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MicroRNAs (miRs) regulate diverse molecular and cellular processes including oligoden-
drocyte (OL) precursor cell (OPC) proliferation and differentiation in rodents. However, the
role of miRs in human OPCs is poorly understood. To identify miRs that may regulate
these processes in humans, we isolated OL lineage cells from human white matter and
analyzed their miR profile. Using endpoint RT-PCR assays and quantitative real-time PCR,
we demonstrate that miR-219, miR-338, and miR-17-92 are enriched in human white mat-
ter and expressed in acutely isolated human OLs. In addition, we report the expression of
closely related miRs (miR-219-1-3p, miR-219-2-3p, miR-1250, miR-657, miR-3065-5p, miR-
3065-3p) in both rodent and human OLs. Our findings demonstrate that miRs implicated
in rodent OPC proliferation and differentiation are regulated in human OLs and may regu-
late myelination program in humans. Thus, these miRs should be recognized as potential
therapeutic targets in demyelinating disorders.

Keywords: microRNA, oligodendrocyte precursor cell, differentiation, myelination

INTRODUCTION
In the central nervous system (CNS), the myelination program
that includes oligodendrocyte precursor cell (OPC) proliferation
and differentiation is regulated by factors intrinsic and extrin-
sic to oligodendrocytes (OLs; Sherman and Brophy, 2005). In
addition to growth factors, neurotrophins, neuronal factors, and
transcription factors, members of a recently recognized class of
cell intrinsic regulators known as miRNAs (miRs) have emerged
as key regulators of these processes (Emery, 2010). miRs are small
(20–22 nt), non-coding RNAs that negatively regulate gene expres-
sion by direct binding to a target mRNA. This results in either
mRNA degradation or translation blockade, lowering the level of
the translated protein. It is estimated that around 30% of all mam-
malian protein-coding genes are controlled by miRs (Friedman
et al., 2009).

Dozens of miRs are expressed in OLs (Lau et al., 2008); some
of them, namely miR-219-5p, miR-338-5p, miR-338 -3p, miR-17-
92, miR-138, and miR-23 are implicated in the regulation of OPC
proliferation or differentiation (Lin and Fu, 2009; Budde et al.,
2010; Dugas et al., 2010; Zhao et al., 2010). miRs 219-5p, 338-5p,
and 338-3p are among the most highly expressed miRs in GalC+
OLs when compared to A2B5+ precursors (Lau et al., 2008). Inter-
estingly, transfection of these miRs into primary OPCs promotes
differentiation and myelin gene expression (Dugas et al., 2010;
Zhao et al., 2010). miR-219-5p, miR-338-5p, and miR-338-3p pos-
itively regulate OL differentiation by inhibiting the expression of
differentiation inhibitors such as Sox6 and HES5 (Nave, 2010).

The miR-17-92 cluster is a polycistronic gene that is ampli-
fied in B-cell type lymphomas and lung carcinomas (Ota et al.,

2004; Hayashita et al., 2005). This gene encodes six principal
mature miRs: miR-17-5p, miR-18a-5p, miR-19a-3p, miR-20a-5p,
miR-19b-3p and miR-92a-3p. In addition to a role in accelerating
lymphoma tumorigenesis (He et al., 2005), the miR-17-92 cluster
regulates survival and proliferation of B-cells and lung epithelia
(Hayashita et al., 2005; Matsubara et al., 2007; Ventura et al., 2008).
Conditional null mice lacking miR-17-92 cluster expression in OLs
display a reduced number of oligodendroglial cells and therefore a
function regulating OPC number has been suggested for this miR
cluster (Budde et al., 2010).

Though a role for miR-mediated control of rodent OL dif-
ferentiation is beginning to be elucidated, miR expression and
regulation in primary human OPCs and OLs is currently unchar-
acterized. It is critical to address the specific role of various miRs in
human OPC proliferation and differentiation because the major-
ity of predicted miR targets are not conserved between rodents and
humans (Table A1 in Appendix). Furthermore, miR-219-5p regu-
lates OPC differentiation in rodents, but not in chicken, and while
miR-338-5p and miR-338-3p regulate differentiation in mice, they
do not appear to play a similar role in rats or zebrafish (Dugas et al.,
2010; Zhao et al., 2010). Moreover, the only study so far address-
ing miR expression in humans failed to detect miRs relevant for
rodent OPCs in OLs differentiated from human embryonic stem
cells (Letzen et al., 2010).

A more direct approach to obtain OL lineage cells of human
origin is to directly isolate these cells from the adult human white
matter (Ruffini et al., 2004; Cui et al., 2010). We have previously
isolated different populations of human OLs based on the cell
surface expression of the ganglioside recognized by the A2B5
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antibody. Adult brain-derived A2B5-positive (A2B5+) cells are
able to ensheath axons in vitro (Cui et al., 2010) and engage
in extensive myelination upon transplantation into the myelin-
deficient shiverer mice (Windrem et al., 2004). These cells are
extensively committed with the OL lineage although expression
of NG2 and incorporation of BrdU in vitro indicate that they have
retained some progenitor properties. Adult brain-derived A2B5-
negative (A2B5−) cells express MBP, PLP, and MAG, but not NG2;
they are post-mitotic and consistent with this, PDGFRα is highly
downregulated in this fraction (Ruffini et al., 2004 and data not
shown). We have therefore isolated primary human OL lineage
cells from the human adult brain to analyze the expression of miRs
that regulate OPC differentiation and proliferation in rodents.
Using RT-PCR and real-time quantitative real-time RT-PCR we
demonstrate that some of rodent OPC relevant miRs are enriched
in the human white matter and regulated in acutely isolated
human A2B5+ and A2B5− cells. We also report the expression
in rodent/human OLs of miR-219-1-3p, miR-219-2-3p, miR-1250,
miR-657, miR-3065-5p, and miR-3065-3p. In addition, we provide
estimates of relative abundance of each miR in human and rodent
OLs. Our data represent the first evidence that rodent-relevant
miRs may also regulate OL proliferation and differentiation in
humans.

