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Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has
been slowedwith the advent of anti-retroviral therapy (ART). However, ART is not a
cure and as such has pushed the disease into a chronic infection. One potential
cure strategy that has shown promise is the Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been
shown to successfully edit and/or excise the integrated provirus from infected
cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily
been conducted with SpCas9 or SaCas9. However, additional Cas proteins are
discovered regularly and modifications to these known proteins are being
engineered. The alternative Cas molecules have different requirements for
protospacer adjacent motifs (PAMs) which impact the possible targetable
regions of HIV-1. Other modifications to the Cas protein or gRNA handle
impact the tolerance for mismatches between gRNA and the target. While
reducing off-target risk, this impacts the ability to fully account for HIV-1
genetic variability.

Methods: This manuscript strives to examine these parameter choices using a
computational approach for surveying the suitability of a Cas editor for HIV-1 gene
editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the
safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This
technique was used to evaluate 46 different potential Cas editors for their HIV
therapeutic potential.

Results: Our examination revealed that broader PAMs that improve the targeting
potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs,
while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the
breadth of targetable locations. Investigation of the mismatch tolerance of Cas
editors indicates a 2-missmatch tolerance is an ideal balance between on-target
sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG
and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs
against HIV.

Discussion: Currently, larger proteins and wider PAMs lead to better targeting
capacity. This implies that research should either be targeted towards delivering
longer payloads or towards increasing the breadth of currently available small Cas
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editors. With the discovery and adoption of additional Cas editors, it is important for
researchers in theHIV-1 gene editing field to explore thewider world of Cas editors.
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1 Introduction

The CRISPR/Cas system has revolutionized the field of
genetic engineering and biotechnology with applications to
provide a cure to genetic diseases affected at a single locus as
well as people living with human immunodeficiency virus type 1
(HIV-1) (Liao et al., 2015; Atkins et al., 2021). The CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats)
system is a naturally occurring mechanism found in bacteria
and archaea which serves as an adaptive immune system,
enabling these organisms to defend against viral infections by
storing and recognizing fragments of viral DNA. The Cas
(CRISPR-associated) protein is a key component of the
CRISPR system which acts as an effector molecule that carries
out the DNA editing/cleaving function and is accompanied by the
guide RNA (gRNA) which acts as a targeting scaffold for the Cas
protein to interact with and recognize DNA and RNA targets via
complementary base pairing.

Cas proteins are divided into two main classes: Class 1 systems
use multiple Cas proteins while Class 2 effectors use a single,
multidomain protein with all activities required for DNA/RNA
interference. This makes them ideal for use in biomolecular
delivery and genetic engineering. The Cas protein classes are
further subdivided into types based on distinctive signatures and
architecture of the Cas endonucleases; Class 1 systems include types
I, III, and IV, while Class 2 systems contain types II (Cas9), V
(Cas12), and VI (Cas13). Type II Cas9 effectors contain RuvC and
HNH nuclease domains while type V Cas12 proteins have a single
RuvC domain and type VI Cas13 proteins lack a DNase domain but
have two conserved HEPN domains involved in RNA cleavage
(Shmakov et al., 2017; Konermann et al., 2018; Zhang et al.,
2019a; Yan et al., 2019; Makarova et al., 2020).

Cas proteins surveil the genome randomly and recognize a
specific sequence of nucleotides referred to as the protospacer
adjacent motif (PAM) site. Upon PAM recognition, base-pairing
between the adjacent target site and the 20 bp protospacer sequence
of the gRNA provides the programable targeting to a specific
instance of a PAM site on the genome (Doench et al., 2014).
Upon sufficient gRNA:target homology, the Cas protein cuts
genomic DNA in either a blunt (type II effectors) or staggered
(type V effectors) fashion. Engineering this system to target a specific
genomic locus involves finding a suitable PAM site within the target
of interest and constructing a gRNA to match the adjacent region.
The PAM site of an effector is an important design consideration
when targeting a genomic locus as it limits the space of targetable
locations. Recent advances in molecular engineering of the Cas
effector have targeted expanding the available PAM sites.

