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After viruses and bacteria, fungal infections remain a serious threat to the survival

and well-being of society. The continuous emergence of resistance against

commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of

fungal cells makes the identification of novel anti-fungal agents slow and

difficult. Increasing global temperature and a humid environment conducive to

fungal growth may lead to a fungal endemic or a pandemic. The continuous

increase in the population of immunocompromised individuals and falling

immunity forced pharmaceutical companies to look for alternative strategies

for better managing the global fungal burden. Prevention of infectious diseases

by vaccines can be the right choice. Recent success and safe application of

mRNA-based vaccines can play a crucial role in our quest to overcome anti-

fungal resistance. Expressing fungal cell surface proteins in human subjects using

mRNA technology may be sufficient to raise immune response to protect against

future fungal infection. The success of mRNA-based anti-fungal vaccines will

heavily depend on the identification of fungal surface proteins which are highly

immunogenic and have no or least side effects in human subjects. The present

review discusses why it is essential to look for anti-fungal vaccines and how

vaccines, in general, and mRNA-based vaccines, in particular, can be the right

choice in tackling the problem of rising anti-fungal resistance.
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1 Introduction

Fungus (pl: fungi) are a diverse group of organisms with the common characteristic of

lacking chloroplast and the presence of a chitin cell wall (Naranjo-Ortiz and Gabaldón,

2019). Fungi belong to the eukaryotic domain of life (Woese et al., 1990). As predicted,

around 2.2 to 6 million species of fungi may exist, although only around 120 000 have been

described (Taylor et al., 2014; Hawksworth and Lücking, 2017). Fungi are natural

decomposers essential in recycling environmental nutrients (Frac̨ et al., 2018). Apart

from their vital role in the environment, fungi are also helpful to humans in several ways.
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For example, several species of fungi (known as a mushroom) are a

source of food and nutrition (Ho et al., 2020). Fungi are essential in

baking, beverage industries (beer, wine, alcohol), soya sauce, and

cheese preparation. Fungi also found their importance in

pharmaceutical companies. For example, drugs like ergometrine,

cortisone, and cyclosporine are all derived from fungi. They also

remain the source of essential antibiotics (for example, penicillin);

also used for producing beneficial chemicals (like citric acid), a

source of valuable enzymes, a host for the production of

heterologous proteins, a biological model, and controlling pests in

agriculture (Hyde et al., 2019).

Apart from their importance and benefits to human society

(mentioned above), fungi have been the reason for great human

suffering and economic loss on several occasions. For example,

several species of fungi are pathogenic to farm animals such as

cattle, poultry, fishery, and bees (Sexton and Howlett, 2006). Fungal

infections are the most common and may have the potential for

significant agricultural loss and human suffering. Moreover, most

plant diseases are fungal. For example, the Irish potato famine

(from 1845 -1852) caused by Phytophthora infestans led to

widespread hunger and starvation in Europe, leading to 1 million

deaths (Cantwell, 2017). Furthermore, fungi are also involved in the

spoilage of food and other products (Ribes et al., 2018). Many fungi

secrete toxic chemicals and infest food with fungal toxins, thus

making it unsuitable for human consumption (Adeyeye, 2016). On

the extreme side, fungi can potentially wipe out entire species. For

example, Batrachochytrium dendrobatidis and Batrachochytrium

salamandrivorans are responsible for the rapid decline of several

amphibian species (Fisher and Garner, 2020).

Like viruses and bacteria, fungi are also known to cause several

infectious diseases in animals, including humans. A disease or

infection caused by fungi is known as mycosis (Richardson et al.,

2012). Based on site, fungal infection can be superficial, cutaneous,

subcutaneous, and systemic (affecting the entire body) (Dixon and

Walsh, 1996). Although fungi are ubiquitous and out of millions of

species, only around 600 fungal species are known to cause

infections in humans (Richardson et al., 2012). Because of the

reasons mentioned in the coming sections, treating, or managing

fungal infections is becoming more challenging and a matter of

great concern.

