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Lessons learned from decades-long practice in the transplantation of hematopoietic
stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have
set the stage for the current ex vivo gene therapies using autologous gene-modified
hematopoietic stem and progenitor cells that have treated so far, hundreds of
patients with monogenic disorders. With increased knowledge of hematopoietic
stem and progenitor cell biology, improved modalities for patient conditioning and
with the emergence of new gene editing technologies, a new era of hematopoietic
stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has
the potential to restore physiological expression of a mutated gene, or to insert a
functional gene in a precise locus with reduced off-target activity and toxicity.
Advances in patient conditioning has reduced treatment toxicities and may
improve the engraftment of gene-modified cells and specific progeny. Thanks to
these improvements, new potential treatments of various blood- or immune
disorders as well as other inherited diseases will continue to emerge. In the
present review, the most recent advances in hematopoietic stem and progenitor
cell gene editing will be reported, with a focus on how this approach could be a
promising solution to treat non-blood-related inherited disorders and the
mechanisms behind the therapeutic actions discussed.
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1 Introduction

Hematopoietic stem and progenitor cells (HSPCs) are the only cells with the ability to self-
renew throughout a person’s lifetime and give rise to all the blood components including
leukocytes, platelets and erythrocytes. Rekers and others first explored hematopoietic stem cell
transplantation (HSCT) in the fifties, with the demonstration that intravenously injected bone
marrow cells prevent the death of irradiated mice by reestablishing blood cell production
(Rekers et al., 1950). These studies on animal models were soon translated into clinical
applications for patients, especially with the extensive work of the Nobel Prize winner, Dr.
E. Donnall Thomas, on allogeneic HSCT (Thomas et al., 1957; Thomas et al., 1977; Thomas
et al., 1979), together with the discovery of HLA histocompatibility between donors and
recipients (Dausset and Brecy, 1957).

Thus, bone marrow transplantation from healthy HLA-compatible donor has been used to
correct genetic disorders such as cytopenias hemoglobinopathies or primary immune deficiencies, by
providing HSCs free of pathogenic mutations that can engraft into a myelosupressed host to
reconstitute a functional blood and immune system. The procedure of HSC transplantation has also
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been radically improved by discovering that HSPCs are not only found in
high concentrations in the bone marrow, but also in peripheral blood after
mobilization (Szade et al., 2018). Although allogeneicHSCT revolutionized
medicine even with a HLA match-donor (with the exception of syngeneic
twins) and an adapted conditioning protocol, there is always a substantial
risk for graft-versus-host-disease (GvHD) in treated patients. GvHD
occurs when immune competent T cells in the donated tissue
recognize the recipient as non-self. The resulting immune response
activates donor T cells to gain cytolytic capacity then attack the
recipient to eliminate foreign antigen(s)-bearing cells (Zeiser and
Blazar, 2017). . However, as some patients do not have a HLA-
compatible donor, the concept of autologous HSCT using ex-vivo gene-
modified HSPC has been developed by scientists over the years. The first
successful attempt of gene therapy using autologous HSCTwas performed
using gamma retroviral vectors (RVs) in X-linked severe combined
immunodeficiency (SCID-X1) and adenosine deaminase deficiency
(ADA-SCID) (Bordignon et al., 1995; Cavazzana-Calvo et al., 2000).
Unfortunately, the excitement from the promising early results was
dampened by the presence of genotoxic events in some of the patients
treated with these vectors (Hacein-Bey-Abina et al., 2003; Howe et al.,
2008; Cavazzana et al., 2019). Scientists quickly reacted with the
development of vectors that allowed robust gene correction in HSPCs,
while decreasing insertional mutation events (Galy, 2017). Self-inactivating
lentiviral vectors (SIN-LVs) derived from the human immunodeficiency
virus (Zufferey et al., 1998) were proved to be more efficient and safer than
RVs, and are nowadays the vectors of choice for HSPCs gene therapy,
showing long-term benefits in treated patients (Eichler et al., 2017; Kohn
et al., 2021; Magnani et al., 2022; Magrin et al., 2022).

More recently, the field of gene and cell therapy has been rattled by
the discovery of specific nucleases able to precisely cut genomic DNA.
Three main platforms using this strategy exist: Zinc-finger nucleases
(ZFNs), Transcription activator-like effector nucleases (TALENs) and
Clusters of regularly interspaced short palindromic repeats (CRISPR)/
Cas9 nucleases which became the most exploited interface over the past
decade. All these nuclease-based approaches rely on the intrinsic ability
of the cells to repair double strand breaks (DSBs). . Additionally, the field
of gene editing has also seen other tools emerge lately, such as prime
editing or base editing (BE), which exploit the specific DNA recognition
capacity of CRISPR/Cas9 but use different enzymes tomodify the DNA.
Most of these tools have already been adopted to gene-modify HSPCs ex
vivo in an attempt to treat inherited hematopoietic disorders and some
studies already led to clinical trials for β-thalassemia and severe sickle
cell anemia (Frangoul et al., 2021).

This review will focus on the latest progress for HSPCs gene
editing and transplantation, in terms of cells mobilization, selection,
culture conditions and the conditioning of patients. We will also give
an overview of all the gene-editing tools available and how to
efficiently and safely deliver them into HSPCs. And most
importantly, we will discuss how gene edited HSPCs could be used
not only for blood- or immune-related genetic disorders, but as a
vehicle to bring functional proteins to affected tissues in other types of
inherited multisystemic disorders.

2 Advances in HSPC mobilization,
culture and patients conditioning

HSPCs have the ability to reconstitute a new hematopoietic system
when transplanted into an immunodepleted patient (Wilkinson et al.,

2020). Advances in term of HSPC mobilization and culture together
with patient conditioning have been essential to make HSCT safer and
more efficient.