Gene length is another important consideration when
choosing a Cas effector. The type II Cas9 from Streptococcus
pyogenes (SpCas9) is the most well characterized Cas system and
has been effectively used in gene therapy, but in terms of

biomolecular delivery the SpCas9 is 4,104 bases in length
which limits compact delivery systems like adeno-associated
viral (AAV) vectors with a carrying capacity of 4.7 kilobases
(Cong et al., 2013; Hsu et al., 2013). This has fueled research in
the Cas9 ortholog from Staphylococcus aureus (SaCas9) which is
markedly smaller than SpCas9 at 3,159 bases (Nishimasu et al.,
2015; Ran et al., 2015). However, SaCas9 recognizes a restrictive
PAM site of NNGRRT limiting its targeting potential relative to
the shorter NGG of SpCas9. The type V Cas12 effectors,
previously known as Cpf1, recognize T-rich PAM sites. Several
of these from Lachnospiraceae bacterium (LbCas12a),
Acidaminococcus sp. (AsCas12a), and Francisella novicida
(FnCas12a) have shown potential in human cells (Zetsche
et al., 2015; Hirano et al., 2016a; Dong et al., 2016; Yamano
et al., 2016; Acharya et al., 2019). The type VI Cas13 systems have
almost no PAM requirement and target RNA for degradation
(Abudayyeh et al., 2017).

In attempts to generate both compact and broad effector Cas
proteins, scientists have deepened the search into Cas orthologs in a
bid to identify Cas effectors that are small and have PAM sites that
allow for more flexibility (Esvelt et al., 2013; Shmakov et al., 2015;
Burstein et al., 2017; Shmakov et al., 2017; Harrington et al., 2018;
Gasiunas et al., 2020; Hu et al., 2020; Wang et al., 2020). To this end,
variants of the Cas proteins have been engineered through base-
editing the amino acids around the PAM recognition domain to
enhance the efficiency of the Cas protein, such as HypaCas9 and
eSpCas9 (Slaymaker et al., 2016; Tycko et al., 2016; Schmid-Burgk
et al., 2020), or to alter the PAM recognition site of the Cas effector,
such as SpCas9-NG or SaCas9-KKH which recognize NG and
NNNRRT, respectively (Kleinstiver et al., 2015a; Kleinstiver et al.,
2015b; Anders et al., 2016; Hirano et al., 2016b; Gao et al., 2017; Hu
et al., 2018; Yuen et al., 2022; Spasskaya et al., 2023). Therefore, the
Cas system has significantly expanded as a toolbox for targeting
DNA or RNA and these orthologs and variants of Cas effectors have
yet to be fully explored for their use in targeting the HIV-1 provirus.

Both HIV-1 viral and host components, such as the co-
receptors CCR5 and CXCR4 (Allen et al., 2018), have been
targeted in HIV-1 cure strategies, but the integrated proviral
DNA remains as the main target to eliminate the latent viral
reservoirs (Liu et al., 2017c; Yin et al., 2017; Xiao et al., 2019b).
The high variability of HIV-1 sequences both within and among
patients requires careful engineering of gRNAs which are both
safe and effective as well as broad-spectrum (Sullivan et al., 2019;
Chung et al., 2020; Sullivan et al., 2020; Allen et al., 2023). HIV-1-
specific gRNAs have been designed which are capable of broadly
targeting quasispecies, and now we further our exploration into
CRISPR/Cas system engineering by querying potential
orthologous and/or variant Cas proteins for targeting HIV-1.
The earliest methodologies considered the sequence of a single
lab-strain (Hu et al., 2014; Dampier et al., 2017). These evolved to
consider genetic variability across databases (Roychoudhury
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et al., 2018), within single individuals (Dampier et al., 2018), and
across subtypes (Chung et al., 2021).

Computational selection of gRNAs is a burgeoning field with
tools available for most purposes. End-to-End tools like

Benchling (2023) and CHOPCHOP (Labun et al., 2019) are
able to guide a researcher through the selection and in silico
screening of high-quality gRNAs. However, they are limited to
pre-defined Cas and genome searches and cannot be tuned to

TABLE 1 Cas effector protein variants and orthologs with potential for use in targeting HIV-1.

Type Effector/
Name

Size
(aa)

Spacer
(nt)

PAM/PFS Target DSB HIV-1 target Host target Ref.

II-A SpCas9 1,368 20 5’-
(PS)-NGG

dsDNA Blunt Ebina et al. (2013), Hu
et al. (2014), Liao et al.

(2015), Zhu et al.
(2015), Wang et al.

