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Current quantitative methods to evaluate pavement conditions in the
United States are most commonly focused on construction acceptance using
the International Roughness Index (IRI). However, from an asset management
perspective, qualitative visual inspection techniques are the most prevalent.
Modern vehicles with factory-equipped sensors drive these roadways daily and
can passively assess the condition of infrastructure at an accuracy level
somewhere between qualitative assessment and rigorous construction
acceptance techniques. This paper compares crowdsourced ride quality data
with an industry standard inertial profiler on a 7-mile bi-directional construction
zone. A linear correlation was performed on 14 miles of I-65 that resulted in an R2

of 0.7 and a p-value of <0.001, but with amodest fixed offset bias. The scalability of
these techniques is illustrated with graphics characterizing IRI values obtained
from 730,000 crowdsourced data segments over 5,800 miles of I-80 in April of
2022 and October 2022. This paper looks at the use of standard original
equipment manufacturer (OEM) on-board sensor data from production
vehicles to assess approximately 100 miles of roadway pavements before,
during, and after construction. The completed construction projects observed
IRI improvements of 10 in/mi to 100 in/mi. These results suggest that it is now
possible to monitor pavement ride quality at a system level, even with a small
proportion of connected vehicles (CV) providing roughness data.
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1 Introduction

Connected vehicles (CV) are revolutionizing the way we travel on roads and
highways, and often generate a wealth of data that can be used to improve the safety
and efficiency of our transportation infrastructure (Ye and Yamamoto, 2019; Gueriau
and Dusparic, 2020). Current penetration of connected vehicle data for various use cases
is 3%–6% depending on the location of analysis (Sakhare et al., 2022). This data can
provide a multitude of information to agencies even with low penetration rates. As
vehicles become increasingly connected and equipped with advanced sensors/
communication technologies, they can generate and transmit real-time data on traffic
conditions, weather, road quality, and much more (Hadi et al., 2017; Intelligent
Transportation Systems, 2023; Sakhare et al., 2023). Some of the use cases for
connected vehicle data include impact of technology (digital alerts and automated
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speed enforcement), traffic signal analytics (impacts of timing
changes), and infrastructure assessment (exit utilization, electric
vehicle charging placement, and pavement marking evaluation)
(Day et al., 2017; Mahlberg et al., 2021a; Sakhare et al., 2021; Desai
et al., 2022; Mathew et al., 2022; Saldivar-Carranza et al., 2022).
There are no established best practices for the use of connected
vehicle data in transportation asset management (TAM) systems,
but substantial opportunities are being created to use CV data for
TAM systems as the penetration and technology continues to
grow (Dennis et al., 2014a). This paper illustrates how this CV
data can be harnessed by transportation agencies to assess the
performance of our road network infrastructure and to identify
areas where improvements are needed. This study contributes to
the transportation field by assessing the accuracy and scalability
of connected vehicle data for pavement quality evaluation.

2 Literature review

2.1 State-of-the-practice transportation and
asset management data

Well maintained roads are essential for economic development,
public safety, and quality of life. Smooth pavements provide a
reliable and efficient transportation network that allows
businesses to move goods and people. Many agencies utilize
various software to track and manage pavement condition,
design, and maintenance called Pavement Management Systems
(PMS). This software often includes modules for data collection,
analysis, performance modeling, maintenance and rehabilitation
planning, and reporting and visualization at a project and
network level (Lamptey et al., 2005; Flora et al., 2010; Wang and
Pyle, 2019).