2.1 Advances in mobilization

HSPCs can be harvested in two ways, by BM aspiration from the
pelvic crest or by leukapheresis after induced mobilization into the
peripheral circulation. Mobilization is preferred because it is a less
stressful procedure and allows for a generally higher stem cell yield,
reduced graft failure rates, and faster reconstitution (Gertz, 2010). The
recombinant human G-CSF (rh-G-CSF) is the cytokine of choice used
for mobilization (Bendall and Bradstock, 2014). This treatment results
in a 50–100 fold expansion of the circulating HSPC pool (Holig et al.,
2009). In cancer patients, or when higher concentrations of collected
HSPCs are necessary, the use of chemotherapy in combination with
G-CSF is usually preferred. However, there are major disadvantages
linked to the use of chemotherapy, such as toxicity, bone marrow
damage and higher costs (Hubel, 2019).

Of note, there are certain conditions where G-CSF cannot be used
to mobilize HSPCs, such as sickle cell disease (Fitzhugh et al., 2009). In
this particular case, G-CSF can be substituted by the small molecule
AMD3100 (Plerixafor) (Esrick et al., 2018). Interestingly, when
Plerixafor is combined with G-CSF treatment; it triples the
concentration of isolated CD34+ cells compared to the
administration of G-CSF alone (Liles et al., 2005). Besides the
treatments described above, multiple compounds able to increase
the number of circulating HSPCs have been evaluated in preclinical
models: sphingosine-1-phosphate (Juarez et al., 2012), inducers of
MMP-9 (Pelus et al., 2004), or inhibitors of EGFR (Ryan et al., 2010)
and Cdc42 (Liu et al., 2019). It has also been reported that treatment
with cobalt protoporphyrin (CoPP) induces an endogenous
stimulation of cytokines, reaching a better HSPCs mobilization
than treatment with G-CSF alone (Szade et al., 2019). In 2018,
Hoggatt and others demonstrated that GROβ, a CXCR2 agonist,
was able to induce a rapid HSPCs mobilization (within minutes)
when used together with the CXCR4 antagonist AMD3100, resulting
in a higher engraftment capacity of the isolated cells with respect to
those mobilized via G-CSF (Hoggatt et al., 2018).

2.2 HSPC transplantation without genotoxic
conditioning

To ensure the engraftment of transplanted HSPCs, the standard
procedure requires a genotoxic conditioning to ablate the endogenous
HSPCs and immune system cells, providing the conditions and the
“space” that allow for the creation of a donor HSPCs niche and to
remove the diseased HSC and progeny. The chemotherapeutic drug
commonly used in these settings is busulfan, an alkylating agent with
myelosuppressive effects (Bernardo and Aiuti, 2016). However, in
spite of low-intensity conditioning regimens which have been
developed, there are still negative side effects of busulfan
potentially at long term (i.e. organ toxicity, infertility and risk of
secondary malignancy), therefore efforts to develop alternative, safer
andmore specific conditioning regimes have beenmade (Chanut et al.,
2021). The use of specific antibodies against antigens specifically
expressed by HSPCs has been the main focus for novel approaches
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to ablate the resident HSPCs niche. Of particular interest is a study by
Czechowicz and others, which showed an almost total depletion of
resident HSPCs in immunodeficient mice using ACK2, an antibody
that blocks c-kit function (Czechowicz et al., 2007). Similar effects
were achieved when using a combination of monoclonal antibodies
against c-kit (CD-117) and CD47 (Chhabra et al., 2016), or with
antibody–drug conjugates composed of anti-CD117 antibodies and
saporin, a ribosome-inactivating protein (Czechowicz et al., 2019). Of
note, anti-CD117 conditioning has been already used for allogeneic
HSCT in a clinical trial for treating severe combined
immunodeficiency (SCID) patients (Agarwal et al., 2020).

Other non-genotoxic conditioning strategies that are of extreme
interest have been developed. Pharmacological inhibition of
Cdc42 efficiently mobilizes HSPCs from BM in mice, allowing for
the engraftment of HSPCs with a better reconstitution potential
compared to AMD3100-mediated conditioning (Liu et al., 2019).
Interestingly, in a study by Taya and others, removal of dietary
valine in mice allowed for host HSPCs depletion supporting
efficient engraftment of the transplanted HSPCs (Taya et al., 2016).

2.3 Ex-vivo expansion of HSPCs

Increasing the number of transplanted corrected HSPCs is
determinant for improving the engraftment success rate, especially
in settings where there is no selective advantage over the non-
corrected HSPCs. A concept confirmed by HSCT clinical trials for
Wiskott Aldrich syndrome (Hacein-Bey Abina et al., 2015), or β-
thalassemia, where a higher percentage of gene-corrected cells
correlated with better outcomes (Thompson et al., 2018).
Improving HSPCs viability, function and cell expansion potential,
during ex vivo manipulation is also a determinant step for increasing
engraftment success rates. The Cooke group, discovered a purine
derivative named StemRegenin 1 (SR1) able to promote a 50-fold ex
vivo expansion of CD34+ cells, resulting in a 17-fold increase of
engrafted cells in immunodeficient mice (Boitano et al., 2010).
Another chemical compound of interest is the pyrimidoindole
derivative named UM171, which highly promotes human HSC self-
renewal and ex vivo expansion (Fares et al., 2014; Cohen et al., 2020).
HSPCs ex vivo expansion via three-dimensional culture proved to be
also an effective strategy to increase primitive CD34+ cells expansion,
maintaining a high self-renewal potential and allowing for long-term
reconstitution in immunocompromised mice (Bai et al., 2019).

3 Gene editing tools

Targetable nucleases can be programmed to induce changes in a
specific sequence throughout the genome in a very specific fashion,
making them useable gene-editing tools. Examples of these enzymes
that have been successfully engineered for use as gene-editing tools in
mammalian cells include ZFN, TALENs, and CRISPR/Cas9 system.
After the generation of a DSB at a specific locus, the endogenous DSB-
repair machinery of the cell can be exploited to insert a new sequence
using a donor DNA template. The current genome editing toolbox also
includes methods that do not rely on endogenous repair mechanisms,
such as prime editors and base editors, which can modify the host’s
sequence without induction of DSBs. The intrinsic features of each
editing tool may represent strengths or weaknesses depending on the

desired application and must be carefully considered when choosing
the gene therapy strategy. A description of the currently available gene
editing tools and possible advantages and disadvantages in the design
of a therapeutic treatment will be briefly discussed in this section.