(2016a), Kaminski et al.
(2016b), Wang et al.

(2016b), Kaminski et al.
(2016c), Wang et al.
(2016c), Yin et al.

(2016), Lebbink et al.
(2017), Ophinni et al.
(2018), Chung et al.
(2020), Ophinni et al.
(2020), Sessions et al.
(2020), Herskovitz et al.
(2021), Khanal et al.
(2022), Allen et al.

(2023)

CCR5/CXCR4 (Li et al.,
2015; Liu et al., 2017c;

Ehrke-Schulz et al., 2017;
Xu et al., 2017; Knipping
et al., 2022; Li et al., 2022;

Scheller et al., 2022)

Cong et al. (2013), Hsu
et al. (2013), Mali et al.

(2013), Ran et al.
(2013), Nishimasu

et al. (2014), Wu et al.
(2014)

APOBEC3G/APOBEC3B
(Bogerd et al., 2015)

Tetherin (Zhang et al.,
2019b)

II-A SpCas9-NG 1,368 20 5’-(PS)-NG dsDNA Blunt - CCR5/CXCR4 (Knipping
et al., 2022)

Nishimasu et al.
(2018), Kim et al.
(2020), Oura et al.

(2021), Sangree et al.
(2022)

II-A SaCas9 1,053 21–23 5’-(PS)-
NNGRRT

dsDNA Blunt Kaminski et al. (2016a),
Yin et al. (2017), Wang
et al. (2018), Dash et al.

(2019)

CCR5/CXCR4 (Wang
et al., 2017; Xiao et al.,
2019a; Dash et al., 2023)

Nishimasu et al.
(2015), Ran et al.

(2015)

II-A SaCas9-
KKH

1,053 20–23 5’-(PS)-
NNNRRT

dsDNA Blunt - CCR5 (Liu et al., 2021a) Kleinstiver et al.
(2015a), Yuen et al.

(2022)

V-A LbCas12a
(Cpf1)

1,228 23–25 5′-
TTTV-(PS)

dsDNA;
ssDNA

5′
staggered

Gao et al. (2020), Fan
et al. (2022), Krysler

et al. (2022)

- Dong et al. (2016),
Yamano et al. (2017),
Chen et al. (2018)

V-A AsCas12a
(Cpf1)

1,307 24 5′-
TTTN-(PS)

dsDNA;
ssDNA

5′
staggered

Liu et al. (2021b) CCR5 (Liu et al., 2020) Yamano et al. (2016),
Yamano et al. (2017),
Chen et al. (2018)

V-B AaCas12b
(C2c1)

1,129 20 5′-TTN-(PS) dsDNA 5′
staggered

- CCR5 (Teng et al., 2018) Shmakov et al. (2015),
Teng et al. (2018)

V-E Cas12e
(PlmCasX2)

978 16–24 5′-
TTCN-(PS)

dsDNA 5′
staggered

- CCR5 (Armstrong et al.,
2023)

Burstein et al. (2017),
Liu et al. (2019), Yang

and Patel (2019),
Selkova et al. (2020)

VI-A LbuCas13a
(C2c2)

1,159 24 No PFS
requirement

ssRNA N/A Yin et al. (2020) - Liu et al. (2017b)

VI-D RspCas13d
(CasRx)

922 20 No PFS
requirement

ssRNA N/A Nguyen et al. (2021) - Konermann et al.
(2018), Yan et al.
(2018), Zhang et al.
(2018), Zhang et al.
(2019a), Cheng et al.

(2023)

N/A, not applicable; nt, nucleotide(s); aa, amino acids; PAM, protospacer adjacent motif; PFS, protospacer flanking sequence PS, protospacer; N, any base; R = A/G; Y = C/T; W = A/T;

V = A/C/G; H = A/C/T; D = A/G/T; M = A/C; B = G/T/C.
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nominate from one genome and evaluate off-targets in a different
genome. Tools like Crisflash (Jacquin et al., 2019) can be used to
find targets in variable sequences through the use of a Variant
Call Format (vcf) file; however, this tool is tuned to mammalian
genetics and cannot handle a quasispecies as a list of phases.
Other tools like CRISPR MultiTargeter (Prykhozhij et al., 2015)
are designed to find a protospacer that is repeated multiple times
across a transcript to improve targeting. None of these, have the
required features for the proposed analysis. This manuscript
introduces a new paradigm in searching for Cas targets in
HIV-1 to address these issues. We call this pipeline the:
Nominate, Diversify, Narrow, Filter (NDNF) pipeline.