Pavement quality evaluation is typically done using a
combination of visual inspections, physical measurements, and
non-destructive testing techniques (Okine and Adarkwa, 2013;
Pierce et al., 2013; Buttlar and Islam, 2014; Seraj et al., 2016;
Kamranfar et al., 2022). A standard practice for evaluating
pavements at scale is by capturing the International Roughness
Index (IRI) with a pavement roughness profiler or an inertial
profiler. This method is typically performed on all pavement
types including asphalt and concrete and requires dedicated
equipment including calibrated lasers, accelerometers, GPS,
cameras, and other sensors (Sayers and Karamihas, 1998; Pawar
et al., 2018). The data from all sensors are combined to generate an
overall condition of the road surface quality. Values are reported in
m/km or in/mi, and low values indicate better pavement quality
(Kırbaş, 2021). Recent initiatives use LiDAR for pavement
inspection because it can provide additional information on
roadway drainage, pavement markings, and lane widths (Mekker
et al., 2018; Ravi et al., 2020a; Ravi et al., 2020b; Cheng et al., 2020;
Lin et al., 2020; Mahlberg et al., 2021b; Lin et al., 2021; Ravi et al.,
2021; Mahlberg et al., 2022a; Feng et al., 2022). The data collected
from these evaluations can be used to prioritize maintenance and
rehabilitation efforts, optimize pavement design and material
selection, and improve the overall performance of transportation
infrastructure. A drawback to current techniques for pavement
assessment is the requirement of dedicated equipment and

personnel to drive the road network, which is time consuming
and expensive.

2.2 CV data opportunities and motivation

The United States has a roadway network of over eight million
lane miles which generates almost 8 billion vehicle miles per day
(Bureau of Transportation Statistics, 2023; Estimated, 2023).
Indiana has almost 90,000 bi-directional miles made up of almost
66,000 local, 21,000 state and US routes, and 2,500 interstate bi-
directional miles (INDOT, 2023b; INDOT, 2023a; Indiana, 2023).
For a singular dedicated vehicle to assess all roadways in Indiana, it
would take over 1,800 h or 75 days driving non-stop. An alternative
to this is utilizing data from vehicles that drive these roadways daily.
Other studies have looked at methods to employ the use of
production vehicles by attaching additional sensors to the vehicle
including GPS, accelerometers, LiDAR and others to simulate laser
profiler IRI (Dennis et al., 2014b; Bridgelall et al., 2018; Maryam
et al., 2023). These studies provide correlated values but lacked
scalability due to after-market sensor additions and a deficiency in
penetration (Dennis et al., 2014b; Jang et al., 2017; Maryam et al.,
2023). Current production vehicles have extensive built-in
instrumentation that can be used to passively assess the
condition of pavement. Through the integration of enhanced
sensors, accelerometers and cellular connections, production
vehicles can provide accurate, reliable, and repeatable pavement
roughness values.

In addition, connected vehicle data provides near real-time data,
which can help to identify areas of emerging concern and prioritize
maintenance and repair efforts through data-driven inventory. This
can be especially important for high-traffic areas or areas that are
prone to damage as it allows for quick and targeted interventions to
prevent further deterioration. The use and validation of this data
source are proposed in Mahlberg et al., 2022 (Mahlberg et al.,
2022b). Production vehicle data for pavement quality leverages
individual wheel speed via rotational sensors in combination with
drivetrain data to provide accurate roughness information
(Magnusson and Svantesson, 2021). This method improves the
reliability and reproducibility of pavement assessments and
provides solutions to capture this information at scale, allowing
for more informed decision-making.

An example of a road with a high IRI can be observed in
Supplementary Figure S1. Connected vehicle data was used to
identify this road section as an area of interest. Captured field
validation images reveal the pavement visibly distressed including
pothole patching, cracking, and rutting.

3 Data collection

3.1 Objective and scope

The objective of this study is to evaluate the feasibility of
monitoring and screening pavement quality of construction zones
and a transcontinental route using crowdsourced road roughness
data. Large-scale IRI sampling is possible because of the ubiquitous
coverage provided by crowdsourced production vehicles. Although
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there are many additional pavement condition performance
measures beyond IRI that agencies track, this paper focuses on IRI.