3.1 Zinc-finger nucleases

ZFNs are composed of two zinc-finger domains fused with FokI
endonuclease that can be engineered to target a specific genomic
region (Kim et al., 1996; Smith et al., 2000). Recognition of the
sequence by an individual Zinc finger monomer does not activate
the nuclease activity, the DSB is only generated when both zinc-finger
domains bind the target sequence and dimerization occurs. Although
this feature confers ZFNs a high specificity, the risk for off-target
effects is still present (Pattanayak et al., 2011). However, strategies to
reduce ZFN off-target effects have been developed, (Liu et al., 2015a;
Miller et al., 2019), and despite the design difficulties, ZFNs remain a
highly specific tool, depending on the target region (Gabriel et al.,
2011; Isalan, 2011).

3.2 TALEN

Transcription activator-like proteins (TALEs) are composed by
repetitive amino acid (aa) sequences that acts as transcription factors
(Bogdanove and Voytas, 2011). TALE nucleases (TALENs) have been
engineered as gene editing tools by the fusion of a modular TALE
repeats with a FokI domain. Same as ZFNs, dimerization of two
TALEN monomers is necessary for FokI activation and DSB
generation (Boch et al., 2009; Moscou and Bogdanove, 2009;
Cermak et al., 2011; Li et al., 2011; Miller et al., 2011; Gaj et al.,
2013). TALENs have also shown a low off-target effects rate in human
pluripotent stem cell clones (Veres et al., 2014). However, since TALEs
are repetitive sequences that can undergo homologous recombination,
their delivery via lentiviral vectors is challenging. Additionally,
TALENs have affinity to sequences with low G content and the
target sequence must begin with a T, substantially restraining the
availability of targeting sites (Bogdanove and Voytas, 2011).

3.3 CRISPR/Cas

CRISPR/Cas is a naturally occurring genome editing system that
bacteria and archaea use as an immune defense against invasive
nucleic acids. (Barrangou et al., 2007; Brouns et al., 2008; Sorek
et al., 2013). Later, the system was adapted as a gene editing tool
by customization of a guide RNA (gRNA) for recognition of the
desired genomic sequence and the coupling with high efficient Cas
proteins (Jinek et al., 2012). The most commonly used Cas proteins are
the SpCas9 (from Streptococcus pyogenes) and the Cas12/CpfI (from
Acidaminococcus and Lachnospiraceae) (Cong et al., 2013; Mali et al.,
2013; Zetsche et al., 2015). The presence of a protospacer adjacent
motif (PAM) sequence immediately downstream of the target site is
necessary for effective recognition and cleavage (Hsu et al., 2013;
Sternberg et al., 2014). However, CRISPR/Cas9 variants where the
PAM sequence presence is dispensable have been developed (Walton
et al., 2020; Xie et al., 2022). Addition of a stable hairpin in the gRNA
sequence also appears to allow efficient editing regardless of PAM
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presence in the sequence composition (Riesenberg et al., 2022). For
more details about new CRISPR/Cas based tools, please refer to the
review by Hu and Li (Hu and Li, 2022).

3.3.1 Base editing
Base editors (BEs) are fusion proteins composed of a catalytically

impaired Cas9 (deadCas9 or dCas9) and a single-stranded DNA
deaminase, which are able to introduce single-nucleotide variants
in the DNA of living cells, without generating DSBs (Komor et al.,
2016; Gaudelli et al., 2017; Anzalone et al., 2020). Gene editing
strategies that generate DSBs present with a risk for genotoxic
events (Kosicki et al., 2018; Cullot et al., 2019; Blattner et al.,
2020). Base editing represents a safer option because modification
of the DNA sequence occurs without inducing DSBs. Additionally, BE
works at any stage of the cell cycle, opposite to gene editing techniques
relying on DSBs repair, which are more effective on dividing cells
(Zhang et al., 2017). On the other hand, the action of BEs is restricted
to the change of a single nucleotide. Although this approach could
theoretically treat all diseases characterized by a single point mutation,
it is limited by PAM sequence preferences and is restricted by the
width of the editing. It is also characterized by high precision, with BEs
that can discriminate between the target base and multiple bystander
bases within a narrow active window (Jeong et al., 2020). Recent
improved versions of classicals BEs are described in the review by
Reshetnikov et al. (2022).

3.3.2 Prime editing
Prime editors (PEs) are protein complexes consisting of a PAM-

independent Cas9 nickase, a reverse transcriptase and a prime editing
gRNA (pegRNA) (Anzalone et al., 2019). PEs present with less off-
target activity compared to CRISPR/Cas9, albeit with lower editing
efficiency (Liu et al., 2021; Chen et al., 2021; Gao et al., 2022).
However, PE-mediated correction of pathologic phenotype has
been demonstrated (Zhang H. et al., 2022a; Zhang H. et al.,
2022b). Different strategies to improve PEs have been developed,
either stabilizing the pegRNA (Liu et al., 2021; Zhang G. et al., 2022),
or manipulating repair pathways (Chen et al., 2021; Ferreira da Silva
et al., 2022), or a combination of both (Chen et al., 2021; Jiang and Yao,
2022). Furthermore, by inserting specific same-sense mutations in the
reverse transcription template of pegRNA or by altering the pegRNA
secondary structure, efficiency could be significantly improved (Li
et al., 2022).

4Methods of delivery of the gene editing
machinery into HSPCs

The main challenge of delivering of gene editing tools together
with the corrective DNA template into HSPCs ex vivo or in vivo is
obtaining HSPCs editing in the most efficient and safe manner to
procure HSPC’s progeny with the corrected DNA information. To
avoid toxicity and off-target activity, the enzyme needs to be
optimized to create a specific DSB in the shortest possible period.
The choice of carrier depends on the repair pathways the cells will be
using during the editing process, the level of editing that needs to be
achieved, the toxicity tolerance of the treated cells and, in the case of
homology-directed based approaches, the size of donor template
(Table 1).