MATERIALS AND METHODS
RODENT OLIGODENDROCYTE CULTURE
Sprague-Dawley rat pups were obtained from Charles River
Canada (QC, Canada). All procedures were performed in accor-
dance with the Canadian Council on Animal Care guidelines.
Mixed glial cultures were generated from postnatal day 0 Sprague-
Dawley rat cortices and OPCs isolated as previously described
(Armstrong, 1998). Mixed cultures were maintained for 8–10 DIV
in OPC medium (DMEM, 10% FBS, 1% penicillin–streptomycin,
1% Glutamax) prior to OPC isolation. OPCs were plated at a den-
sity of 150,000 cells per well in 12-well plates in OLDEM (DMEM,
5 μg/ml insulin, 100 μg/ml transferrin, 30 nM sodium selen-
ite, 30 nM triiodothyronine, 100 μg/ml penicillin–streptomycin,
2 mM glutamax) and allowed to mature for 8 h (DIV1), 4 days
(DIV5), or 7 days (DIV8) in vitro prior to RNA and protein
isolation.

HUMAN ADULT BRAIN TISSUE AND PRIMARY OL ISOLATION
We obtained white matter tissue excised from surgical resections
carried out to ameliorate non-tumor-related intractable epilepsy
as previously described (Ruffini et al., 2004; Dhaunchak et al.,
2010). The protocol was approved by an institutional review board
according to the guidelines provided by the Canadian Institutes for
Health Research. Informed consent was obtained from all sub-
jects. After surgery, white and gray matter were dissected and
frozen for subsequent RNA isolation or directly processed for OL
isolation. Briefly, tissue was subjected to enzymatic/mechanical
dissociation and cells separated on a linear 30% percoll density
gradient. The resulting suspension was plated in minimal essen-
tial medium containing 5% fetal calf serum for 24 h. The next
day, the poorly adherent cells enriched in human OPCs/OLs were
removed and incubated on ice with microbead-conjugated A2B5
IgM antibody. After washing with magnetic cell sorting (MACS)
buffer (phosphate-buffered saline, 2 mM EDTA, 5% FCS), cells

were sorted using a positive selection column (Miltenyi Biotech).
The A2B5-positive (A2B5+) and negative (A2B5−) fractions were
lysed, homogenized, and frozen for subsequent RNA isolation.

MO3.13 CELL LINE
MO3.13 cells (McLaurin et al., 1995; a gift from Dr. P Talbot) were
cultured and passaged as previously described (McLaurin et al.,
1995; Dhaunchak et al., 2011).

REVERSE TRANSCRIPTION REACTION
miRNA cDNA synthesis required miRNA-specific stem-loop
primers designed as previously described (Chen et al., 2005;
Tang et al., 2006; Schmittgen et al., 2008). Fifty to two-hundred
nanograms of total RNA was combined with 5 nM miR-specific
stem-loop primers, 3 μl of 5 × RT reaction buffer, 1 mM dNTP,
0.26 U/μl ribonuclease inhibitor (Invitrogen, cat. No 10777-019),
and 3.3 U/μl reverse transcriptase (Invitrogen, cat. No 18064-014)
in a 15-μl total volume reaction. Reverse transcription was per-
formed in a pulsed reaction with the following cycling parameters:
16˚C for 30 min, followed by 60 cycles of 20˚C for 30 s, 42˚C for
30 s, and 50˚C for 1 s. Finally, reverse transcriptase was inacti-
vated at 85˚C for 5 min. A separate RT reaction was performed in
order to synthesize 18S RNA and mRNA cDNA. Equal amounts of
RNA (50–200 ng) were combined with 300 ng of random hexamer
primers and heated to 65˚C for 10 min. Samples were allowed to
stand on ice for 2 min and a mixture containing 1× RT buffer,
1 mM dNTP, 2 U/μl ribonuclease inhibitor (Invitrogen, cat. No
10777-019), and 10 U/μl reverse transcriptase (Invitrogen, cat. No
18064-014) was added to the sample (total volume = 20 μl). The
reverse transcription reaction was performed at 25˚C for 5 min,
followed by 50˚C for 30 min and 55˚C for 30 min. At the end of the
reaction, reverse transcriptase was inactivated at 70˚C for 15 min.

Pre-PCR
A multiplex pre-PCR step was included before PCR analysis in
order to detect low expression miRNAs (Tang et al., 2006). miRNA-
specific sense-primers and a universal anti-sense primer pairing to
the cDNA stem-loop region were designed as described by Chen
et al. (Chen et al., 2005; Tang et al., 2006; Schmittgen et al., 2008).
Five microliters of the RT product was combined with 50 nM
sense primer, 2 μM universal anti-sense primer, 5 μl of 5 × PCR
buffer, 0.5 mM dNTP, and 0.25 U/μl Taq polymerase (NEB, cat. No
M0324S) in a 25-μl total volume reaction. PCR cycling parame-
ters were: 95˚C for 10 min, 55˚C for 2 min followed by 18 cycles of
95˚C for 1 s and 65˚C for 1 min. The product was 400-fold diluted
for real-time analysis.