2 Results

2.1 Cas editor literature review

The literature search was conducted by reviewing publications
from PubMed and Google Scholar with the queries for CRISPR and
Cas as well as current and previous nomenclature for individual
class 2 Cas proteins, HIV-1 and CCR5/CXCR4 (last searched 6/23/
2023) and all relevant articles were reviewed. Information relevant
to gene editing potential was collected into Table 1 and
Supplementary Table S1. This includes information like the
name, source organism, PAM recognition site, protospacer size,

FIGURE 1
Cas9 editor influences the number of safe, broad, and effective (SBE) targets. Each column indicates the results of the NDNF pipeline for SpCas9
(left), SaCas9 (middle), and LbCas12a (right). The PAM sequence used is indicated in the graph labels. The top row indicates the broad gRNAs by plotting
the on-target rate for each gRNA, those in green are above a 75% cutoff and considered broad. The second row indicates the safety of each gRNA by
plotting the off-target count for each gRNA. Those with no hits are considered safe (above the blue line). The third row indicates the effectiveness of
each gRNA by plotting the average RC index of the 40 bp window centered on the cut-site. The fourth row plots the counts of SBE gRNAs and their
overlaps.
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gene size, induced mutations, and specific references related to
current application in HIV-1.

Using this literature review as a guide, a computational pipeline was
developed to interrogate each enzyme on the targetable space of HIV-1.
This pipeline simplifies each enzyme to a PAM recognition site search.
While this removes knowledge about position specific mismatch
tolerance, that information is unknown for novel enzymes. The
intent is instead, to consider each PAM equally and understand how
that engineering choice impacts the targetable space of HIV-1.

2.2 Cas editor choice influences the
targetable HIV-1 genome

In brief, the NDNF pipeline considered all possible gRNAs
nominated from a diverse set of HIV-1 sequences. These were
further diversified through random mutations to a target pool size
of 40,000. The pool was narrowed by comparison to an independent,
globally representative set of HIV-1 genomes, labeling those capable of
targeting >=75% of the sequences as broad. Finally, the gRNAs were
filtered through a mismatch search against the human genome labeling
only those with no hits as safe. Finally, in order to estimate the impact of
mutations at a site, we considered an HIV-1 mutation dataset that
interrogated the impact of point mutations on replication capacity to
label gRNAs in areas of lethal mutations as effective. From this pipeline,
each of the 40,000 potential gRNAs for each PAMwas labeled as broad,
safe, or effective, neither, or any combination. For the purposes of
ranking and describing enzymes, we considered the number of gRNAs
that were safe and broad and effective and termed them SBE gRNAs.
The details of this pipeline are discussed in the Methods section.

The NDNF pipeline was first used on the three most common
editors used in HIV-1 gene editing: SpCas9, SaCas9, and LbCas12a
(Figure 1). The results demonstrated that the locations on HXB2 that

are broadly targetable by the three different enzymes varies with
SpCas9 having the largest number of SBE gRNAs (SBE = 75).
Conversely, SaCas9, while having fewer broad targets, presented a
better safety profile with fewer off-target risks (SBE = 9). LbCas12a
had only 10 SBE gRNAs under this metric. All three enzymes target
regions of lethal mutations across the HIV-1 genome (Figure 1: RC
index).

2.3 Mismatch tolerance is a double-edged
sword

Researchers looking to reduce the risk of off-target effects have
engineered mutations in the enzyme (Kleinstiver et al., 2016; Zheng
et al., 2018; Kim et al., 2023) or the sgRNA handle (Gupta et al.,
2021) to require a tighter coupling between gRNA:target pairs before
cleavage. This reduces the likelihood of an off-target effect, but
conversely reduces the tolerance to HIV-1 genetic variability. In
order to investigate this phenomenon and its impact on HIV-1
targeting, an experiment was performed where the mismatch
tolerance was varied between 0 and 3 (Figure 2).