4.1 Physical delivery of gene editing tools into
HSPCs

Mobilization and isolation of HSPCs allowing their ex vivo
manipulation offers a clear advantage for genetic manipulations.
Compared to DNA vectors, mRNA increases the transfection
efficiency of inactive cells, does not present the risk of insertional
mutagenesis in the host’s genome, allows for a faster protein
production with higher expression levels control, and does not
contain additional exogenous sequences, such as antibiotic
resistances or viruses-derived promoters (Guan and Rosenecker,
2017; Baptista et al., 2021). A lot of efforts have also been deployed
to improve stability and translational efficiency of the mRNA filament
(Korner andWahle, 1997; Jemielity et al., 2003; Gustafsson et al., 2004;
Kwon et al., 2018). as well as reducing the potential immunogenicity of
transcribed mRNAin vitro (Triana-Alonso et al., 1995;Wu et al., 2020)
(Kariko et al., 2008; Andries et al., 2015) (Mu et al., 2018)
(Vaidyanathan et al., 2018) in vitro (Nelson et al., 2020). Delivery
of transcribed mRNA coding for ZFN (DiGiusto et al., 2016; Conway
et al., 2019), TALEN (Lux et al., 2019) and CRISPR-Cas9 (Hendel
et al., 2015) into HSPCs showed great promises in terms of efficacy and
safety. Finally, nucleases can also be delivered directly as proteins (Liu
et al., 2015b), providing rapid action and fast turnover, hence reducing
off-target effects. Nowadays, the gold standard to efficiently and safely
perform CRISPR-Cas9 gene editing in HSPCs is nucleofecting both,
the mRNA (guide-RNA) and the nuclease (Cas9) as pre-assembled
ribonucleotide-protein complexes (RNP) (Gundry et al., 2016;
Vakulskas et al., 2018; Lattanzi et al., 2019; Rocca et al., 2020;
Bloomer et al., 2021). In addition, transient genome editing,
reduces off-target effects, insertional mutagenesis, and immune
responses, besides allowing for high editing efficiencies
(Chandrasekaran et al., 2018).

4.2 Chemical delivery into HSPCs

Chemical delivery of gene editing tools is only of interest for in
vivo delivery into HSPCs (not achievable by electroporation). In some
cases, the patient’s condition might be too severe to consider a
myeloablative treatment followed by HSCT, or the opposite, a
condition too mild to consider such an invasive procedure. A
chemical approach could also significantly reduce costs of HSPC-
based therapies, making it more accessible to less privileged
populations.

Recently, a c-kit nanoparticle that enables a partial in vivo
targeting of HSPCs has been developed (Cannon et al., 2021).
Another promising approach is the use of lipid nanoparticles
(LNPs) for mRNA delivery to target cells in vivo (Mukai et al.,
2022). LNPs are known to have high affinity for the hepatic tissue,
but their surface can easily be crosslinked to antibodies to redirect their
cellular specificity for the desired in vivo targeting (Rosenblum et al.,
2020; Tombacz et al., 2021). The Dahlman laboratory developed a
method using barcoding and bioinformatics to study biodistribution
of LNPs in vivo and selected a LNP named BM1 able to target bone
marrow endothelial cells (Sago et al., 2018a; Sago et al., 2018b). Finally,
it has been reported by Weissman and collaborators that a CD90-
targeting LNPs can transfect about 4% of CD34+ cells from bone
marrow stem cell preparations (Cannon et al., 2021).
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4.3 Viral and “viral-like” delivery into HSPCs

Different viral platforms that can be used to bring nucleases and
donor template intoHSPCs: Adenoviral vectors (AdVs), adeno-associated
viral vectors (AAVs) and lentiviral vectors (LVs). The choice of the viral
vector type depends on the size of the genetic material to carry and on the
virus ability to transduce either quiescent or dividing cells.

AdVs are double-stranded DNA viruses capable of packaging up
to 37 kb of DNAExtensive studies trying to optimize helper-dependent

AdVs for transducing CD34+ have been performed not only because of
their large packaging capacity, but also for the low cost for vector
manufacturing, the episomal expression and the absence of viral gene
expression (Li and Lieber, 2019). Based on the observation that HIV
patients had non-detectable viral levels after HSCT with donor cells
homozygous for CCR5delta32 (Hutter et al., 2009; Gupta et al., 2019),
the targeting of HSPCs using AdVs able to inactivate CCR5 using ZNF
or CRISPR/Cas9 have been the focus of several studies in the context
of HIV-1/AIDS therapies (Li et al., 2013; Xu et al., 2017). In a recent

TABLE 1 Delivery method comparison for gene editing.

Carrier/delivery
method

Delivered
material

Advantages Disadvantages References

Electroporation Plasmid DNA/
mRNA/RNP/ssODNs

- high transfection efficiency
- enable transfection of difficult
cells
- reduction of off-target events
- reduction insertional
mutagenesis
- low immunogenicity (RNP)
- viral free

- restricted to ex vivo application
- cell toxicity

(Urnov et al., 2005; Hendel et al., 2015; Liu et al.,
2015; DiGiusto et al., 2016; Gundry et al., 2016;
Chandrasekaran et al., 2018; Roth et al., 2018;
Vakulskas et al., 2018; Conway et al., 2019; Lattanzi et
al., 2019; Lux et al., 2019; Rocca et al., 2020; Bloomer
et al., 2021)

LNPs mRNA - in vivo application
- viral free
- low cost

- difficulty to target HSPCs
- toxicity concerns

(Sago et al., 2018a; Sago et al., 2018b; Cannon et al.,
2021)

Adenovirus vectors
(AdVs)

dsDNA - in vivo application
- enables simultaneous packaging
of CRISPR components
- high packaging capacity (37 kb)
- low cost for vector
manufacturing
- episomal expression
- absence of viral gene expression
- transduce non-dividing cells
(HDAd5/35++)

- immunogenicity
- only the serotype HDAd5/35++
shows affinity to HSPCs

(Li et al., 2013; Xu et al., 2017; Li et al., 2021)

adeno-associated virus
vectors (AAVs)

ssDNA - in vivo application
- high transfection efficiency
- non-pathogenic
- infection of non-dividing cells
- do not integrate in the host
genome
- serotype 6 has high affinity for
HSPCs
- low immunogenicity
- mainly used to bring DNA
donor Template