QUANTITATIVE REAL-TIME PCR
Diluted pre-PCR product was combined with 1 μM sense primer,
1 μM universal anti-sense primer and 7.5 μl of 2 × SYBR Green
PCR master mix (Invitrogen, cat. No 4364344) in a 15-μl total
volume reaction. Real-time qPCR was performed in the Applied
Biosystems 7000 thermocycler with the following cycling condi-
tions: 95˚C for 10 min, followed by 40 cycles of 95˚C for 25 s, 59˚C
for 30 s, and 72˚C for 40 s (Tang et al., 2006; Schmittgen et al.,
2008). Data analysis used the 2−ΔΔCt method (Winer et al., 1999;
Schmittgen et al., 2000) and qBase software (Hellemans et al.,
2007) to generate expression values. Values were normalized to
18S RNA levels.
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SEMI-QUANTITATIVE RT-PCR
Equal volumes of diluted pre-PCR product were combined with
1 μM each sense and anti-sense-primers, 3 μl of 5 × PCR buffer,
0.5 mM dNTP, and 1 U of Taq polymerase (NEB, cat. No M0324S)
in a 15-μl total volume reaction. The PCR amplification was per-
formed in the Biometra T1 plus thermocycler with the following
cycling conditions: 95˚C for 3 min, followed by 40 cycles of 94˚C
for 30 s, 55˚C for 30 s, and 72˚C for 30 s. Final extension was carried
out at 72˚C for 10 min. PCR product was resolved by 20% poly-
acrylamide gel electrophoresis and stained with ethidium bromide
for 45 min prior to image acquisition.

PRIMERS
A list containing all the primers used in this study can be found in
the Appendix section (Table A2 in Appendix).

WESTERN BLOT
Equal amounts of protein resolved by SDS-PAGE were transferred
to a PVDF membrane (BioRad, cat. No 1620184). The mem-
brane was blocked with 5% milk in TBST (25 mM Tris pH 7.4,
27 mM KCl, 137 mM NaCl, 0.1% Tween 20) for 1 h and incu-
bated with primary antibodies overnight at 4˚C. The membrane
was washed three times with TBST and incubated with horserad-
ish peroxidase-conjugated secondary antibodies for 1 h at room
temperature (1:10,000 in 0.1% milk-TBST). The membrane was
washed three times with TBST and developed with an Enhanced
Chemiluminescence Detection kit (Pierce, cat. No 32106). Primary
antibodies used: monoclonal mouse 3F4 anti-PLP (hybridoma
supernatant; Dhaunchak and Nave, 2007); polyclonal rabbit anti-
GAPDH (Santa Cruz, SC-25778); monoclonal mouse anti-β-actin
(Sigma, A5441).

STATISTICAL ANALYSIS
Expression analysis in murine brain developmental series was per-
formed in pooled triplicates (n = minimum of three animals per
age group). Expression analysis from cultured rat OPCs was quan-
tified from a representative experiment, of n = 3 independent
experiments, performed in triplicates. For comparison of these
developmental stages, one-way ANOVA test followed by Tukey’s
post-test was performed. miR enrichment in human white matter
was performed from two independent samples in triplicates. For
miR expression in acutely isolated primary human cells, A2B5+,
and A2B5− cells were obtained from four independent surgical
resections from different subjects, each analyzed in triplicates.
The comparison of human samples was performed by unpaired
Student’s t -test.

RESULTS
In order to profile miRNA expression in oligodendrocytes, we first
validated the RT-PCR primers by conventional PCR followed by
polyacrylamide gel electrophoresis and found unique amplicons
(∼70 nts) for every primer pair (Figure 1; Table A2 in Appen-
dix). In addition, the dissociation curves obtained after real-time
RT-PCR amplification of a representative human cDNA sample
confirmed that only one major product is generated during real-
time quantification. Thus the primer pairs listed in Table A2 in
Appendix can be reliably used to profile miRs in human samples.

REGULATION OF miR-219 EXPRESSION DURING OPC DIFFERENTIATION
In humans and mice, two loci encode miR-219 precursor tran-
scripts, mir-219-1 and mir-219-2 (Figure 2A). Processing of the
precursor transcripts by dicer generates three miRs: miR-219-5p
from the 5′ ends of both precursors and the miRs miR-219-1-3p
and miR-219-2-3p from the 3′ end of precursors mir-219-1 and
mir-219-2, respectively. Since the seed region in the three result-
ing mature products is unique, each miR is predicted to regulate
the expression of unique targets. Though miR-219-5p is known to
be upregulated during rodent OPC differentiation, expression of
miR-219-1-3p and miR-219-2-3p has not been studied. We there-
fore analyzed the expression of all three miRs in rodent brain and
cultured OPCs by quantitative real-time PCR.

miR-219-5p levels show elevation trend after the first postnatal
week in mouse brain (Figure 2B; 1.85-fold at P7, 1.76-fold at P21,
P = 0.051), coinciding with the period of OPC differentiation in
rodents (Kessaris et al., 2006). In contrast, both miR-219-1-3p and
miR-219-2-3p show late (P21) but robust upregulation lasting into
adulthood (Figure 2B). Since the expression changes detected in
total brain could result from non-OL lineage cells, we next pro-
filed miR expression in cultures enriched with rat OPCs. Prior to
the miR expression analysis, we confirmed by endpoint RT-PCR
and western blot that when cultured in the absence of mitogens,
OPCs downregulate precursor genes (NG2) and upregulate myelin
genes (PLP, MAG, CGT; Figure 2C). Quantitative real-time RT-
PCR shows that miR-219-5p is dramatically upregulated, peaking
at DIV5 (>6-fold higher than at DIV1) and dropping by DIV8, but
remaining higher than at DIV1 (Figure 2D). Interestingly, miR-
219-5p levels correlate very well with PLP expression at all time
points (Pearson coefficient = 0.999, P = 0.01; Figure 2E). Addi-
tionally, we found that miR-219-1-3p and 219-2-3p are regulated
during rodent OPC differentiation: miR-219-1-3p peaks at DIV5,
but returns to DIV1 levels by DIV8 whereas miR-219-2-3p levels
remain high through DIV5 to DIV8. We also compared the relative
miR level at each DIV and found that despite the upregulation of
miR-219 products during OPC differentiation, their levels are still
lower than miR-17-92 cluster (Table 1). In addition, the higher
levels of miR-219-5p when compared to miR-219-1/2-3p suggests
that miR-219-5p may be preferentially excised from the stem-loop
precursor during OPC differentiation (Table 1). Overall, our data
establish that the levels of miR-219-5p and two related miRs, miR-
219-1-3p and miR-219-2-3p, increase in the rodent brain as it
matures in vivo and in rodent OPCs as they differentiate in vitro.