A healthy and immunocompetent individual maintaining

optimum hygiene rarely gets a fungal infection. However, due to

the rapid emergence and spread of anti-fungal resistance against

commonly used anti-fungal drugs, there is a dire need to find

alternative ways to treat better and manage the global fungal burden

(Fisher et al., 2022). Discussion of the reasons and molecular

mechanism involved in development of anti-fungal resistance is

skipped in this review as this topic have been discussed by others

(Cowen et al., 2015; Lee et al., 2021). This review will briefly discuss

ways to better manage the increasing global fungal burden and

rising anti-fungal resistance. We will focus on anti-fungal vaccines

and will discuss how vaccines will be helpful in the better

management of anti-fungal resistance. We will also highlight how

mRNA-based vaccines can be a game changer. Before discussing

anti-fungal vaccines, we will brief the readers about the global

fungal burden, the economic impact of fungal infection in humans,
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critical points that must be considered while choosing immunogens

for anti-fungal vaccines and the different platforms used to develop

anti-fungal vaccines. Different strategies used in the treatment of

fungal infections are also discussed briefly. Factors contributing to

the rise in global fungal burden are also highlighted.
2 The myth: fungal infections are rare

As mentioned above, a healthy individual rarely gets a fungal

infection, but this does not mean that fungal infections are rare. In

reality, fungal infections are also quite common; unfortunately, they

either go unnoticed or undiagnosed most of the time. On most

occasions, fungal infections are not reported. The fungal infection

becomes apparent only when people visit doctors or when the

condition becomes problematic and hard to treat. Further, there is

no national policy to monitor fungal infections or diseases like viral

or bacterial infections (CDC, ). Surprisingly even the WHO does

not have any programme for global monitoring or surveillance of

fungal diseases. Therefore, it is difficult to correctly estimate the

actual number of fungal infections or fungal burden in the human

population (Vallabhaneni et al., 2016).

However, several attempts were made to get an approximate

estimate of the global fungal burden. According to one assessment

worldwide, around 1.7 billion people suffer from superficial fungal

infections (those of skin and hair) (Havlickova et al., 2008). Besides

superficial infections, mucosal infections (genital tracts and mouth)

are common. It is estimated that around 75 million women suffer

from vulvovaginitis (Sobel, 2007). Interestingly, only four fungal

genera, including Aspergillus, Candida, Pneumocystis, and

Cryptococcus, are responsible for 90% (around 1.5 million) of all

fungal-related deaths worldwide (Brown et al., 2012). Every year

fungal infections kill approximately 1.3 million HIV-infected

individuals worldwide, and this number is similar to the deaths

caused by Mycobacterium tuberculosis and more than those from

malaria (Brown et al., 2012). Again, it is essential to note that the

actual number of total fungal infections and associated deaths from

all fungal infections may be even more than that mentioned above.

Without national or global monitoring or surveillance of fungal

burden, it is difficult to estimate the economic cost of fungal

infection in humans precisely (Note, here we are not considering

fungal infection in crop plants or farm animals). Fortunately, data

collected by CDC in the USA can help estimate the economic cost of

fungal infection in the American population. As per one estimate in

the USA alone, the direct medical cost associated with fungal

infections ranges from 6.7 to 7.5 billion USD annually (Benedict

et al., 2019). Apart from the direct cost associated with a fungal

infection, there is a significant amount of money due to indirect

costs. The estimated indirect cost of fungal infection is around 4

billion USD in the USA alone (Benedict et al., 2022). According to

another study, the total cost associated with a fungal infection may

range from 11.5 to 48 billion USD annually in the USA (Benedict

et al., 2022). Similarly, another independent study estimated the

total cost associated with fungal infection (more than 666 000

diagnosed cases) in the USA in 2018 was around 37 billion USD,
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about 1.1% of the total US GDP (Medicalxpress). Again, as

mentioned above, most fungal infection goes unnoticed;

otherwise, the total economic burden due to fungal infection may

be more than what is mentioned.

40-50 billion USD in the economics of more than 20 trillion

USD may sound insignificant. Looking at this from another

perspective, the total economic burden due to fungal infection in

the USA every year is more than the entire GDP of several countries

in Asia and Africa (Indicators, D. D). Although no precise estimate

is available, it will not be surprising if the global economic burden

due to fungal infection may run into several hundred billion USD.