As hypothesized, low mismatch values led to few broad gRNAs,
due to a decrease in the number of gRNAs that could target 75% of
the validation dataset at a strict mismatch tolerance (Figure 2: dotted
lines). Conversely, mismatch tolerances of three or greater led to a
decrease in safe gRNAs, due to an ability to target increasingly
distantly homologous human sites (Figure 2: solid lines). The ideal
tradeoff between safe and broad was determined to be two
mismatches for SpCas9, SaCas9, and LbCas12a, as shown by the
peak in the solid lines in Figure 2.

2.4 Modifications to PAM tolerance
improves targetable sites

Numerous studies have generated Cas editor variants with altered
PAM recognition sites described in Table 1. This can either be to
broaden or restrict sites to increase targetable space or reduce off-target
effects, respectively (Kleinstiver et al., 2015b; Hu et al., 2018; Zhang et al.,
2021; Ma et al., 2022). The known modified PAMs for SpCas9, SaCas9,
and LbCas12a were interrogated using the same NDNF pipeline
(Figures 3A–D; Table 2). In each case, the broadening of the PAMs
led to an increase in the number of targetable sites across the HIV-1
genome (Figure 3E). SaCas9 gains 28 new SBEs (9–37, Table 2) and can
target 7 additional sites (Figure 3E) by moving from the NNGRRT to
NNNRRT. LbCas12a gains 9 SBEs and 2 additional sites moving from
TTTV to TTTN. SpCas9 has a mixed effect by moving to broader
editors; changing from NGG to NG decreases the number of SBEs
75 versus 41 but increases the number of targetable sites from 11 to 29.
Adjusting to the even broader NRN motif loses more SBEs (75 vs. 24)
and only increases number of sites to 22.

2.5 PAM specificity impacts targetability

After investigating the effect of specific PAM mutations for
SpCas9, SaCas9, and LbCas12a, the exploration was broadened to all
PAMs for all Cas molecules found across the study (N = 43). The

FIGURE 2
Higher promiscuity leads to more broad targets but fewer safe
ones. The number of safe gRNAs was calculated and plotted for the
wild-type PAMs indicated in the key for SpCas9 (blue), SaCas9
(orange), and LbCas12a (green) in solid lines using the left axis.
The number of broad gRNAs was calculated and plotted for the wild-
type PAMs for SpCas9 (blue), SaCas9 (orange), and LbCas12a (green) in
dotted lines using the right axis.
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FIGURE 3
The pattern of targetable regions is altered by PAMmutations. For each of the SpCas9, SaCas9, and LbCas12a variants identified, the pattern of broad
(A), safe (B), and effective (C) gRNA is plotted against the target position in the HXB2 reference genome. (D) Indicates the overlapping sites of safe, broad,
and effective gRNAs. The counts of each category are provided in Table 2. E) A bar graph showing the number of unique genomic positions targetable by
SBE gRNAs for each PAM choice.
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TABLE 2 The number of safe, broad, and effective (SBE) gRNAs found by the NDNF pipeline.