We next asked if miR-219 mature products are expressed in
the human adult brain. Endpoint RT-PCRs followed by poly-
acrylamide gel electrophoresis shows that transcripts of all three
mature miRs (miR-219-5p, miR-219-1-3p, and miR-219-2-3p)
are detectable in the human brain (Figure 2F). To determine if
these miRs are enriched in human cortical white matter tracts,
we compared the levels of miRs 219-5p, 219-1-3p, and 219-2-
3p in white and gray matter by quantitative real-time RT-PCR
and found that these miRs are at least five times enriched in
the white matter (Figure 2G). As this result suggests that miR-
219 family members are expressed by glial cells, we profiled miR
expression in human OLs. For this purpose, we isolated OL lin-
eage cells from the human adult brain and used cell sorting to
separate stage-specific populations of OLs based on the cell surface

www.frontiersin.org March 2012 | Volume 3 | Article 46 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Non-Coding_RNA/archive


de Faria Jr. et al. miRNA regulation in human oligodendrocytes

FIGURE 1 | Validation of miR-specific primers. Endpoint RT-PCR followed
by polyacrylamide gel electrophoresis showing that all miR primers yield a
unique RT-PCR product with an expected amplicon of ∼70 nts. The entire gels
are shown. Rat OPC (lane 1; 1 DIV and lane 2; 5 DIV), human brain (lane 3; h
gray matter and lane 4; h white matter) and water control (lane 5). (A)

Amplification of miRs 219 loci products yield a single amplicon in both human
and rodent samples. (B) Amplification of miR-338 cluster products yields a
single amplicon in both human and rodent samples, except for 3065-5p which

was undetectable in the human samples used at this time. Note that
miR-1250 and miR-657 are only predicted to be expressed by humans, thus,
only the human samples are shown. (C) Amplification of miR-17-92 cluster
products yields a single amplicon in both human and rodent samples. (D)

Representative melting point analysis for each primer pair. The derivative of
dissociations confirms that a single major amplicon is generated during
quantitative real-time RT-PCR. The representative curves are average of four
replicates.

expression of the ganglioside recognized by the antibody A2B5; in
addition, we also investigated miR expression in the human OPC
cell line MO3.13 (McLaurin et al., 1995). Using endpoint RT-PCR
followed by polyacrylamide gel electrophoresis we did not detect
expression of any miR-219 mature products in MO3.13 cells.

However, miR-219-5p and miR-219-2-3p were readily detected
in acutely isolated human A2B5+ cells, in contrast to the previ-
ously reported in Ols derived from embryonic stem cells (Letzen
et al., 2010; Figure 2H). Quantitative real-time RT-PCR analysis
indicates that both A2B5+ and A2B5− OLs express the three miRs
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FIGURE 2 | Regulation of miR-219 expression during OPC

differentiation. (A) Schematic showing human mir-219-1 and mir-219-2
genomic structures. Processing of the precursor transcripts generates the
same miR-219-5p and two unique miRs, 219-1-3p and 219-2-3p. (B)

Quantitative real-time RT-PCR showing elevation in all three mature
products during postnatal mouse brain development. ΔΔCt method was
used to calculate miR levels normalized to 18S RNA expression. Each time
point represents at least three pooled animals analyzed in triplicates. P
values are derived from one-way ANOVA analysis followed by the Tukey’s
post-test. **P < 0.01; ***P < 0.001. (C) Left panel: endpoint RT-PCR
followed by agarose gel electrophoresis showing that early OPC genes are
downregulated and myelin genes are upregulated when rat OPCs are
cultured in vitro in the absence of mitogens. Right panel: western blot
showing that PLP is upregulated during OPC differentiation. (D) Quantitative
real-time RT-PCR showing upregulation of all three mature miR-219 products
during rat OPC differentiation in vitro. ΔΔCt method was used to calculate
miR levels normalized to 18S RNA expression. The graphs are
representative of one of the three experiments performed in triplicates. P
values are derived from one-way ANOVA analysis followed the Tukey’s

post-test. **P < 0.01; ***P < 0.001. (E) Pearson correlation between
miR-219-5p and PLP levels during rat OPC differentiation in vitro. miRNA
levels were calculated as described in (D). P value is derived from two-tailed
unpaired Student’s t -test. P < 0.05. (F) Endpoint RT-PCR followed by
polyacrylamide gel electrophoresis showing that all three mature miR-219
products are expressed in the human brain. (G) Quantitative real-time
RT-PCR showing that miR-219 mature products are enriched in human brain
white matter. ΔΔCt method was used to calculate miR levels normalized to
18S RNA expression. Fold-change was calculated by dividing miR levels in
white matter by levels in gray matter. The graphs are obtained from analysis
of two brains done in triplicates. P values are derived from two-tailed
unpaired Student’s t -test. (H) Endpoint RT-PCR followed by polyacrylamide
gel electrophoresis showing that miR-219 mature products are expressed
by human A2B5+ OLs. (I) Quantitative real-time RT-PCR showing that
miR-219 levels are higher in adult human A2B5+ cells when compared to
A2B5− OLs. ΔΔCt method was used to calculate miR levels normalized to
18S RNA expression. Each bar represents the average of four subjects
analyzed by real-time PCR done in triplicates. P values are derived from
two-tailed unpaired Student’s t -test. *P < 0.05.
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Table 1 | Relative expression analysis of miRs in rodent and human OLs1.