- low packaging capacity (4.8 kb)
- persistence in targeted tissue
- can trigger P53 Response

(Rai et al., 2020; Yang et al., 2020; Brault et al., 2021;
Cromer et al., 2021; Wilkinson et al., 2021)

Self-inactivated lentiviral
vectors (SIN-LVs)

ssRNA - large cargo capacity (10 kb)
- high transfection efficiency
- enables simultaneous packaging
of CRISPR components
- infect both dividing and non-
dividing cells
- broad tissue tropism
- no expression of viral proteins
after vector transduction
- safer integration site profile

- potential insertional
mutagenesis
- off-target effects due to
persistent expression

(Miyoshi et al., 1998; Zufferey et al., 1998; Sakuma
et al., 2012)

Integrative-deficient LVs
(IDLVs)

ssRNA or dsDNA
(donor template)

- large cargo capacity infect both
dividing and non-dividing cells
- do not integrate into host
genome
- vehicle to bring the DNA donor
template

- persistence in targeted tissue (Philippe et al., 2006; Yanez-Munoz et al., 2006;
Lombardo et al., 2007; Abdul-Razak et al., 2018)

Vector Like Particles
(VLPs)

- RNP (Nanoblades,
eVLPs)
-Cas9 mRNA
(LVLPs)

- in vivo application
- DNA free (eVLPs)
- reduction of off target risk

- low efficiency (Lu et al., 2019; Mangeot et al., 2019; Banskota et al.,
2022)
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study, the Lieber laboratory reported a novel approach to treat β-
Hemoglobinopathies in CD46/β-YAC transgenic mice using AdVs
and a base editing approach (Li et al., 2021).

AAVs have the advantages of being non-pathogenic, to efficiently
infect non-dividing cells and, they do not integrate in the host genome.
The main limitation of AAVs is their low packaging capacity (4.8 kb).
However, this can be improved with the development of dual-AAV
donor vector systems (Bak and Porteus, 2017). Serotype 6 is the AAV
with the higher tropism for HSPCs (Yang et al., 2020). Currently, most
of gene editing approaches for therapeutic protein expression need the
usage of both gene editing tools and AAV6 (Rai et al., 2020; Brault
et al., 2021; Cromer et al., 2021; Wilkinson et al., 2021).

LVs possess several advantages for HSPCmanipulation: a large cargo
capacity (~10 kb), a stable integration into host genome, they can infect
both dividing and non-dividing cells, no expression of viral proteins after
transduction, the ability to deliver complex genetic elements, and a safer
integration site profile (Sakuma et al., 2012). Researchers applied several
genetic modifications over the years to make LVs safer for gene therapy,
leading to the development of self-inactivating LVs (SIN-LVs) (Miyoshi
et al., 1998; Zufferey et al., 1998) and integrative-deficient LVs (IDLVs)
(Philippe et al., 2006; Yanez-Munoz et al., 2006). IDLVs have been
successfully used for ZFNs delivery to the target cells and the corrective
DNA template to HSPCs in the context of PIDs (Lombardo et al., 2007;
Abdul-Razak et al., 2018).

Although AAV6 and IDLVs are powerful platforms to deliver
DNA donor templates, both can persist in targeted tissue for long
periods and may lead to unwanted effects (Cousin et al., 2019; Bolt
et al., 2021). As an alternative, single-stranded oligodeoxynucleotides
(ssODNs) can be used (short oligos <200bp with 30-60bp homology
harms). They showed great potential for CRISPR/Cas9/HDR in
HPSCs (Antony et al., 2018; Romero et al., 2019), having though
the disadvantage of only permitting small insertion changes (point
mutations or short fragments), however the technology is improving
extremely fast (Roth et al., 2018).

To deliver gene-editing tools in vivo, a research group developed a
viral-like approach named nanoblades, based on HIV or murine
leukemia virus. The strategy consists in generating virus-like
particles with the Gag protein fused to Cas9 and gRNA expression
cassettes (Mangeot et al., 2019). After, these particles are pseudotyped
with glycoproteins to specifically target HSPCs (Mangeot et al., 2019;
Gutierrez-Guerrero et al., 2021). In 2019, the Atala laboratory
developed a system able to package up to 100 copies of
Staphylococcus aureus Cas9 (SaCas9) mRNA in each LV-like
bionanoparticle (LVLP) (Lu et al., 2019). Finally, the Liu laboratory
reported the development of DNA-free virus-like particles (eVLPs)
able to efficiently package and deliver base editor or
Cas9 ribonucleoproteins to different cell types using different
glycoproteins (Banskota et al., 2022).

5 Methods to improve HDR-mediated
gene editing in HSPCs

DNA DSBs generated by editing nucleases can be repaired via
different pathways in mammalian cells depending on the cell cycle
phase but also on the DNA end structures induced by specific
programmable nucleases (i.e., blunt or cohesive ends). Quiescent
HSPCs rely mainly on the NHEJ pathway to repair DSBs, because
it is the only one operating during the G0/G1 phases of the cell cycle.

However, this pathway is not homology dependent and can lead to
sequence modifications at the repair junctions. On the other hand,
MMEJ is active during the S/G2 phases of the cell cycle but can
generate even larger indels with respect to NHEJ. In presence of a
DNA template, targeted integration is possible with both NHEJ and
MMEJ, but these are still not error-free alternative pathways. Single-
strand annealing (SSA) and homologous recombination (HR) also
occur during S/G2. . HR is considered error-free and consequently it is
the DBS repair pathway of choice for gene editing. However, as
mentioned earlier, HSPCs are quiescent cells and HR frequency is
very low in these cells. In this chapter, we are going to review the most
recent strategies developed to trick this biological system and increase
homologous directed repair (HDR) frequency in HSPCs.