Cas PAM motif Safe Broad Effective SBE Unique sites

ASp2Cas12l CCY 17 255 6,696 1 1

AacCas12b TTN 6 1,047 8,946 1 1

AsCas12a TTTN 14 329 8,427 3 2

Asp2Cas12l CCY 11 267 6,742 2 1

BthCas12b ATTN 12 135 7,379 8 2

Cas12c2 TN 1 5,207 9,606 1 1

Cas12d TA 7 850 8,809 0

Cas12e TTCN 19 83 6,313 0

Cas12h1 RTR 1 615 8,471 1 1

Cas12j TBN 12 3,534 9,333 0

CasY TA 9 871 8,785 1 1

CjeCas9 NNNRYAC 7 11 5,695 0

Cpf1-TATV TATV 41 21 6,981 6 3

Cpf1-TTTN TTTN 132 105 8,573 19 4

Cpf1-TTTR TTTR 48 35 6,710 0

Cpf1-TTTV TTTV 55 43 7,464 10 2

Cpf1-TYCV TYCV 142 50 6,337 2 2

ErCas12a YTTN 17 603 8,310 1 1

FnCas12a TTV 8 529 7,900 1 1

FnCas9-RHA YG 8 810 8,150 0

GeoCas9 NNNNCRAA 0 1 4,754 0

LbCas12a_Cpf1 TTTN 212 1,051 41,970 26 4

Nme1Cas9 NNNNGATT 6 0 4,590 0

OspCas12c TG 11 595 7,912 0

SaCas9-KKH-A NNARRT 43 22 6,942 1 1

SaCas9-KKH-C NNCRRT 33 2 6,043 0

SaCas9-KKH-N NNNRRT 236 227 8,808 37 9

SaCas9-KKH-T NNTRRT 45 17 7,102 6 3

SaCas9-WT NNGRRT 103 260 42,779 9 2

SauriCas9 NNGG 27 600 7,841 5 4

SauriCas9-KKH NNRG 11 1,936 8,506 1 1

ScCas9 NNG 11 2,773 9,022 2 2

SpCas9-EQR NGAG 62 22 5,033 0

SpCas9-NG NG 365 1,291 8,879 41 29

SpCas9-VQR NGA 164 230 7,140 19 7

SpCas9-VRER NGCG 6 4 3,852 0

SpCas9-WT NGG 633 2,027 46,571 73 14

SpRY NRN 378 5,582 10,169 24 22

(Continued on following page)
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PAM tolerance of each enzyme was plotted against the number of
SBE gRNAs (Figure 4A) and unique targetable sites (Figure 4B). The
analysis shows that more specific PAMs, those with lower levels of
degeneracy, have less SBE gRNAs and target fewer unique sites in
HIV-1. A regression was performed for SBE ~ log10(PAM-
promiscuity) and found no significant correlation. Alternatively,
Unique-Sites ~ log10(PAM-promiscuity) found a significant
correlation (p = 0.0039) with a modest R2 = 0.26.

2.6 Numerical stability of estimates

Finally, the stability of the protospacers was evaluated for the
SpCas9, SaCas9, and LbCas12a enzymes. A five-fold resampling was
performed such that five different globally representative validation
datasets were created along with the remaining nomination sets. For
each of these samplings, the top 20,000 most common protospacers
were collected. Figure 5A shows the likelihood of being nominated by 1,
2, 3, 4, or 5 samplings. Most protospacers (82% SpCas9, 58% SaCas9,
and 71% LbCas12a) are nominated in all five samplings with only a
minority (4% SpCas9, 7% SaCas9, 7% LbCas12a) being nominated in a
single sampling. Figure 5B shows the variability of the count between
samplings. The average standard deviation across the same protospacer

was (3.0 SpCas9, 0.8 SaCas9, and 1.7 LbCas12a). Together, these results
indicate that one is unlikely to miss high-count protospacers during the
nomination phase due to the sampling seed.

Evaluation of the validation stage was performed by first
nominating the top 40,000 protospacers from the entire LANL
dataset. Then, this set was then evaluated against each of the five
samplings. Figure 5C shows the correlation between the mean score
and the score generated from each sampling. The mean absolute
error was calculated as 0.000425 indicating the value from each
sampling is incredibly close to the average value. Figure 5D shows
the residual between each sampling and the mean assuming a linear
relationship. Some structure is observable with an increase in model
variability near the 50% rate. As the purpose of this technique is to
draw from the upper 75%, this is less concerning.

3 Discussion

As the HIV-1 gene editing field advances, it is important to look for
advances in other areas of gene editing and how they can be optimally
adapted. The wider gene editing field is extending the capabilities of Cas
molecules and this manuscript presents a framework under which to
evaluate different trade-offs being introduced into Cas systems. This

TABLE 2 (Continued) The number of safe, broad, and effective (SBE) gRNAs found by the NDNF pipeline.

Cas PAM motif Safe Broad Effective SBE Unique sites

SpaCas9 NNGYRA 3 11 6,290 1 1

St1Cas9 NNAGAAW 27 15 4,716 11 1

Un1Cas12f1 TTTR 16 110 6,724 0

spaCas9 NNGYRA 3 12 6,381 1 1

xCas NGN 7 2,904 8,862 0

FIGURE 4
Increase PAM specificity leads to a decrease in SBE gRNAs and loss of targetable sites. The number of (A) SBE gRNAs and (B) targetable sites was
plotted against the PAM specificity. The X-ticks are representative PAMs for each level of specificity. The blue line represents a y ~ log(x) regression and the
shadow indicates a 95%CI. A regressionwas performed for SBE ~ log10(PAM-promiscuity) and found no significant correlation. Alternatively, Unique-Sites
~ log10(PAM-promiscuity) found a significant correlation (p = 0.0039) with a modest R2 = 0.26.
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study focused on exploring three major questions: 1) how Cas editors
impact the targetable HIV-1 genome, 2) how mismatch tolerance
impacts broad spectrum potential vs. off-target risk, and 3) how
novel PAM variants enhance targeting potential.