Differentiating rat OPCs

Day 1 Day 5 Day 8

miRNA Expression miRNA Expression miRNA Expression

miR-92a-3p 118141.1 miR-92a-3p 161161.9 miR-17-5p 37940.8

miR-17-5p 60698.8 miR-17-5p 74128.1 miR-92a-3p 23362.8

miR-19a-3p 39190.5 miR-19a-3p 69644.3 miR-20a-5p 5811.3

miR-19b-3p 16972.9 miR-19b-3p 30598.8 miR-19b-3p 5270.2

miR-20a-5p 14889.0 miR-18a-5p 1907.5 miR-19a-3p 4518.0

miR-18a-5p 945.4 miR-219-5p 1549.6 miR-18a-5p 681.0

miR-219-1-3p 108.5 miR-219-1-3p 469.4 miR-219-5p 388.2

miR-219-5p 103.7 miR-20a-5p 395.7 miR-219-2-3p 141.2

miR-219-2-3p 83.1 miR-219-2-3p 303.6 miR-338-5p 82.2

miR-338-5p 25.6 miR-338-5p 265.2 miR-219-1-3p 76.9

miR-3065-5p 1.0 miR-338-3p 7.9 miR-338-3p 4.8

miR-338-3p 1.0 miR-3065-5p 1.0 miR-3065-5p 1.0

Acutely isolated human OLs

A2B5+ A2B5−

miRNA Expression miRNA Expression

miR-92a-3p 205465.6 miR-92a-3p 1598436.4

miR-219-2-3p 1748.6 miR-17-5p 14497.1

miR-17-5p 1141.9 miR-20a-5p 9793.6

miR-219-1-3p 815.7 miR-219-2-3p 5246.4

miR-20a-5p 802.2 miR-19b-3p 4078.7

miR-19a-3p 625.9 miR-19a-3p 4059.0

miR-19b-3p 559.8 miR-219-1-3p 1913.8

miR-18a-5p 147.6 miR-18a-5p 1609.6

miR-338-5p 73.9 miR-338-5p 122.7

miR-219-5p 64.0 miR-657 77.9

miR-657 18.3 miR-219-5p 55.9

miR-1250 14.7 miR-338-3p 43.2

miR-338-3p 10.7 miR-1250 15.3

miR-3065-5p 9.0 miR-3065-5p 15.0

miR-3065-3p 1.0 miR-3065-3p 1.0

1miR expression was normalized to 18S RNA. miR levels relative to the least expressed miR in each condition were calculated and are listed in the table.

and that expression is downregulated as cells mature from A2B5+
to A2B5− OLs (Figure 2I). In summary, our findings provide the
first evidence that human OL lineage cells express mature products
of the miR-219 locus, indicating a conserved role for these miRs
during human OL differentiation.

REGULATION OF THE miR-338 CLUSTER DURING OPC DIFFERENTIATION
In humans, the miR-338 cluster encodes six different mature miRs
(miR-338-5p, miR-338-3p, miR-3065-5p, miR-3065-3p, miR-657,
and miR-1250) that are encoded by four independent loci
(Figure 3A). Mir-657 and mir-1250 each encode only a single
mature form (from the 3′-end of mir-657 and the 5′-end of
mir-1250). Interestingly, these two miRs are specific to humans
and have not been detected in rodents. miRs 338-5p and 338-3p

were previously detected in mature rodent OLs but miR-3065
expression has not been demonstrated before. We therefore used
quantitative real-time RT-PCR to study the expression of all
miR-338 cluster members during mouse brain development and
OPC differentiation in vitro (Figures 3B,C).

During maturation of the mouse brain, miR-338-3p undergoes
a robust upregulation similar to that of the 219-3p miRs. Specifi-
cally, there is a delayed 10-fold elevation in miR-338-3p expression
at P21 and a 30-fold elevation at P60 (compared to the levels at
P1). In contrast, miR-338-5p appears to be expressed throughout
postnatal development. miR-3065 shows a unique profile with sig-
nificant downregulation during the first two postnatal weeks and
upregulation by the third week (Figure 3B). Quantitative real-
time RT-PCR shows that in vitro OPC differentiation is marked
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FIGURE 3 | Regulation of miR-338 cluster expression during OPC

differentiation. (A) Schematic showing human mir-338 cluster genomic
structure. Note that miR-3065 is encoded by the complementary strand of
miR-338. (B) Quantitative real-time PCR showing that overall expression of
miR-338 cluster increases in the mouse brain during postnatal
development. ΔΔCt method was used to calculate miR levels normalized
to 18S RNA expression Each time point represents at least three pooled
animals analyzed in triplicates. P values are derived from one-way ANOVA
analysis followed by the Tukey’s post-test. *P < 0.05; **P < 0.01;
***P < 0.001. (C) Quantitative real-time PCR showing upregulation in
miR-338-5p and -3p and downregulation of miR-3065-5p during rat OPC
differentiation in vitro. ΔΔCt method was used to calculate miR levels
normalized to 18S RNA expression. The graphs are representative of one of
the three experiments performed in triplicates. P values are derived from
one-way ANOVA analysis followed by the Tukey’s post-test. **P < 0.01;
***P < 0.001. (D) Endpoint RT-PCR followed by polyacrylamide gel