5.1 Choice of DNA donor template

The choice of delivery method of the donor DNA template alone (i.e.
IDLVs, AAV6 or ssODNs) has been shown to influence HDR frequency
inHSPCs. Several studies showed that AAV6 allows for higher HDR rates
in HSPCs, independently of the nuclease used (Wang et al., 2015; Dever
et al., 2016; Schiroli et al., 2017; Kuo et al., 2018; Pavel-Dinu et al., 2019;
Rai et al., 2020; Bijlani et al., 2021). It is known that ssODNs are the
preferred substrates for the single-stranded template repair (SSTR)
pathway, rather than the conventional HDR and preferably used to
correct few nucleotides (Richardson et al., 2018). Pattabhi and others
showed that even though AAV6 were more efficient in vitro with respect
to ssODN, a higher proportion of ssODN-modified cells persisted in vivo
(Pattabhi et al., 2019).

5.2 Addition of molecules

Salisbury-Ruf and others have recently reviewed an extensive list of
molecules used to modulate HDR in mammalian cells (Salisbury-Ruf and
Larochelle, 2021). Briefly, they classified these modulators in five
categories: inhibitors of NHEJ proteins, promoters of HDR,
modulators of the cell cycle, molecules targeting chromatin structure,
and molecules with undefined mechanisms (Salisbury-Ruf and
Larochelle, 2021). Ex vivoex vivoin vivo. Interestingly, when using
IDLVs to bring the donor DNA template, transduction in presence of
the immunosuppressive molecule cyclosporine H considerably enhances
HDR efficiency. Cyclosporine H inhibits the interferon-induced
transmembrane protein 3 (IFITM3), responsible for hampering VSV
glycoprotein-mediated vector entry (Petrillo et al., 2018).

5.3 Expression of proteins

Addition of proteins that influences gene integration at the DSB locus
towards HDR in HSPCs have also been investigated. In 2016, Gutschner
and others developed a strategy to increase HDR by directly
synchronizing the expression of Cas9 during the S/G2 phase fusing
Cas9 to the N-terminal region of human Geminin (Gutschner et al.,
2016). This hGemCas9 construct has also been evaluated in HSPCs by D.
Khon and others for targeting of the HBB gene. In this study a 4-fold
increase in HDR/NHEJ ratio in primary human HSPCs in vitro was
obtained and a significant improvement in HDR/NHEJ ratio in vivo
(Lomova et al., 2019). In 2019, Schiroli and others showed that transient
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expression of the dominant-negative P53 mutant protein GSE56 during
editing increased hematopoietic repopulation (Schiroli et al., 2019). In
2020, the same group combined GSE56 with expression of the protein
E4orf6/7, which recruits the cell cycle controller E2F on its target genes.
They showed that with this combined strategy, HDR editing efficiencies of
up to 50% in the long-term graft were obtained, without perturbing the
function of edited HSPCs (Ferrari et al., 2020). In 2021, De Ravin and
others showed that i53, an engineered ubiquitin variant with a high
affinity to the tandem Tudor domain of 52BP1, effectively reduces NHEJ
repair, and promotes HDR in CD34+ HSPCs (De Ravin et al., 2021).
Finally, other proteins tested in non-HSPCs cellular models showed great
potential in increasing HDR efficiency, such as CtIP (Charpentier et al.,
2018), AUNIP (Lou et al., 2017) or Pold-3 (Reint et al., 2021).

5.4 Additional strategies: Selection of
corrected cells and bypassing HDR

Increasing HDR is not the only way to obtain an enriched
population of edited cells. Dever and others were able to achieve
90% HBB-edited HSPCs in long-term graft by embedding a reporter
cassette in the HDR template (Dever et al., 2016). Another research
group designed a robust co-selection strategy using CRISPR–Cas9 and
CRISPR-Cpf1 to generate dominant cellular resistance to ouabain and
simultaneously edit a second locus of interest (Agudelo et al., 2017).
Another possibility to improve editing frequency in HSPCs is the
exploitation of the NHEJ pathway to bypass the inefficiencies of HDR-
mediated approaches (Bloomer et al., 2021) (Roman-Rodriguez et al.,
2019).

6 HSPC gene editing in multisystemic
disorders

Nowadays, the portfolio of gene editing tools available and all the
progress made in HSPCs processing methods provided great insights for
the development of less toxic and more precise novel applications. As a
result, during the last decade, multitudes of preclinical studies combining
autologous HSCT and gene editing tools for treatment of various
disorders were conducted. Diseases due to hematopoietic-derived cells/
tissue alterations are the main target for this kind of therapy, and studies
targeting blood and immune disorders have been extensively reviewed
elsewhere (Jensen et al., 2019; Antoniou et al., 2021; Ferrari et al., 2021; Rai
et al., 2021). In this part of the present manuscript, the focus will be on the
ability of HSPC-derived cells in communicating with their surrounding
environment to receive and pass on information through different
mechanisms, such as direct cellular contact and/or secretion of
proteins. We will review these different ways of communication and
how researchers take advantage of them to develop therapeutic
approaches for multisystemic genetic disorders using gene-editing
HSPC (Figure 1).

6.1 Tissue repair mediated by secretion of
therapeutic proteins from gene corrected
HSPC-derived cells to diseased tissues

From different successful attempts to cure non-hematologic
genetic disorders by allogeneic HSCT, it has been demonstrated

