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DNA methylation normally leads to silencing of gene expression but Epstein–Barr virus
(EBV) provides an exception to the epigenetic paradigm. DNA methylation is absolutely
required for the expression of many viral genes. Although the viral genome is initially
un-methylated in newly infected cells, it becomes extensively methylated during the
establishment of viral latency. One of the major regulators of EBV gene expression is
a viral transcription factor called Zta (BZLF1, ZEBRA, Z) that resembles the cellular AP1
transcription factor. Zta recognizes at least 32 variants of a 7-nucleotide DNA sequence
element, the Zta-response element (ZRE), some of which contain a CpG motif. Zta only
binds to the latter class of ZREs in their DNA-methylated form, whether they occur in viral
or cellular promoters and is functionally relevant for the activity of these promoters. The
ability of Zta to interpret the differential DNA methylation of the viral genome is paramount
for both the establishment of viral latency and the release from latency to initiate viral
replication.
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In cellular genomes, the methylation of 5′ cytosines in CpG-
dinucleotides leads to recruitment of methyl-DNA binding pro-
teins that co-operate with other epigenetic events to promote the
repression of transcriptional activity (reviewed in Wade, 2001;
Klose and Bird, 2006; Jones, 2012; Muers, 2013). Although
the double-stranded DNA genome of Epstein–Barr virus (EBV)
γ herpesvirus resides in the nucleus of human cells and carries
the hallmarks of cellular chromatin, the viral genome provides an
exception to this rule during the replication phase of its life cycle.

EPSTEIN–BARR VIRUS ASSOCIATION WITH MAN
Epstein–Barr virus is an almost ubiquitous human virus, which
is transferred from person to person in saliva. Infection results
in virus entry into both B-lymphocytes and epithelial cells. EBV
promotes the proliferation of infected B-lymphocytes and readily
generates immortalized cell lines when infection is undertaken in
an in vitro culture system. The majority of these immortalized
cells are recognized by the host immune system and destroyed
but some enter the memory B-cell pool, down regulate EBV gene
expression and persist in a latent state. Viral latency can be a long-
term event and the association of EBV with an infected individual
is considered to be for life. EBV is associated with the development
of several types of cancer associated with lymphocytes or epithe-
lial cells, principally Burkitt’s lymphoma, Hodgkin’s disease, and
nasopharyngeal carcinoma. Primary infection with EBV can also
result in infectious mononucleosis (Rickinson and Kieff, 2007).

EPIGENETIC CHANGES DURING THE EBV LIFE CYCLE
Epstein–Barr virus interacts with cells in a complex manner: the
virus is either in a latent state in which only a small sub-set of the
viral genes are expressed or it undergoes a lytic replication cycle
in which the entire repertoire of EBV genes is expressed and viral

progeny are generated (Rickinson and Kieff, 2007). Crucially, the
switch from latency to the lytic replication cycle is triggered by
physiological stimuli, which can be reproduced in in vitro culture
systems. It is at this point that the normal epigenetic paradigm is
broken.

Following infection, the viral double strand DNA genome is
established in the nucleus of the cell where it circularizes to form
an episome and then replicates once per cell cycle in synchrony
with the host genome. During this time, the majority of the
viral promoters are silent, with just a few directing the expres-
sion of the latency-associated genes. Many studies of individual
viral promoters have demonstrated an inverse correlation between
promoter activity and the presence of DNA methylation at CpG-
dinucleotides within the promoter (reviewed in Minarovits, 2006;
Niller et al., 2009). Indeed, recent genome-wide analyses support
the contention that the EBV genome is extensively methylated
during latency, with only the few active promoter regions spared
(Fernandez et al., 2009; Kalla et al., 2010; Woellmer et al., 2012). In
contrast, following the onset of the lytic replication cycle, the viral
genome becomes largely un-methylated at CpG-dinucleotides
(Fernandez et al., 2009). Thus, the majority of the viral genome
cycles between an un-methylated and a heavily methylated state
(Figure 1).