Apart from the financial burden, the suffering and loss of life caused

by fungal infection globally are beyond economics. Therefore, it

should be accepted that fungal infections are common and lead to

substantial economic burdens, suffering, and loss of life. Therefore,

fungal infections need attention equivalent to other microbial

infections, including viral or bacterial.
3 Rising global fungal burden and
possible fungal endemic or pandemic

Ofmillions of fungal species, only a few hundred are known to infect

humans; unfortunately, despite their meagre number, the global fungal

burden is continuously increasing (ENSIA, ). The increasing global

fungal infection trend is also supported by the rising consumption of

anti-fungal agents globally (Pathadka et al., 2022). The persistent rise in

fungal infection or burden is attributed to several factors. The factors

contributing to the persistent increase in global fungal burden may range

from genetic to social and personal to the global environment.

Discussion on each factor in detail is not possible in a single review.

However, we will highlight a few studies showing each factor’s

contribution to the increasing global fungal burden. Different factors

contributing to the rising global fungal burden are shown in Figure 1.

The risk of getting a fungal infection is very high for

immunocompromised individuals, and the scenario gets further

complicated with the continuous increase in the number of these

patients. Moreover, the rise in the population of immunocompromised

individuals can be attributed to several factors. Firstly, the rapid

increase in HIV patients (nearly 2 million newer cases of HIV
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infection every year) (CDC, ). Secondly, increased usage of

immunosuppressive drugs due to organ transplants or surgery

(Transplantation, ). Also, the number of cancer cases is rising yearly,

resulting in patients with weak immunity (due to side effects of

chemotherapy and radiation therapy) thereby, making them prone to

fungal infections (Richardson, 2005; Wargo et al., 2015).

Additionally, there is a persistent increase in premature delivery or

the population of neonates with poorly developed immune systems.

These neonates without a well-developed immune system are at high

risk of getting fungal infections, thus increasing the fungal burden in

society (Shennan and Bewley, 2006; Hsieh et al., 2012; Vanderweele

et al., 2012; Swanson et al., 2014). Further of more importance,

individuals with primary immunodeficiencies (due to inherent

genotype) also contribute to the global fungal burden

(Antachopoulos et al., 2007; Lanternier et al., 2013; Lionakis, 2019;

Meyts et al., 2021). It is well-accepted that an individual’s susceptibility

to fungal infection may be linked to genetic endowment and ancestry

(Naik et al., 2021). These immunocompromised individuals become

an easy target of opportunistic pathogenic fungi like Pneumocystis

jiroveci in HIV patients (Fujii et al., 2007), species of Aspergillus,

Candida and Cryptococcus in patients with solid organ transplantation

(Betancourt, 2019).

Apart from a compromised immune system, the individual’s social

behaviour may also affect the number of fungal infections in the

population; heavy alcohol consumption (Ali et al., 2020; Malacco

et al., 2020), consumption of psychoactive substances or drugs

(marijuana, heroin, LSD, cocaine, and amphetamines) (Friedman

et al., 2006; Hadzic et al., 2013; Abharian et al., 2020) and smoking

also increases the risk of fungal infection (Semlali et al., 2014; Pourbaix

et al., 2020). Furthermore, socioeconomic factors, including poor

hygiene due to a lack of basic facilities like access to clean drinking

water, proper clean toilets, and the environment, may also predispose

individuals to fungal infection (Olutoyin et al., 2017).
Another critical factor that increases the global fungal burden is

the rise in global temperature and humidity (due to rainfall)

favourable to fungal growth. In general, fungal cells prefer warm

and humid climates for growth. The rise in global temperature and

uncertain precipitation helps fungal growth even in areas or regions

lacking obvious or significant fungal populations (Garcia-Solache and

Casadevall, 2010; Nnadi and Carter, 2021; Gadre et al., 2022). The

increasing number of aged people in the global population also

contributes to the global fungal infection (Kauffman and

Yoshikawa, 2001). Apart from old age, the increased pace of ageing

also contributes to fungal infection (Piérard, 2001; Gong et al., 2020).