This evaluation finds that the wider PAMs variants are a boon to
HIV-1 gene editing. The NNNRRT PAM variants of SaCas9-KKH
increases the number of SBE gRNAs and increases the number of
targetable HIV-1 sites. The Cas12 system is new and has had less
published molecular engineering, we explored other natural Type V
PAMs and found the broader PAMs have more SBE gRNAs and
more unique sites. New variants of the LbCas12a protein will likely
widen the PAM. For SpCas9, the story is more complex, SpCas-NG
and SpRY decrease the number of SBE gRNAs but increase the
number of valid HIV-1 targets.

Mismatch tolerance is also an important tunable parameter. Our
analysis indicates that for all editors, the peak of usefulness is at a 2-
mismatch tolerance. Tuning the system to be more specific by
decreasing the tolerance limits the ability of the system to cope
with HIV-1 genetic variability. Similarly, adjusting the system to
permit more mismatches may lead to unwanted off-target impacts.

This analysis is limited in several ways and should not be considered
an exhaustive search for optimal anti-HIV-1 gRNAs for any Cas
enzyme. This pipeline does not consider important parameters like
position-specific mismatch penalties, differences in on-target gRNA
activity, and considerations like CG content, poly-N-mers, etc. It is also
reliant on a relatively small public dataset. Instead, it is intended as a
framework to evaluate the effect of choices like PAM motif and
mismatch tolerance on the feasibly targetable regions of the HIV-1

FIGURE 5
Nomination and validation stages are unimpacted by random samplings. (A) The number of samplings each protospacer was nominated in during
cross-validation. (B) A histogram of the standard deviation across each sampling for each protospacer. For (A) and (B) SpCas9 is in blue, SaCas9 is in
orange, and Cpf1 is in green. (C) The mean validation hit rate was calculated across all samplings (x) and then was plotted against the hit rate obtained in
each S(i) sampling (y). (D) A residual plot for the regression of Hit Rate S(i) ~ Hit Rate Mean.
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genome. It points to broader PAMs and a modest promiscuity of two
mismatches.

There are also considerations beyond targeting potential when
choosing a Cas editor. The size is a particularly notable one as it
influences packaging efficiency across many delivery systems (Liu
et al., 2017a). In those cases, smaller editors like SaCas9 and
LbCas12a are attractive options. Another consideration is the
type of edit and location relative to the PAM. Type II editors
tend to cut near the PAM site, often leading to the erasure of the
PAM site during DNA repair making retargeting difficult and
leading to resistance profiles (Wang et al., 2016c; De Silva
Feelixge et al., 2018). Conversely, Type V editors cut on the
opposite side to the PAM, lowering this likelihood.

With these parameters taken together, it is difficult to arrive at a
single definitive answer for the best Cas editor for HIV-1 targeting. The
broad choice will be influenced by experimental setup, delivery strategy,
and outcome variables. This manuscript indicates that it is useful to
integrate editors with novel Cas mutations into next-generation
strategies. This manuscript also indicates that techniques to decrease
the mismatch penalty below 2 will reduce broad applicability and
attempts to increase it above 2 will increase off-target effects. It is still
early in the field of Cas9 gene editing and there will likely be further
developments and improvements to Cas editors. HIV-1 researchers
should stay abreast of upcoming technology to lead in the field.

4 Materials and methods

4.1 Dataset

The dataset was constructed from the LANL full HIV-1 genome
database from the Filteredweb subset of full genome sequences including
all sequences up to 2021 (last accessed 5/15/2023) and contains
4,725 sequences. However, this sequencing dataset is heavily biased
towards Subtype B sequences (Figure 6A). To create a globally

representative testing dataset, 1,497 sequences were randomly
subsampled to match the proportions of global infections (Hemelaar
et al., 2019) A: 10.3%, B: 12.1%, C: 46.6%, D: 2.7%, G: 4.6%, CRF01_AE:
5.3%, CRF02_AG: 7.7% (Figure 6B) and the remaining 3,228 sequences
were used as the nomination dataset (Figure 6C).

