contain many overlaps (177 regulations). It provides direct
evidence that dCor is mainly to extract the linear correlations
between genes as that Pearson done in this case study. There
are few overlaps (3 regulations) between Pearson and MI, which
indicates the linear and non-linear information are inconsistent
with each other, and different association measures might
identify different gene associations. The selection of suitable
association measures is again proved to be very important
for inferring gene coexpression regulatory network. The few
overlapping regulations also imply the complex and diversity
of regulatory relationships underlying gene expressions. More
advanced methods beyond association measures are urged for
elucidating gene regulatory mechanism from high-throughput
data. See Section Discussion for some already available
methods.

FIGURE 3 | The ranks of 14 association measures in the inferences of

regulatory networks with different node sizes. The numbers in the color blocks

refer to the ranks of corresponding association measures by the means of

AUC in these benchmark networks.

DISCUSSION

It is known association is different from causality and correlation
does not imply causation (Altman and Krzywinski, 2015).
Detecting the causality between genes has been essential in
gene regulatory network inference since the availability of
high-throughput data (Opgen-Rhein and Strimmer, 2007).
Gene association network indicates more general gene-gene
relationship than regulation, and gene regulatory network
indicates more general gene-gene relationship than causality. The
gene causality network, that is to say, the causal regulations
between genes are directed in the gene-gene interaction graph
with the detailed information of which ones are upstream
regulators, and which ones are downstream targets. In the direct
regulations, TFs or signal transductors causally affect their target
gene expressions. The information flow transits between genes
will be revealed if a causal relationship exists. So far, there
is no association measure has been defined for describing the
causal relationship between genes (Zhang et al., 2014; Zhao
et al., 2016), while more advanced methods based on conditional
probability, model-based regression and differential equation
have been proposed to address the evaluations of causality.

Based on conditional independence, some improved
association measures, such as partial correlation coefficient
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FIGURE 4 | The reconstructed gene coexpression regulatory network during HCV infection. (A) The gene association network constructed by the PCC-based

method. Isolated genes are not shown. (B) The overlapping status of the inferred gene regulations by four association measures, i.e., Pearson, MI, KCCA, and dCor.

and conditional mutual information, have been proposed to
eliminate false positive regulations from gene associations.
The original association measures generate the footholds for
detecting genuine relationships. Conditioning on another gene
or gene set Z, partial correlation measure rXY·Z between gene X
and Y is to access the exact correlation between X and Y and that
has no relationship with Z (de la Fuente et al., 2004). It is defined
as

rXY·Z =
rXY − rXZrYZ

√

(1− r2XZ)(1− r2YZ)
.

Where r refers to PCC. In the similar philosophy of introducing
other gene or gene set, the conditional mutual information (CMI;
Liang and Wang, 2008) is defined as

I(Xi,Yj|Zk) =
∑

Xi∈X, Yj∈Y , Zk∈Z

p(Xi,Yj,Zk) log
p(Xi,Yj|Zk)

p(Xi|Zk)p(Yj|Zk)
.

Based on CMI and the order of conditioned gene numbers, we
proposed a gene regulatory inference method named PCA-CMI
(Zhang et al., 2012, 2013), which detect out dedicate associations
by removing undirect false positive regulations. For a pair of
genes X and Y, Li proposed a conditional coexpression measure
named liquid association (LA) between two genes by introducing
a third gene Z (Li, 2002). Based on Z, the gene relationship of X
and Y is defined as

LA(XY|Z) = E(XY|Z) =
∑

i

XiYiZi

n

where n is the sample size. The LA activity determines the
functional associations of gene X and Y in the condition of Z.

Currently, the causality between genes is often quantified via
Bayesian models (Friedman et al., 2000). According to data, the

conditional probability of P(X|Y) =
P(Y|X)P(X)

P(Y)
. The probability

of gene X conditioned on gene Y, means Y have a causal
effect on X because there exists a negative or positive values
of the conditional probability. The structured model has been
extended and formulated as diagrams using a graphical criterion
known as d-separation (Bareinboim and Pearl, 2016). Bayesian
network provides a model-based detection of causal regulatory
relationships. Gene regulations are then identified from the
graphical models (Liu et al., 2013).