that HSPC-derived cells are able to secrete curative proteins. This
is particularly true in the context of congenital metabolic diseases
(Steward and Jarisch, 2005). In 2004, Biffi and others. demonstrated
that the progeny of ex vivo LV-transduced HSPCs transplanted in a
mouse model for the neurodegenerative disorder metachromatic
leukodystrophy (MLD) were present in the central and peripheral
nervous system, where these cells expressed and secreted arylsulfatase
A, rescuing the neurodegenerative phenotype. They showed that ex
vivo gene therapy had a significantly higher therapeutic impact
compared to allogeneic transplantation of WT HSPCs, indicating a
critical role for enzyme overexpression in the HSPCs progeny (Biffi
et al., 2004). In 2006, the same group showed that efficacy of this
approach correlated with the overexpression of arylsulfatase A in the
microglia progeny (Biffi et al., 2006). Similarly, in 2010, Visigalli and
others showed that autologous HSCT could rescue the
mucopolysaccharidosis type I (MPS-I) phenotype in a mouse
model for the disease. In this study, lentiviral-based HSCT resulted
more effective with respect to allogeneic HSCT, thanks to supranormal
enzyme activity (α-L-iduronidase) in the lentiviral transduced
hematopoietic system of the transplanted mice, allowing for
enzyme delivery to the brain and skeleton and disease correction
(Visigalli et al., 2010a). In 2020, Piras and others obtained similar
results in a murine model for Pompe Disease. They observed
phenotypic correction of heart and muscle function in mice
transplanted with lentiviral-based gene modified HSPCs
overexpressing the acid alpha-glucosidase enzyme (GAA) (Piras
et al., 2020). Numerous studies have demonstrated similar results
when autologous HSPCs were transduced with lentivirus to obtain an
elevated production of the enzyme of interest in the progeny. In these
settings, HSPC-derived cells become a “vehicle” that secretes the
functional enzyme in concentrations high enough to compensate
the complete absence of enzymes that is normally produced by
other cell types (Yoshimitsu et al., 2007; Sergijenko et al., 2013;
Adhikari et al., 2021; Dahl et al., 2021).

Although autologous HSCT became one of the most valuable
options for patients with particular congenital metabolic diseases
(Tucci et al., 2021), risks associated with the use of lentiviral
vectors still remain, as previously discussed. Similar to other
inherited disorders, also in congenital metabolic diseases gene
editing at the specific genomic location has been investigated as an
option to overcome these potential risks. In 2019, the Porteus
laboratory presented an efficient ex vivo genome editing approach
using CRISPR-Cas9, targeting α-L-iduronidase to the CCR5 safe
harbor locus in human HSPCs. The modified cells secrete supra-
endogenous enzyme levels, maintain long-term repopulation and
multi-lineage differentiation potential and can improve biochemical
and phenotypic abnormalities in an immunocompromised mouse
model of MPS-I (Gomez-Ospina et al., 2019). The exact same
approach, but overexpressing the glucocerebrosidase, was used in
2020 by Scharenberg and others as a potential treatment for
Gaucher disease. In this study the authors also used a monocyte/
macrophage promoter to restrict expression to this carrier cell type
(Scharenberg et al., 2020). In a very interesting study, Pavani and
others developed a system to highly express therapeutic enzymes in
HSPC-derived erythroblasts. The genes for α-globin expression are
present in four copies per cell and loss of up to three α-globin alleles is
mostly asymptomatic, making this locus a promising candidate for
knock-in (KI) in HSPCs using AAV6 and CRISPR/Cas9. Exploiting
this notion, they demonstrated that KI of three different human
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transgenes encoding for α-L-iduronidase (Hurler syndrome), or α-
galactosidase (Fabry disease), or lysosomal acid lipase (Wolman
disease) at the α-globin locus was possible and resulted in a
substantial increase of enzyme expression upon erythroid
differentiation (Pavani et al., 2020). Finally, Anthony and others
proposed a mutation-agnostic HSPC gene therapy using CRISPR-
Cas9 and AAV6 repair template as a prospective treatment option for
MLD. In this fascinating study, enzyme activity in HSPC’ patients was
restored to levels similar to healthy adults, after gene editing (Antony
et al., 2022).

6.2 Tissue repair mediated by protein transfer
from gene corrected HSPC-derived cells to
diseased tissues via tunneling nanotubes

Tunneling nanotubes (TNTs) have first been described in vitro as
highly sensitive nanotubular de novo formed structures that create complex
networks and facilitate the selective transfer of membrane vesicles and
organelles between cells (Rustom et al., 2004). Later, the presence of TNTs
have also been reported in vivo in bone marrow-derived MHC class II(+)
cells of the corneal stroma (Chinnery et al., 2008), between human
monocyte-derived macrophages (Onfelt et al., 2006) and between T cells
as a novel route for HIV-1 transmission (Sowinski et al., 2011). After
extensive studies, TNTs are currently defined as cytoplasmic bridges
between two close or distant cells. They form gap-like junctions between
connected cells and mediate the exchange of cytoplasmic proteins, cellular
organelles, lipids, nucleic acids, microRNA, ions and several other
components (Lou et al., 2012; Jackson et al., 2016; Drab et al., 2019).
Only thicker TNTs containing microtubules (>7-µm diameter) allow for
transfer of organelles like mitochondria (Eugenin et al., 2009; Jackson et al.,

2016). They facilitate short and long-distance cell-to-cell direct
communication (up to 300 µm) (Dubois et al., 2020). TNTs are able to
polymerize and depolymerize rapidly (30–60 s), property that makes them
fluid and transient structures (Gerdes et al., 2013). TNTs are involved in
several pathologies (Tiwari et al., 2021) and generate from different cell
types, including multiple HSPCs-derived immune cells (Onfelt et al., 2004).

One of the most powerful features of HSPC-derived cells is the
ability to cross the blood brain barrier, hence facilitating the success of
the treatment in neuromuscular diseases (Lampron et al., 2012). In
2017, we demonstrated that allogeneic healthy HSCT could rescue the
phenotype in a mouse model for Friedreich’s ataxia (FRDA), a
neurodegenerative disorder caused by GAA triplets expansion in
the FXN gene (Rocca et al., 2017). Our data showed that engrafted
HSPC-derived microglia/macrophages were able to transfer the
functional mitochondrial frataxin protein to neurons, muscle fibers
and cardiomyocytes of the transplanted FRDA mice, preventing the
development of motor defects (Rocca et al., 2017). In the same study,
we also evidenced the mechanism by which HSPC-derived microglia/
macrophages cross-correct affected tissues. These cells transfer
mitochondria containing the functional frataxin to neighboring
diseased cells by direct contact via TNTs (Rocca et al., 2017). In a
more recent manuscript, we provided the foundation for clinical
translation of autologous transplantation of gene-corrected HSPCs
as a treatment for FRDA (Rocca et al., 2020). Using RNP composed of
two gRNAs surrounding the pathologic GAA(n) region and the
Cas9 protein, we efficiently removed the pathologic intronic GAA
expansion in CD34+ cells isolated from FRDA patients’ peripheral
blood, and demonstrated that gene correction restored frataxin
expression, allowed for normal hematopoietic differentiation and
mitochondrial function in treated cells, in vitro and in vivo (Rocca
et al., 2020).