4.2 Estimating target effectiveness

HIV-1 is a highlymutable virus and as such, the impact of editsmay
bemuted by a lack of functional impact. To quantify this effect, a dataset
of random mutations was used to quantify the impact of variability
across the genome. The dataset from Al-Mawsawi et al. was obtained
from the Retrovirology Additional File #6 (last access 5/15/2023) (Al-
Mawsawi et al., 2014). This experiment used random mutagenesis and
subsequent selection to determine the Replicative Capacity (RC) index
of each mutation. In their experiments, the RC index was calculated as
the ratio of the frequency of the mutant in the 2nd passage to the
frequency in the original infecting library; larger numbers indicating
positive selection and smaller numbers indicating negative selection.
The dataset was converted to HXB2 numbering and the RC index was
averaged for all mutations reported within a 40 bpwindow centered at
each position (Figure 7A). Using the cutoff from Al-Mawsawi et al., RC
index below 0.1 is considered a lethal mutation, between 0.1 and 0.2 as
attenuated, and above 0.2 as tolerated (Figure 7B). This cutoff found
2,771 sites where mutations are likely lethal, 1,052 sites that may lead to
an attenuated phenotype, and 1,498 sites that are tolerant to mutations.

4.3 Nominate, diversify, narrow, and filter
(NDNF) pipeline

4.3.1 Nominate
The first step is to nominate potential protospacers from a

collection of sequences. A custom python function was written to

FIGURE 6
HIV-1 subtype distribution of full genomic sequences in the LANL dataset. (A) The entire 2021 LANL full genome dataset. (B) A subset of the LANL
database randomly selected to be a globally representative validation dataset. (C) The remaining sequences used as a nomination set.
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convert protospacer and PAM motifs into regular expressions
targeting each strand. For example, the NGG SpCas9 PAM was
converted into the regular expressions (.)[ACGT]GG and CC

[ACGT](.). These regular expressions were then used to
extract all extant protospacers in the nomination dataset. This
was done independently for each Cas PAM motif. In our testing
of 3,228 sequences, this yielded 5,000–3,00,000 unique protospacers
depending on the promiscuity of the PAM.

4.3.2 Diversify
As the testing and nomination datasets are distinct, and the

potential variability space of HIV-1 is vast, it is important to
explore potential protospacers beyond those in the nomination
dataset. The diversify step addresses this by randomly mutating
the set of protospacers to create new ones. Custom python scripts
(provided at https://github.com/DamLabResources/Cas_HIV_
hits) were used to randomly change protospacers, keeping
only unique ones. This randomization was run until there
were 40,000 unique protospacers. This number of protospacers
was chosen as a balance between an exhaustive search of all
possible protospacers and the observation that rare protospacers
are unlikely to be broadly targeting.

4.3.3 Narrow
The 40,000 unique protospacers were then evaluated against the

validation dataset. CasOffinder was used to find all potential binding
sites with mismatches (MM) in the protospacer; where MM was set to
2 for all experiments unless otherwise stated. All mismatch searches
were performed with CasOffinder v2.4.1 (Bae et al., 2014). Due to
limitations in CasOffinder v2.4.1 RNA and DNA bulges were not
considered. Only protospacers which have matching sites within at
least 75% of the validation dataset were considered broad andmoved
into the next stage. By introducing this filtering step, the
computationally expensive search of the human genome can be
limited to only those protospacers that are likely to be Safe, broad,
and effective.

4.3.4 Filter
The broad-spectrum protospacers were then evaluated for off-

target likelihood. Again, CasOffinder was used to search for all
potential binding sites with 2 or fewer mismatches unless
otherwise stated. A protospacer was deemed safe if there were
0 matching sites in the human genome (GRCh38, last access 5/15/
2023) and unsafe if it had 1 or more hits.

4.4 Stability

The stability of this method to different samplings was tested
through 5-fold resampling. In this, 5 different globally representative
samplings were generated. The nomination stability was measured by
nominating 40,000 protospacers from each of the folds and comparing
the likelihood of being nominated in any given sampling and the
deviation in the number of counts. The validation hit rate was tested by
first nominating 40,000 protospacers from the entire dataset, to generate
a consistent set of protospacers to evaluate. Subsequently, the
40,000 protospacers were tested against each of the five samplings to
measure the difference between the hit rate measured in any given
sampling to the mean of all samplings.
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