electrophoresis showing that the miR-338 cluster is expressed in the
human brain. (E) Quantitative real-time PCR showing that all members of
the miR-338 cluster except for miRs 3065-5p and -3p are enriched in human
brain white matter. ΔΔCt method was used to calculate miR levels
normalized to 18S RNA expression. Fold-change was calculated by dividing
miR levels in white matter by levels in gray matter. The graphs are obtained
from analysis of two different brains done in triplicates. P values are
derived from two-tailed unpaired Student’s t -test. (F) Endpoint RT-PCR
followed by polyacrylamide gel electrophoresis showing that miR-338
cluster is expressed by the human cell line MO3.13 and human A2B5+ OLs.
(G) Quantitative real-time PCR showing that levels of some miR-338 cluster
members are higher in adult human A2B5+ cells than A2B5− OLs. ΔΔCt
method was used to calculate miR levels normalized to 18S RNA
expression. Each bar represents the average of four subjects analyzed by
real-time PCR done in triplicates. P values are derived from two-tailed
unpaired Student’s t -test. *P < 0.05.
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by a robust upregulation (five-fold increase) of both miR-338-5p
and miR-338-3p (Figure 3C). Interestingly, we found miR-338-5p
to be more abundant then miR-338-3p from day 1 to day 8, indi-
cating preferential maturation of the miR located at 5′ arm of the
pre-miR-338 (Table 1). miR-3065-5p is highly expressed at DIV1
but markedly downregulated at DIV5. These data suggest that
the positive and negative strands of the miR-338 locus, producing
miR-338 and miR-3065, respectively, are preferentially transcribed
during different stages of rodent OPC differentiation.

Since the miR-338 cluster in humans encodes two additional
miRs not found in rodents (miR-1250 and miR-657), we inves-
tigated the expression of these miRs in human samples. We first
studied the expression profile of all six mature miRs transcribed
from the miR-338 cluster locus in human brain. By endpoint RT-
PCR followed by polyacrylamide gel electrophoresis, we were able
to detect the expression of miRs 338-5p, 1250, 3065-3p, and 657
(Figure 3D). Although miR-338-3p and miR-3065-5p were not
detected by RT-PCR, both miRs were readily amplified using more
sensitive real-time RT-PCR. To our knowledge, this is the first
report of the expression of miRs 1250, 3065-5p, 3065-3p, and 657
in the human brain. We next used quantitative real-time RT-PCR
to compare expression levels in white and gray matter and found
that miR-338-5p and miR-338-3p are highly enriched (>15-fold)
in white matter tracts (Figure 3E). miR-3065-5p and miR-3065-3p
do not show any clear enrichment in either white or gray matter
while miR-1250 and miR-657 are slightly concentrated in the white
matter (2- and 3.5-fold enrichment respectively).

The enrichment of miR-338-5p and miR-338-3p in the white
matter suggests that human glial cells express these miRs. To
determine whether this is the case, we performed endpoint RT-
PCR in the MO3.13 cell line and acutely isolated OLs. Using this
method, we found that miR-338-5p, miR-1250, and miR-3065-5p
are expressed in the MO3.13 cell line whereas miR-338-5p, miR-
3065-5p, and miR-657 are expressed in A2B5+ cells (Figure 3F).
Quantitative real-time RT-PCR analysis shows that all miR-338
cluster members are detectable in acutely isolate OLs and that miR-
338-5p, miR-1250, miR-3065-5p, and miR-657 are significantly
downregulated in the A2B5− fraction (Figure 3G). Interestingly,
relative expression analysis grouped miR-338 cluster members
together, suggesting that these miRs may be co-transcribed in
human OLs (Table 1). In summary, we provide the first evidence
that miR-338 cluster is expressed in human OLs, as previously
demonstrated in rodents (Lau et al., 2008; Dugas et al., 2010;
Zhao et al., 2010). These findings suggest a conserved role for
the miR-338 cluster in regulating OPC differentiation in humans.

REGULATION OF THE miR-17-92 CLUSTER DURING OPC
DIFFERENTIATION
The miR-17-92 cluster encodes 12 different miRs in both humans
and rodents. Some of them (miR-17-5p, 18a-5p, 19a-3p, 20a-5p,
19b-3p, and 92a-3p, highlighted in red in Figure 4A) have been
implicated in the regulation of OPC proliferation in rodents, but
their expression during postnatal brain development and cultured
OPC differentiation has not been addressed (Budde et al., 2010).
We used quantitative real-time RT-PCR to study the expression of
these miRs during mouse brain development and found a dramatic
downregulation within the first postnatal week, in agreement with

their role in controlling OPC number (Budde et al., 2010). When
compared to P1, levels at P7 are about 90% reduced and main-
tained at a similarly low level into adulthood (Figure 4B). Intrigu-
ingly, at P21, a significant upregulation from levels at P7 is seen for
all miRs except miR-92a-3p, suggesting that these miRs also play
some specialized role in the postnatal brain. Quantitative real-time
RT-PCR shows that miRs 19a-3p, 20a-5p, 19b-3p, and 92a-3p are
also clearly downregulated in cultured OPCs during differentia-
tion (Figure 4C). No significant changes are seen for miRs 17-5p
and 18a-5p. Though most miR-17-92 cluster members are down-
regulated during OPC differentiation, relative expression analysis
reveals that these miRs are the most highly expressed miRs in both
precursor and mature OLs (Table 1), suggesting that these miRs
might play a role in regulating levels of housekeeping transcripts
in OLs.