This biphasic methylation state poses an intriguing question.
If the promoters of the genes required for lytic replication are
silenced by DNA methylation during latency, how is the silencing
overturned? There are no reasons to suspect that the mechanisms
involved in gene repression are specific to EBV. First, repressive
histone modifications, such as the heterochromatin-associated
tri-methylation of lysine 9 (H3K9me3) and polycomb-associated
tri-methylation of histone 3 at lysine 27 (H3K27me3) marks
have been identified on the EBV genome (Murata et al., 2012;
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FIGURE 1 |The biphasic DNA methylation cycle of the EBV genome and

its impact of ZREs. The colored bar depicts the methylation state of EBV
genome during different phases of the viral life cycle, with non-methylated
DNA in red and methylated DNA represented in green. Two types of

Zta-responsive gene are shown below: those containing ZREs that are
independent of DNA methylation (blue) and those that are dependent on
methylation (white). Note that non-methylated CpG-ZREs cannot be bound by
Zta. Periods where Zta is expressed are indicated in blue.

Ramasubramanyan et al., 2012b; Woellmer et al., 2012; reviewed
in Murata and Tsurumi, 2013). Second, histone remodeling and
the appearance of activating marks such as tri-methylation of
lysine 4 on histone 3 (H3K4me3) occurs during the latency/lytic
cycle transition (Woellmer et al., 2012). Third, and most impor-
tantly, sensitive methylation mapping suggests that no change in
DNA methylation status occurs prior to the activation of lytic cycle
gene expression (Woellmer et al., 2012).

The surprising finding was that the EBV genome requires DNA
methylation to reactivate it from latency (Kalla et al., 2010, 2012).
This has been fine-mapped to several EBV lytic cycle gene pro-
moters. In comparison with the control of host gene expression,
a requirement for DNA methylation at viral promoters presents a
paradox. The key to resolving this paradox rests with the unique
properties of the EBV-encoded transcription factor, Zta (BZLF1,
ZEBRA, Z, EB1).

THE Zta TRANSCRIPTION FACTOR
Zta is a member of the bZIP family of transcription factors, but
it has an unusual dimerization domain, driving the exclusive
formation of homodimers (Petosa et al., 2006). Zta contains a
classical transactivation domain, which interacts with RNA poly-
merase II (RNA pol II) associated proteins presumably stabilizing
RNA pol II at Zta associated promoters (Lieberman and Berk,
1991). Zta interacts with sequence specific motifs (Zta-response
elements, ZREs), resembling AP1 sites, within the promoters of
responsive genes. Seminal studies from the Kenney lab revealed
that at some promoters, the association of Zta with DNA is
dependent on CpG methylation (Bhende et al., 2004, 2005; Dick-
erson et al., 2009). This key observation led to the recognition
of different categories of ZRE, depending on the presence of a
CpG-dinucleotide in the sequence. The class I (Karlsson et al.,
2008) or simple ZREs (Bergbauer et al., 2010), do not contain
a CpG and the binding of Zta is independent of methylation.
Class III (Karlsson et al., 2008) or Me-ZREs (Bergbauer et al.,

2010) do contain a CpG and the binding of Zta is strictly
dependent on methylation. At a minority of ZREs, referred
to as class II (Karlsson et al., 2008), DNA methylation has an
intermediate impact. Importantly, this classification scheme also
applies to ZREs in the host cell genome. For example, Egr1,
which is activated by Zta (Kim et al., 2007) contains a CpG-
ZRE that is methylation dependent (Heather et al., 2009). It is
not known whether additional mechanisms are in place to aid
Zta activation of DNA-methylated compared to non-methylated
promoters.