Thus, looking at these, it can be said that several factors contribute to

the increase in global fungal burden. Apart from the abovementioned

attributes, several other factors must be identified contributing to the

global fungal burden. Combining all these factors, the world may be

heading toward a possible fungal pandemic.
4 Limited anti-fungal drugs and the
emergence of anti-fungal resistance

The continuous increase in global fungal infection or burden is

one problem. The availability of a limited number of clinically
FIGURE 1

Schematic showing main risk factors predisposing to invasive fungal
infections. In the future, the number of factors may increase owing
to more research related to factors that increase the susceptibility to
fungal infection.
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approved anti-fungal drugs and the persistent rise in the resistance

against these drugs is another big problem for clinicians and

pharma companies (Wiederhold, 2017; Fisher et al., 2022;

Mcdermott, 2022). For example, the first anti-fungal molecule

was identified in the 1950s, and till today less than 20 anti-fungal

molecules are licensed for use in clinics. Contrary to this, more

antiviral or antibacterial molecules are available. A comparative

pace with which anti-fungal molecules are identified compared to

antibacterial or antiviral is shown in Figure 2. Apart from approved

anti-fungal drugs (Figure 2), several candidate molecules are being

evaluated in different stages of drug development, discussed

elsewhere (Bouz and Doležal, 2021). We have not discussed those

molecules in the present review as they are not approved for

clinical use.

Unlike bacteria and viruses, targeting fungi with chemical drugs

is difficult. This problem stems from the fact that both fungus and

host (in this case, humans) cells are eukaryotic, thus making

discovering or developing new anti-fungal molecules safe for

human use is slow and laborious (Ostrosky-Zeichner et al., 2010;

Roemer and Krysan, 2014; Seneviratne and Rosa, 2016). The

eukaryotic nature of fungal cells means essential cellular and

biochemical pathways (including key proteins) are conserved

(Candau et al., 1996; Kachroo et al., 2015; Kumar, 2018a).

Sometimes proteins may not be conserved, but conserving small

motifs or folds is also possible (Thaller et al., 1998; Sousounis et al.,

2012). These conserved motifs in non-homologous proteins become

the reason for drug toxicities. Besides scientific issues hampering

the identification or discovery of novel molecules with anti-fungal

activity, challenges associated with designing and evaluating clinical

trials remain a big hurdle (Rex et al., 2001). Unfortunately, these

fundamental challenges are in addition to the well-documented

scientific, economic, and regulatory challenges that face the

development of anti-infectives in the general (Boucher et al., 2009).

Ideal targets for drug discovery are those present in pathogens

while their complete absence from host cells. The same principle is

used to identifies or develops molecules with an anti-fungal activity

(Odds et al., 2003). Unfortunately, the eukaryotic nature of fungal

cells left us with very few pathways and proteins that can act as a

target for anti-fungal drug discovery (Perfect, 2017). One of the

molecular pathways commonly targeted is fungal lipid biosynthesis.

Unlike human cells, whose membranes have cholesterol, fungal cells
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possess ergosterol. Therefore, enzymes involved in ergosterol

biosynthesis are used as a target for medical intervention. Apart

from lipids, fungal cells include cell walls of chitin, glucans,

mannans, and glycoproteins, which are absent in human cells.

Therefore, pathways and enzymes involved in fungal cell wall

synthesis are important molecular targets for screening anti-

fungal molecules. Besides these common pathways, newer

pathways and targets have been identified. For example, the

calcineurin pathway (Juvvadi et al., 2017), the sphingolipid

synthesis pathway (Hast et al., 2011), the RAS pathway (Mor

et al., 2015), trehalose synthesis pathway and others as discussed

elsewhere (Perfect et al., 2017).

The availability of high-quality complete genome sequences and

parallel advances in bioinformatic tools allowed one to look for the

ORF present only in the fungal genome while absent from the host

genome. These fungal-specific ORF may also act as a target for the

discovery of novel anti-fungal molecules (Hopkins and Groom,

2002; Abadio et al., 2011). This can be a new direction in developing

novel anti-fungal molecules or compounds. This may also help

better understand fungal biology and the possible role of those ORF.