3.2 Equipment and study location

The data collection devices used in this study included:

• GoPro cameras for qualitative pavement roughness validation;
• a single production vehicle allowing controlled testing on
prescribed routes;

• a calibrated inertial profiler commonly used to measure IRI to
assess contract compliance on paving projects;

• road roughness service provided by anonymized connected
vehicles operating in the United States providing aggregated
segment level pavement roughness data.

In the first phase, agency representatives provided seven
construction locations of interest for collecting data. There were
over 95miles evaluated: once in Spring 2022 before construction and
once in Winter 2022, with most of the projects having substantial
resurfacing or reconstruction activities between the two periods. The
identified construction zones were on US and State Routes. A single
production vehicle equipped with an onboard camera was used to
collect quantitative sensor and qualitative image data of the zones
simultaneously. Six of the construction zones that were evaluated
with the single production vehicle can be seen in Supplementary
Figure S2 labeled as “La Porte District Construction Zone”. Later in
the study, an inertial profiler was used to determine the accuracy and
validity of the production vehicle data. Due to the cost of capturing
data with the inertial profiler, this data was only captured on one 14-
mile route seen in Supplementary Figure S2 labeled “Crawfordsville
District Construction Zone”. For purposes of this study the
difference between asphalt and concrete pavement were not
evaluated as there is an established difference in roughness
between the two materials (Smith et al., 2002; Smith and Ram,
2016) but the pavement improvements performed among the
projects varied material type (old asphalt to new concrete, old
asphalt to new asphalt, etc).

3.3 Overview of methodology

For this phase of the study, a single production vehicle was
utilized for data collection to evaluate these techniques in a
controlled manner and to provide representative field images
before the project began and after it was completed. Images were
taken at half-second intervals with timestamps and GPS location
information. Both images and vehicle data were linear referenced to
the nearest 0.16 km (0.1 mi) reference marker for analysis.

4 Overview of before/after results

Data for the “before construction” period was collected on all
routes from the end of March 2022 until the end of April 2022.
Data for the “after construction” period was collected the month
of November and December 2022. An overall view of before and

after construction on all routes can be seen in Supplementary
Figure S3 below. Every construction route observed improvement
except for I-65 northbound, which will be discussed in further
detail in the Crowdsourced Vehicles Results and Discussion
section.

When summarizing the success of the resurfacing projects,
agencies want to see improvements in ride quality.
Supplementary Table S1 summarizes the results with each
construction zone project number, route name, overall average
change, and the total length analysed for each construction zone.
Every construction zone saw an improvement before and after
construction ranging from an IRI value decrease of 0.09–1.67 m/
km (6–106 in/mi), with the exception of I-65 northbound. This
information can help agencies determine the impact of each
construction project and enables them to quantify and assess
construction quality performed by contractors.

5 Control vehicle results and discussion

There are noticeable differences in pavement quality based on
the before and after data collection in construction zones. This
difference is highly dependent on the road condition before the
construction was performed.