Regression and other structured models often extract the
effects of regulatory coefficients. The identification of model
coefficients determines the global relationship of these individual
genes (D’Haeseleer et al., 1999). Specifically, the regression
models the response gene as the linear combinations of the
other dependent genes, i.e., Y = c0 + c1X1 + c2X2 +

· · · + cmXm + ε, m is the number of dependent genes in
the regression and ε is the error variable. In generalized
linear models, the response gene is changed to θ(Y), and
X1, · · · , Xm are replaced by φ1(X1), · · · , φm(Xm), respectively
(Breiman and Friedman, 1985). In the special case of simple
linear regression with m = 1, the model is to detect
the linear relationship between the response gene and the
only one dependent gene. The coefficient of determination
denoted by r2 is equal to the square of PCC (Altman
and Krzywinski, 2016). The coefficient of determination,
which represents the proportion of variation due to their
linear relationship, generalizes the correlation coefficient for
relationships beyond simple linear regression. Often, the
regression equations often model the associations between
response genes and dependent genes in an inter-coupled
system. From a system biology perspective, regression models
consider the genes in an integrated manner. Compared to the
former pairwise associations, they identify more complicated
relationships among genes. After determining the coefficients,
the relationships in these genes are quantified correspondingly.
How to determine crucial regulators and targets via statistical
variable selections techniques, such as lasso (Tibshirani, 1996)
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and elastic net (Zou and Trevor, 2005), are substantially
important.

Similarly, ODE models the derivatives, i.e., dY
dt

= c0 + c1X1 +

c2X2 + · · · + cmXm, and so ODE quantifies the dynamics of
the response as a function of the dependents in the system (Wu
et al., 2014). The expression change rate of a response gene is
modeled by the expressions of dependence genes. The Y might
be another dependence gene and thus the system is closed. The
system identification is to evaluate the coefficients in the right-
hand side of the equation and the coefficient values refer to
gene regulatory strengths. When the coefficient is 0, there is no
relationship between the responding gene and the depending
gene, otherwise the regulatory strength can be represented by
positive or negative numeric values.

Compared to association measure, regression model and
differential equation model regard gene regulatory network as
an integrative system. The gene regulatory network inference is
then transformed to a system identification problem of solving
the coupled equations. The gene regulation strengths refer to the
identified coefficients. From a sequential modeling perspective,
the causality between regulators and targets can also be reflected
by these system biology techniques.

In machine learning techniques such as clustering (Rui and
Wunsch, 2005), there are some metrics have been developed for
measuring the association between data points. The distances
of Euclidean, cosine, Hamming, Manhattan are often used
to measure gene relationships in gene expression clustering
(D’Haeseleer, 2005). These distances evaluate the differences
including dependences between genes, while these compared
association measures focus on quantifying gene relationship such
as regulation between genes. In gene expression data analyses
of clustering and feature selection, distance metrics provide
alternatives to define gene similarities. The distance metrics are
not included in the comparative study for their diversity and
case-intensity (Santini and Jain, 1999).

CONCLUSIONS

In this paper, we summarized and compared the main
proximities and metrics for quantifying gene regulatory
associations. Written in full, the definitions and descriptions of
14 association measures are summarized and their characteristics
with applications in regulatory network inference have been
presented. From the benchmark challenge data and real
gene expression data, we compared their performances and
consistencies in the network inferences. Furthermore, their
advantages and limitations are also analyzed and discussed.
Currently, developing causality measure is an urgent research
topic from driving gene association to regulation causality
(Bareinboim and Pearl, 2016). A powerful measure of causality
will greatly benefit the discovery of important gene regulations.

Moreover, the linear/non-linear regression and differential
equation models regard many genes in dynamic systems and
the parameters of these models represent the system in details.
The model-based gene regulatory network inference methods
seem to provide more powerful tools when compared to the
association-based methods. However, the association measures
contain their flexibility in sense, easy interpretation and large
scope of applications.

In conclusion, gene association measures provide
fundamental quantifications of detecting gene regulatory
relationships from transcriptomic profiling data. The high-
throughput technologies advance the measurements of
thousands of genes in parallel manners. The association
measures effectively accelerate the transformation processes
from data to knowledge. Most of the proposed association
measures are statistical techniques which focus only on
the inter-relationships between genes, and they are very
hard to get the causal gene relationships alone. With the
improved conditional or joint association measures, such as
partial correlation coefficient, conditional mutual information
and liquid association, the causality between genes can be
partially extracted out from data. The introduction of other
genes in evaluating gene regulation provides promising
alternatives to grasp the genuine regulations. For an entire
system, many genes perform their functions coordinately
and cooperatively. So more advanced models are extremely
needed to describe the complex system of gene regulations. In
such model as ODE, the time-varying regulations are exactly
to quantify the gene regulatory interactions with temporal
implications. For the model complexity and the data availability,
the dynamics underlying the coefficients in regression
and ODE will reveal much more complicated regulatory
relationships.
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