This approach may increase the molecular targets available for

discovering anti-fungal drugs. Hence genome mining of fungal

species and identifying fungal-specific ORF is gaining significant

importance as a starting point for drug discovery against

fungal infection.
5 Fungal treatment strategies

In the previous section, we mentioned the global fungal burden

and its impact on human health and society. We also mention the

reasons for the increasing fungal burden and a possible rise in anti-

fungal resistance. Different approaches have been taken to address

the issue of the bust in global fungal burden and rise in anti-fungal

resistance, including identifying novel molecules with anti-fungal

activity, using antibodies, active immune cells, and vaccines. We

will discuss both the advantages and limitations of each approach.

However, the discussion on fungal infection and associated immune

response will be skipped as this area falls outside the scope of this

review and has been discussed previously (Nami et al., 2019).

Herein we highlight commonly used methods to treat fungal
FIGURE 2

Schematic showing the pace with which anti-fungal compounds were developed or identified. In the Figure, we only listed those compounds
approved for clinical use. The compiled list is from 1950 onwards. For comparison, antiviral and antibacterial compounds are also shown.
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infections. Different strategies used to fight against fungal infection

and ways to reduce fungal burden are shown in Figure 3.
5.1 Anti-fungal molecules

Using small molecules with anti-fungal activities is the most

common and oldest way of treating fungal infections. In all the

cases, molecules that inhibit or hamper fungal growth by

targeting pathways specific to fungal cells but absent in human

cells are used. For example, most anti-fungal drugs approved for

use in humans target either fungal lipid biosynthesis pathways

(Amphotericin B) or chitin-based fungal cell wall synthesis

pathways (for example, Echinocandins). Although few anti-

fungal also perturb other fungal cell processes like mitosis (for

instance, Griseofulvin), nucleotide synthesis inhibitors (for

example, Flucytosine), and protein translational (for example,

Tavaborole). The detailed discussion about their structure and

mode of action is beyond the scope of this review and can be

found elsewhere (Mazu et al., 2016; Scorzoni et al., 2017). Apart

from these pathways or molecular targets, efforts were made to

identify newer targets for anti-fungal drug discovery (Mccarthy

et al., 2017). Besides screening available chemical libraries,

screening natural products to identify biomolecules with anti-

fungal activity is gaining significant importance. Biomolecules
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including bacteria, algae, plants, sponges, and even fungi, are

now reported more frequently (Aldholmi et al., 2019).

Although small molecules with anti-fungal activity remain the

first and most important line for treating fungal infection, the

continuous and rapid development of resistance against these

molecules remains a significant problem (Nucci and Perfect, 2008;

Fisher et al., 2022). Further, many anti-fungal drugs may have

toxicity in humans, especially those that target pathways other than

fungal lipid or cell wall synthesis (Lewis, 2011; Tverdek et al., 2016).

To address the issue of anti-fungal resistance, newer small

molecules with anti-fungal activity targeting either the same

pathways or novel protein complexes are performed on an

extensive scale. An approach involving modifying already

available anti-fungal molecules and repurposing drugs is also

under investigation. Even the combination of two or more anti-

fungal medications to treat the patient when a single medicine fails

to give a satisfactory outcome is also getting significant acceptance

in clinics (Johnson and Perfect, 2010; Vandeputte et al., 2012; Kim

et al., 2020; Fisher et al., 2022; Mcdermott, 2022). Furthermore, to

minimize the use and dependency on small molecules and to tackle

the issue of anti-fungal resistance, immuno-based methods

(including the use of antibodies and activated immune cells) and

the application of anti-fungal vaccines is also proposed (see

following sections) (Fisher et al., 2022).
FIGURE 3

Schematic showing different clinical approaches to reduce fungal burden. Anti-fungal drugs (capsules or pills) are commonly used to treat fungal
infections. Anti-fungal cream is also used (for example, skin burn or damage). So far, no anti-fungal vaccine is available for clinical use, but it may
become available. Antibodies and activated immune cells are under investigation stage only.
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5.2 Use of antibodies