All six miR-17-92 cluster members are readily detected in the
adult human brain by endpoint RT-PCR (Figure 4D). In addi-
tion, quantitative real-time RT-PCR shows that they are enriched
in white matter tracts when compared to gray matter (>4-fold;
Figure 4E). We also used endpoint RT-PCR to study their expres-
sion in human OL lineage cells and found that all miRs are
expressed in the human OPC cell line (MO3.13) and in acutely
isolated A2B5+ OLs (Figure 4F). Quantitative real-time RT-PCR
analysis revealed that expression of the miR-17-92 cluster is highly
upregulated in MO3.13 cells when compared with adult primary
OLs (data not shown). All miR-17-92 miRs were readily detectable
by quantitative real-time RT-PCR in both A2B5+ and A2B5− OLs
with no significant differences in expression levels between the two
populations (Figure 4G). This data is in agreement with the rel-
ative expression analysis revealing that this cluster represents one
of the most highly expressed miRs in both A2B5+ and A2B5− OLs
(Table 1).

DISCUSSION
We have applied endpoint RT-PCR followed by polyacrylamide gel
electrophoresis and quantitative real-time RT-PCR to profile miR
expression in human OLs. Our focused approach prioritized miRs
that have been previously shown to regulate OPC number and dif-
ferentiation in rodents. The current data provides evidence for the
expression of miR-219, miR-338, and miR-17-92 clusters in acutely
isolated-adult brain OLs in marked contrast to what was observed
with human OLs derived from embryonic stem cells (Letzen et al.,
2010). In addition, we show that some of these glial enriched miRs
are differentially expressed by human A2B5+ and A2B5− OLs.

miR REGULATION IN RODENT OLs
Expression profiling studies with rodent OLs have reported that
several miR species are dramatically regulated during OPC differ-
entiation (Lau et al., 2008; Budde et al., 2010; Dugas et al., 2010).
In these studies, over-expression of miR-219-5p, miR-338-5p, and
miR-338-3p was shown to promote rodent OPC differentiation,
indicating that these miRs play important roles during myelina-
tion (Lau et al., 2008; Budde et al., 2010; Dugas et al., 2010). Our
results are in agreement with previous findings and we for the
first time demonstrate that closely related miRs (miR-219-1-3p,
miR-219-2-3p, miR-338-3p, and miR-3065-5p) are also regulated
during rodent OPC differentiation. Notably, miR-3065-5p shows
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FIGURE 4 | Regulation of miR-17-92 cluster expression during OPC

differentiation. (A) Schematic showing the human mir-17-92 cluster
genomic structure. (B) Quantitative real-time PCR showing that levels of
members of the miR-17-92 cluster are dramatically downregulated during
postnatal mouse brain development. ΔΔCt method was used to calculate
miR levels normalized to 18S RNA expression. Each time point represents at
least three pooled animals analyzed in triplicates. P values are derived from
one-way ANOVA analysis followed by the Tukey’s post-test. **P < 0.01;
***P < 0.001. (C) Quantitative real-time PCR showing that levels of
members of the miR-17-92 cluster are downregulated during rat OPC
differentiation in vitro. ΔΔCt method was used to calculate miR levels
normalized to 18S RNA expression. The graphs are representative of one of
the three experiments performed in triplicates. P values are derived from
one-way ANOVA analysis followed by the Tukey’s post-test. **P < 0.01;
***P < 0.001. (D) Endpoint RT-PCR followed by polyacrylamide gel

electrophoresis showing that miR-17-92 members are expressed in the
human brain. (E) Quantitative real-time PCR showing that miR-17-92
members are enriched in the human brain white matter. ΔΔCt method was
used to calculate miR levels normalized to 18S RNA expression. Fold-change
was calculated by dividing miR levels in white matter by levels in gray matter.
The graphs are obtained from analysis of two brains done in triplicates. P
values are derived from two-tailed unpaired Student’s t -test. (F) Endpoint
RT-PCR followed by polyacrylamide gel electrophoresis showing that
miR-17-92 members are expressed by MO3.13 cells and human A2B5+ OLs.
(G) Quantitative real-time PCR analysis of the miR-17-92 cluster members in
human A2B5+ and A2B5− OLs shows no difference in expression between
the two cell types. ΔΔCt method was used to calculate miR levels
normalized to 18S RNA expression. Each bar represents the average of four
subjects analyzed by real-time PCR done in triplicates. P values are derived
from two-tailed unpaired Student’s t -test.
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a dramatic drop in expression during the first 5 days in vitro,
suggesting that 3065-5p might play a role in regulating OPC
proliferation and/or differentiation.

In previous microarray studies, regulation of miR-17-92 cluster
expression during the OPC/OL transition was not reported (Lau
et al., 2008). The high sensitivity of our real-time approach demon-
strates that miR-19a-3p, miR-19b-3p, miR-20a-5p, and miR-92a-
3p are downregulated during rodent OPC differentiation. This
data is consistent with the proposed role of the miR-17-92 cluster
in the control of cell number (Budde et al., 2010). The relative
expression analysis, however, reveals that members of the miR-
17-92 cluster are among the most highly expressed miRs in both
rodent OPCs and mature OLs (Table 1). In addition, the expres-
sion profile of miR-17-92 cluster members during OPC differen-
tiation in vitro is very similar to the profile seen in the developing
mouse brain (Figure 4B), suggesting that this cluster is OPC/OL
enriched. This data is consistent with the finding that the miR-17-
92 cluster is enriched in OPCs rather than in astrocytes (Budde
et al., 2010). Thus the miR-17-92 cluster may be designated as an
OL enriched miR in rodents.