Zta expression is restricted to two phases of the EBV life
cycle; immediately after infection and during the EBV lytic repli-
cation cycle. Zta is not expressed during viral latency, indeed
enforced expression of Zta promotes cells to initiate the lytic
replication cycle. Following physiological stimulation of cells har-
boring latent EBV, Zta is the first viral lytic replication cycle gene
to be expressed and then activates the expression of many viral
genes. Zta is expressed initially when the viral genome is heav-
ily methylated and remains expressed when the genome is largely
non-methylated. Zta interacts with several hundred sites on the
viral genome and at about half of these site binding is dependent
on the DNA methylation status (Bergbauer et al., 2010; Flower
et al., 2011; Ramasubramanyan et al., 2012a). Many of them occur
within important promoters that control the expression of genes
essential for the EBV lytic replication cycle (Bergbauer et al., 2010;
Flower et al., 2011; Ramasubramanyan et al., 2012a,b). Thus, a
sub-set of viral lytic replication cycle promoters is dependent on
DNA methylation for activation by Zta (Figure 1). This could
explain the requirement for genome methylation during the EBV
life cycle.

It is puzzling to understand how these methylation-dependent
promoters evolved. Why is it advantageous to encode a transcrip-
tion factor with both methylation-dependent and -independent
recognition sites if both classes of ZRE should be equally “visible”
to Zta in the methylated state? To understand the driving force
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behind the differential binding of Zta at ZREs, we need to consider
the situation where the EBV genome is non-methylated and the
CpG-ZREs become “invisible” (Figure 1).

RELEVANCE OF THE NON-METHYATED EBV GENOME
There are two stages in the life cycle of EBV when the differential
recognition of methylation sensitive and insensitive ZREs in pro-
moters could occur; in both the viral genome is non-methylated
and Zta is expressed (Figure 1).

(i) During the late stage of the EBV lytic replication cycle, large
numbers of non-methylated viral genomes and Zta protein accu-
mulate within the nucleus. Whether the demethylation occurs via
an active or passive process has not been determined. However, it
is clear that Zta interacts with the non-methylated EBV genomes
that are present during late lytic cycle (Ramasubramanyan et al.,
2012a). Indeed, genome-wide comparisons of Zta binding sites
revealed that methylation-independent ZREs are preferentially
recognized at this stage (Ramasubramanyan et al., 2012a). This
suggests that there could be a switch in Zta-orchestrated gene
expression between the early and late stages of lytic replication
cycle but this will require further investigation.

(ii) Immediately following infection of cells, the non-
methylated EBV genome enters the nucleus, accompanied by a
transient burst of Zta expression (Wen et al., 2007; Halder et al.,
2009; Kalla et al., 2010). The short-lived nature of this event has
thus far precluded a biochemical analysis of Zta binding pat-
terns, but it is clear that only a sub-set of the lytic cycle genes
are expressed at this stage and there is no associated generation
of infectious virions (Halder et al., 2009; Shannon-Lowe et al.,
2009; Kalla et al., 2012). This phase has been termed an abortive

lytic cycle or pre-latency step (Woellmer and Hammerschmidt,
2013) and it is postulated that the lack of DNA methylation on
the viral genome prevents Zta from activating the full set of lytic
replication cycle genes. The advantage to the virus might be that
the expression of a limited set of genes provides a boost to the
growth or survival of infected cells prior to latency becoming fully
established. Indeed, Zta is known to activate the expression of
host cytokine genes (Murata and Tsurumi, 2013; Woellmer and
Hammerschmidt, 2013) and has a role in the development of
lymphomas in a model system (Ma et al., 2011).

CONCLUSION
The EBV genome provides an exception to the epigenetic paradigm
of DNA methylation correlating with a silencing of gene expres-
sion. The virus also exploits a unique transcription factor to
activate genes embedded in methylated DNA. The ability of Zta
to differentially recognize methylated sequence elements together
with the biphasic methylation cycle of the viral genome suggest
that the selection of these properties was driven by the need
to differentially regulate binding to different sub-sets of ZREs.
Indeed Zta expression during the pre-latency stage and the lytic
cycle results in the expression of different sub-sets of target genes,
these are related to the location of methylation-dependent or -
independent ZREs in their promoters and the methylation status
of the viral genome.
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