5.1 Analysis of construction zone
R40688 US-421

US-421 experienced the greatest improvement in IRI, which is
highly attributed to the condition the roadway was in before
construction. Supplementary Figure S4 shows US-421 by
reference marker on the horizontal axis and raw IRI roughness
value in the vertical axis. The plot shows the average collected
values before construction as orange makers and after
construction as black markers. The 15th and 85th percentiles
were also plotted for each 0.16 km (0.1 mi) average point. There
are two horizontal dotted lines at 1.49 m/km (95 in/mi) and
2.68 m/km (170 in/mi). These lines represent the national
standard in the US for IRI thresholds. IRI values less than
1.49 m/km (95 in/mi) are classified as “good” road segments,
whereas values below 2.68 m/km (170 in/mi) are “acceptable”
road segments (Arhin et al., 2015). Values above 2.68 m/km
(170 in/mi) surpass the threshold and require strategic repairs,
maintenance, and rehabilitation. These thresholds set by the
Federal Highway Administration (FHWA) also align with rider
comfort (Kırbaş, 2021). Supplementary Figure S4A shows the
northbound direction and Supplementary Figure S4B shows the
southbound direction. Before construction shows considerable
variation in pavement quality based on the fluctuations in values
along the route and the tight grouping present in the after
analysis. In Supplementary Figure S4B between reference
markers 145 and 147, the before and after roughness values
align closely with one another since there were no
maintenance activities performed on this segment. This
demonstrates the repeatability and consistency of the data
since these data collections were almost 9 months apart. Three
field validation points were chosen on US-421. Callout i in
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Supplementary Figure S4A can also be seen in Supplementary
Figure S5B for spatial reference and in Supplementary Figure
S6A,B as field validation images. Callout ii and iii can be seen
spatially in Supplementary Figure S5A and in Supplementary
Figure S6C–F as validation images respectively. It can also be
noted in Supplementary Figure S6B that there is light
precipitation occurring while data is collected. Although rain
impacts laser profilers due to the water attenuating and distorting
the beams (Guo et al., 2015; Infotechnology, 2023), there is
generally little impact for production vehicle data.

The change in pavement quality is evident, but to help provide
guidance to agencies as to where the highest change was observed,
Supplementary Figure S5A geospatially shows the change in IRI
values on each road segment. The coloring of each 0.16 km (0.1 mi)
reference marker is based on the difference before construction and
after construction. In both the southbound direction
(Supplementary Figure S5A) and the northbound direction
(Supplementary Figure S5B) much of the road segment saw IRI
values decrease by 0.8 m/km to 2.3 m/km (50–150 in/mi). It can be
observed that north of the construction zone (reference marker 145,
callout iv) in Supplementary Figure S5A, there was no change in the
pavement quality which is expected as this area did not receive
maintenance activities due to being outside of the construction
limits.

Supplementary Figure S5A,C,F show the before construction
pavement conditions and Supplementary Figure S6B,D,Fshow the
after conditions. The before construction images show visible signs
of pavement deterioration including alligator cracking, longitudinal
cracking, and rutting. Supplementary Figure S6A,B demonstrate the
large gap in IRI values seen as callout i on US-421 northbound
(Supplementary Figure S4A) and Supplementary Figure S6C,D
demonstrate the large gap seen as callout ii on US-421
northbound (Supplementary Figure S4B). Callout iii on US-421
southbound at reference marker 141.52 on Supplementary Figure
S4B shows similar values for before construction and after
construction. Using the field validation images, it is apparent this
location has a bridge. The observed values at this location are due to
no maintenance being performed on this bridge deck and the bridge
joints.

5.2 Analysis of construction zone
R43165 Willow Creek Rd

A similar analysis was conducted for construction project
R43165 Willow Creek Road. This local road in Portage, Indiana
is a two to four lane road and saw an improvement of
nearly −1.23 m/km (−78 in/mi) in IRI values on approximately
1.5 miles. The road quality roughness diagrams for before and after
construction can be seen in Supplementary Figure S7.
Supplementary Figure S7A,B show northbound and southbound
directions, respectively. Callouts i, ii, iii are field validation points
from GoPro images seen in Supplementary Figure S8A–F
respectively.

The production vehicle data and field validation images help
visualize and showcase the changes before and after construction.
The analysis helps validate the use of production vehicle data
qualitatively.

6 Crowdsourced Vehicles Results and
Discussion

6.1 Analysis of construction zone Des no.
1802967 I-65

Although a single vehicle could be driven by agency personnel
around the state to replicate the standard practice with production
vehicles, a muchmore scalable approach would be to passively receive
this data from a fleet of vehicles daily. Roughness data derived from
production vehicle sensors provide a robust system for agencies to
evaluate pavement quality. Such an approach would allow an agency
to have a dynamically updated view of their pavement quality over
time. The I-65 road widening construction project near Lebanon,
Indiana is a multi-year project being completed in phases. Part of the
first phase was completed on 20 June 2022, and traffic in the
southbound direction was shifted to the newly constructed
pavement, while the northbound direction remained on the old
pavement. The southbound direction provided an analysis of old
pavement versus new pavement, while the northbound direction
provided an analysis of the same pavement. Supplementary Figure
S9A shows the production vehicle roughness values for the
northbound direction (Supplementary Figure S9A) and
southbound direction (Supplementary Figure S9B). Northbound
reveals the pavement condition deterioration over the course of
the 6-month time span, while the southbound direction saw
improvement once the new pavement was utilized.