miR REGULATION IN HUMAN OLs
The human brain has also been examined for miR expression and
miR-219-5p, miR-338-5p, miR-338-3p, and members of the miR-
17-92 cluster have been reported to be expressed (Barad et al.,
2004; Sempere et al., 2004). In addition to the above-mentioned
miRs, we report that four other miRs, miR-219-1-3p, miR-219-2-
3p, miR-1250, and miR-657, are enriched in white matter tracts
of the human brain (Figures 2G and 3E). Our data is consis-
tent with previous findings showing dramatic downregulation
of miR-219-5p and miR-338-5p in inactive white matter lesions
in multiple sclerosis patients (Junker et al., 2009). Importantly,
our study is the first to report that miR-219-5p and miR-338-
5p and -3p are expressed by human OLs (Figures 2H and 3F).
These findings open the possibility that the same miRs control-
ling OPC differentiation in rodents (miR-219-5p and miR-338-
5p and -3p) may also control OPC differentiation in humans.

Discrepancies between our focused expression study and the
microarray approach previously employed (Letzen et al., 2010)
could be due to differences in the origin of the samples and detec-
tion sensitivity. In the current study, human OLs were acutely
isolated whereas in the previous report, OLs had been differ-
entiated from human embryonic stem cells. In addition, we
used very sensitive real-time qRT-PCR to profile miRs whereas
in the previous report less sensitive miR microarray was used.
Despite the use of different techniques, both studies show that
the miR-17-92 cluster is abundantly expressed by human OLs
(Figure 4; Table 1). Taken together, our data, along with the data
obtained from inactive white matter lesions in multiple sclero-
sis (Junker et al., 2009) strongly suggests that miR-219, miR-338,
and miR-17-92 clusters may also regulate OPC differentiation in
humans.

In summary, our study establishes that rodent-relevant miRs
are also expressed by human OLs. We propose that miRs demon-
strated to be functionally relevant in rodents perform a con-
served function and regulate the proliferation and differentia-
tion of human OPCs. Further investigation into the functional
contribution of these miRs to human myelination may provide
insights into their potential as targets to promote remyelination in
demyelinating diseases.
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APPENDIX

Table A1 | Percentage of miR targets conserved across vertebrates1.

miR Conserved targets Total targets Conserved targets (%)

17-5p 990 3635 27.2

18a-5p 189 1752 10.8

19a-3p 938 2616 35.9

19b-3p 938 2616 35.9

20a-5p 990 3635 27.2

92a-3p 692 2331 29.7

219-5p 273 1349 20.2

219-1-3p 70 1625 4.3

219-2-3p 95 1791 5.3

338-5p 608 3157 19.3

338-3p 198 2919 6.8

1250 6 450 1.3

657 140 2245 6.2

1Human, frog, chicken, rodent, and non-human primate miR targets were predicted by Human TargetScan (www.targetscan.org) and the percentage of conserved

and non-conserved targets for each miR was calculated.
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Table A2 | List of primers used on this study2.

miRNA

REVERSETRANSCRIPTION STEM-LOOP PRIMER

miR-219-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGAATTGC 3′

miR-219-1-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCGGGACGT 3′

miR-219-2-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAGATGT 3′

miR-338-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACTCAGC 3′

miR-338-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAACAAAA 3′

miR-1250 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAAAGGCCA 3′

miR-3065-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCCAGCAT 3′

miR-3065-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTCCAACA 3′

miR-657 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCCTAGAGA 3′

miR-17-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC 3′

miR-18a-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTATCTGC 3′

miR-19a-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCAGTTTT 3′

miR-20a-5p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCTACCTGC 3′

miR-19b-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCAGTTTT 3′

miR-92a-3p 5′ CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAGGCCGG 3′

RT-PCR FORWARD PRIMER

miR-219-5p 5′ ACACTCCAGCTGGGTGATTGTCCAAACGCA 3′

miR-219-1-3p 5′ ACACTCCAGCTGGGAGAGTTGAGTCTGGAC 3′

miR-219-2-3p 5′ ACACTCCAGCTGGGAGAATTGTGGCTGGAC 3′

miR-338-5p 5′ ACACTCCAGCTGGGAACAATATCCTGGTGC 3′

miR-338-3p 5′ ACACTCCAGCTGGGTCCAGCATCAGTGATT 3′

miR-1250 5′ ACACTCCAGCTGGGACGGTGCTGGATGTGG 3′

miR-3065-5p 5′ ACACTCCAGCTGGGTCAACAAAATCACTGA 3′

miR-3065-3p 5′ ACACTCCAGCTGGGTCAGCACCAGGATATT 3′

miR-657 5′ ACACTCCAGCTGGGGGCAGGTTCTCACCCT 3′

miR-17-5p 5′ ACACTCCAGCTGGGCAAAGTGCTTACAGTG 3′

miR-18a-5p 5′ ACACTCCAGCTGGGTAAGGTGCATCTAGTG 3′

miR-19a-3p 5′ ACACTCCAGCTGGGTGTGCAAATCTATGCAA 3′

miR-20a-5p 5′ ACACTCCAGCTGGGTAAAGTGCTTATAGTG 3′

miR-19b-3p 5′ ACACTCCAGCTGGGTGTGCAAATCCATGCA 3′

miR-92a-3p 5′ ACACTCCAGCTGGGTATTGCACTTGTCCCG 3′

RT-PCR UNIVERSAL REVERSE PRIMER

All miRs 5′GTGTCGTGGAGTCGGCAATTCAGTTGAG 3′

2The nucleotide sequence of primers used for miR amplification are listed. All primers were designed according to previously published criteria (Chen et al., 2005;

Tang et al., 2006; Schmittgen et al., 2008).
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