FIGURE 1
Scheme of autologous HSPC gene editing in patients affected by inherited genetic disorders. HSPCs are collected from the patient from the bone
marrow or peripheral blood. CD34+ are isolated and gene modified ex vivo, using gene editing tools. After a short period of culture, cells are cryopreserved
before being reinfused in patients. Once engrafted, corrected HSPCs can give rise to functional blood and immune cells in the context of blood related
disorders such as Beta-thalassemia. Corrected HSPCs can also cross the blood brain barrier and differentiate into microglia to perform tissue cross
correction by either enzyme secretion (ex. MLD) or protein transfer via TNTs (ex. FRDA).
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The ability of HSPCs to engraft tissues and differentiate into
macrophages/microglia to transfer a functional protein via TNTs have
been used as a therapeutic approach also in other genetic disorders.
The Cherqui laboratory has pioneered the use of HSPCs to transfer
lysosomal proteins via TNTs in the lysosomal storage disorder
Cystinosis (Harrison et al., 2013; Naphade et al., 2015; Rocca et al.,
2015; Gaide Chevronnay et al., 2016; Rocca and Cherqui, 2019). The
Devuyst laboratory successfully applied this approach in a mouse
model of Dent disease (Gabriel et al., 2017). Overall, these results open
new perspectives for the development of novel gene-modified HSPCs-
based therapies for genetic disorders in which the dysfunctional
protein is expressed in cellular organelles like lysosomes or
mitochondria.

6.3 The strange case of X-linked
adrenoleukodystrophy

X-linked adrenoleukodystrophy or X-ALD is a severe genetic
demyelinating disease caused by a deficiency of ALD protein, an
adenosine triphosphate-binding cassette transporter encoded by the
ABCD1 gene. Although the mechanism of rescue is unclear, allogeneic
and autologous lentiviral-based HSCT have shown to be effective in
the treatment of X-ALD when performed at an early stage of disease
(Cartier et al., 2009; Cartier and Aubourg, 2010; Cartier et al., 2012;
Eichler et al., 2017). In X-ALD, the mutated gene ABCD1 encodes a
peroxisomal membrane protein that cannot be secreted. The invasion
of macrophages and/or cross-trafficking of monocytes have been
suggested as a possible mechanism. Theory based also on the fact
that inflammatory demyelination and microglial cell death “create
space” for long-term repopulation of the brain parenchyma with
residential macrophages/microglia derived from HSPCs (Cartier
and Aubourg, 2010; Varvel et al., 2012; Hohsfield et al., 2020). On
the other hand, Yamada and others demonstrated that cell-to-cell
contact between healthy microglial cells and ALD fibroblasts was
necessary for a phenotypic rescue in vitro, suggesting that cell
replacement might not be the only mechanism (Yamada et al., 2004).

Although, gene editing in X-ALD HSPCs has not been
investigated yet, the correction of an ALD patient-derived iPSC
model using ssODN and the CRISPR/Cas9 system has been
reported in a recent study, where the cell line exhibited normal
iPSC pluripotency marker expression following genome editing
(Sik Jung et al., 2022).

6.4 Challenges of autologous HSCT in
treating non-blood disorders

Treating non-blood genetic diseases with genetically modified
autologous HSPCs could present with additional challenges. For
inherited blood disorders, gene therapy correct the expression of a
protein that is naturally expressed in the hematopoietic line. On the
contrary, in non-blood genetic disorders HSPC derived cells are used
as vehicles to bring a functional protein that in physiological settings is
produced by other cell types.With this approach, the integration of the
transgene and the expression of a “non-physiological” protein in the
HSPCs could lead to several issues: difficulties to control the
expression of the protein, impact on the transplanted HSPCs niche
itself and/or on the HSPC differentiation potential into blood cells.

This is particularly true for metabolic disorders where high levels of
enzymes are needed to achieve efficacy. A good example has been
provided by Visigalli and others, which demonstrated that a
supraphysiologic galactocerebrosidase activity, an enzyme that is
dysfunctional in the lysosomal storage disorder globoid cell
leukodystrophy, is associated with functional abnormalities
affecting HSPCs and their niche (Visigalli et al., 2010b). However,
most of these issues are theoretically avoided when using gene editing
to restore expression of a dysfunctional protein. In this case, either the
gene is corrected but still under the control of its own promoter, or a
transgene is integrated under the control of an existing promoter,
hence limiting the impact on the HSPCs physiology.

7 Final note

A lot of progress in the field of HSPC-based gene editing has been
made in the last decade. Thanks to the significant amount of data
obtained from studies and clinical trials involving HSPC in gene
therapy, scientists have strong basis to improve existing methods and
develop novel approaches more rapidly and safely. In this
manuscript, we reviewed some advancements made in HSPC
mobilization, culture and patient conditioning. We discussed how
gene editing tools have become more and more specific and the
various methods to safely deliver them. Most importantly, we also
described the range of applications for this approach. HSPCs can be
edited ex-vivo not only to replace a specific hematopoietic derived
cell type or to re-create a diseased hematopoietic system, but also to
use them as a vehicle to deliver a missing or dysfunctional protein in
an inherited pathological setting. The various limitations associated
to editing-based HSCT has already been extensively reviewed
elsewhere (Ferrari et al., 2021; Koniali et al., 2021). However, it is
important to mention that the main obstacles associated to gene
editing of HSPCs for clinical applications are: a) The risks associated
to off-target activity generated by the enzymes and consequently the
need to develop more sensitivity and complementary techniques to
detect them ex-vivo but also in the long-last graft in patients. b) The
problems associated to the DSB toxicity. c) The issues associated with
immunogenicity, although this is more a concern for in vivo
applications. Finally, another main concern for clinical
applications is the cost and access to this type of therapy.
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