Supplementary Figure S10A shows an INDOT traffic camera in
this work zone and shows both directions of vehicles traveling on
their respective old pavement. Supplementary Figure S10B shows
the southbound direction traveling on the new pavement and the
northbound direction traveling on the old pavement. These images
help validate what is observed in the graphs in Supplementary Figure
S9 with the northbound direction seeing a small amount of
deterioration overtime and the southbound direction seeing
improvement but not to the extent of the resurface projects due
to intermediate travel lanes and construction.

6.2 Comparison with calibrated IRI
measuring vehicle

To assess the relationship between production vehicle data and
industry standard IRI data collection, an agency calibrated IRI inertial
profiler also collected data on this route. The inertial profiler seen in
Supplementary Figure S11A computes roughness using the vehicle’s
speed, accelerometer, and laser scanners to determine the height to the
pavement (callout i and ii) (Sayers and Karamihas, 1998). Data was
captured at a speed of 88 kph (55 mph) since the maximum operating
speed of the profiler is around 96 kph (60 mph). For both the
production vehicle and profiler, the results are dependent on the
wheel path. Supplementary Figure S11B shows the interior of the
profiler, callout iii shows the dash camera, which takes images every
30 m (100 ft), and callout iv shows the user interface.

The profiler generates IRI values every 3 m (10 ft), and the
production vehicles produce IRI values every 0.02 s. Due to the
difference in data collection frequency, both the profile data and
production vehicle were mapped to the nearest 0.16 km (0.1 mi)
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reference marker on Interstate 65, which is approximately 16 m
(53 ft).

A comparison of the crowdsourced roughness data (red) and the
inertial profiler data (black) is shown in Supplementary Figure S12
below. Profiler data is data collected from the inertial profiler
providing raw IRI roughness values. Crowdsourced roughness data
is collected from crowdsourced production vehicles, and the relatively
large number of crowdsourced data points mitigates the impact of
anomalies and outliers. Crowdsourced roughness data is linear
referenced without lane-level fidelity for current fleet models.
Supplementary Figure S12A shows the southbound crowdsourced
roughness and profiler roughness before construction (lane change),
and Supplementary Figure S12B shows the data after the lane change.

A similar comparison was done in the northbound direction
observed in Supplementary Figure S12C, D. Supplementary Figure
S12C shows northbound crowdsourced roughness and profiler
roughness before the lane change (that was done for the
southbound direction only) and Supplementary Figure S12D
shows data after that southbound lane change.

The crowdsourced data tracks the profiler data well for both the
northbound and southbound directions. To provide a statistical
evaluation of this relationship, average profiler IRI and
crowdsourced production vehicle IRI values for each 0.16 km
(0.1 mile) section is plotted in a scatter plot (Supplementary Figure
S13). A linear trendline is fit over the points with an R2 of 0.7. A
Pearson test was also performed and a p-value of <0.001 suggests there
is statistical significance to reject the null hypothesis of: no linear
correlation between the profiler data and the crowdsourced data. The
correlation value for the Pearson test is 0.83 indicating a strong positive
correlation between the profiler IRI values and the CV crowdsourced
IRI values. A systematic offset can be observed in Supplementary Figure
S13 and although not sufficient for construction contract acceptance,
the strong correlation suggests crowdsourced roughness data is
sufficient for asset management applications. The difference can be
attributed to how each technology estimates IRI, or that due tomultiple
passes being performed with crowdsourced data, a holistic value is
being obtained. Longer term, a more objective comparison of the
methods between these systems are required to determine the reason
behind the offset. Even with the offset, this data would allow agencies to
view their pavement quality in near real-time at an acceptable fidelity
before investing valuable time and resources to collect higher-precision
data with the inertial profiler.

7 Evaluating national scalability

Scheduling inertial profiler runs requires considerable planning
and coordination to perform data collection on a specific roadway.
Similarly, challenges are faced by scheduling a driver to use a specific
CV vehicle to drive a route. In contrast, data from crowdsourced
production vehicles are available within a day, providing aggregated
roughness values for roadway segments estimated by multiple
vehicle-passes over the segment in the previous 60 days.
Uncertainty values are provided for each segment, as different
vehicles may take different wheel paths through the system, e.g.,
avoidance of potholes, and may produce different results in the
short-term. Crowdsourced data helps agencies efficiently prioritize
maintenance activities without the need for data collection. The

scalability of this data also allows agencies to perform a systemwide
assessment before allocating dollars to projects.

An example of scaling this nationally can be seen by using over
350,000 data segments from 1 April 2022, and over 370,000 data
segments from 1 October 2022, on interstate I-80. Supplementary
Figure S14 shows pavement quality for almost 2,900 miles of I-80
which runs coast to coast in the United States. The roughness data for
every mile is colour coded by the FHWA thresholds. The horizontal
axis shows the proportion of the 1-mile segment operating under
different pavement quality and the vertical axis shows the reference
marker and the corresponding state. Supplementary Figure S14A
shows pavement quality for I-80 westbound in April 2022
(approximately before construction season) and Supplementary
Figure S14B shows I-80 westbound in October 2022 (after
construction season). Comparing Supplementary Figure S14A, B,
the state border between Nebraska and Wyoming (callout i) shows
considerable improvement in pavement quality. Similarly, the sections
near referencemarker 300 inNevada (callout ii) also shows substantial
improvement in pavement quality. The improvements in pavement
quality between Supplementary Figure S14A, B suggests a strong
possibility of construction activities between these periods. A similar
analysis was performed in the eastbound direction and similar results
were found with improvements in Nebraska and Wyoming.

8 Conclusions and future scope

Connected vehicle data can augment traditional methods of
collecting pavement roughness data by enabling scalability and
repeatability of the data analysis. This paper demonstrated both
quantitatively and qualitatively how connected vehicle data provides
an opportunity for dynamic and scalable operational assessment of
pavement quality. Both a single production vehicle and
crowdsourced data were utilized to provide accurate pavement
roughness measures.

• Supplementary Figure S13 demonstrates accuracy and
reliability of crowdsourced pavement roughness compared
to the industry standard of an inertial profiler. The
comparison had an R2 of 0.7 and a p-value of <0.001.

• Over 5,800 miles of I-80 in April 2022 and October 2022 were
evaluated using the proposed methodology with
730,000 crowdsourced data segments used.

This analysis provides context and suggests that using this data
at scale can be utilized for network-wide analysis. Agencies can view
their pavement quality in near real-time at an acceptable fidelity
before investing valuable time and resources to collect higher-
precision data with the inertial profiler. This grants them the
ability to monitor the improvement of pavement before and after
construction projects and observe pavement deterioration over time.
Scaling this to transcontinental I-80 reveals areas in need of
attention and enables agencies to realize how effective their
improvement projects have been (Supplementary Figure S14).
Crowdsourced data enables agencies to justify and reinforce the
need for improvement projects on not only state routes and
interstates, but for local roads as well. These techniques can also
start a nationwide dialogue to revisit current guidelines for
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pavement quality evaluation and initiate conversations as to how
design procedures may be expanded to incorporate new datasets for
the next-generation of pavement maintenance assessment.
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