As mentioned above, to minimize the dependency on small

molecules and better address the problem of anti-fungal resistance,

immunological methods involving antibodies and activated

immune cells (discussed in the following sub-section) are now

under investigation. In the antibodies-based approach to treating

fungal infection, monoclonal antibodies are infused into the

infected individual (Larsen et al., 2005). Since this approach

involves clinical procedures, this can only be adopted on a small

scale. It is costly and requires well-trained medical staff and

facilities. Before this procedure, proper antibody potency or

efficacy must be tested thoroughly. A slight change in antibody

may affect its efficacy (Bugli et al., 2013). However, this approach

can be helpful if all the available anti-fungal drug fails to give

satisfactory outcomes. The application of antibody therapy showed

significant improvement even in HIV-positive individuals (Larsen

et al., 2005). Combining the anti-fungal drug with antibody therapy

may be an excellent choice for the most satisfactory results. To get

even better protection, it is recommended to use a cocktail of

different monoclonal antibodies or a population of different

polyclonal antibodies. A single monoclonal antibody may easily

miss the target in case of even changes of a few amino acid residues

in the epitope. Collecting antibodies from the patient who recovered

from fungal infection and transfused into fungal patients under

treatment will also be interesting. However, before this, performing

the required hematological tests is crucial. However, applying

antibodies (passive immunization) does not provide long-term

protection and can be used only for curative purposes.
5.3 Use of immune cells

In cell-based therapy, immune cells (like dendritic cells) are first

primed or activated ex vivo and injected into the individual to

protect against fungal infection (Bozza et al., 2004; Perruccio et al.,

2004). Example, in study involving immune cells, it was observed

that the adoptive transfer of T-cells protects against Candida,

Aspergillus, and Mucormycetes in pre-clinical animal studies

(Tramsen et al., 2013). Like antibodies-based therapy, this

approach also needs well-trained medical personnel and facilities.

It is also required the drawing of blood and its transfusion into

patients. It may also involve separating required immune cells and

their injection into a patient. Again, it can be adopted for a limited

number of people. Also, prior checking of blood for any infection

and other hematological issues is required when activated immune

cells are taken from recovered patients. Additionally, blood type

matching may also require, which is also one of the limitations of

this approach. Again, this is curative and do not provide long-

term protection.

Apart from primed immune cells, several studies showed the

possible use of CAR-T cell therapy to treat invasive fungal infections

(Kumaresan et al., 2014). Detailed discussion on this technology is

beyond the scope of the present review and can be found elsewhere

(Garner et al., 2021). This strategy for fungal infection is costly (as
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of now), requires sophisticated technology, high-end facility, and

personnel, and cannot be adopted on a mass scale.
6 Anti-fungal vaccines

So far, small molecules with anti-fungal activity remain the only

way to fight and treat fungal infections. Besides small molecules

with anti-fungal activity, immunological methods (antibody and

cell therapy discussed above) are also being tested to fight against

fungal infection. However, these immunological therapies are of

limited scope. Therefore, there is an urgent need for alternative

strategies to treat or prevent fungal infections. Looking at all

possible ways to control or prevent microbial infection, mass

immunization with vaccines remains an ideal way. Unfortunately,

unlike the availability of vaccines against common viral or bacterial

infections, there is no approved vaccine against any fungal infection

(Perfect, 2017). This raises several questions. Is it possible to

develop a vaccine against fungus? Were efforts made to develop

anti-fungal vaccines? In the past, efforts were made to develop anti-

fungal vaccines, which may soon become a reality. This section will

discuss the different approaches used to develop anti-fungal

vaccines. We will also discuss the advantages and disadvantages

of each platform and update readers about the present status of

potential anti-fungal vaccines, which are in different stages

of development.

The platforms used to develop anti-fungal vaccines range from

traditional (like attenuated yeast cells, use of dead or killed cells) to

modern-day platforms (like subunit, recombinant, conjugated, and

nucleic acid-based vaccines). A list of previous studies involving the

development of anti-fungal vaccines is given in Table 1. The

advantages and disadvantages of each vaccine development

platform were discussed previously (Kumar and Kumar, 2019).

Here we will discuss the studies which showed the possibility of

developing anti-fungal vaccines.
6.1 Live attenuated or killed whole yeast-
based vaccines

Unlike some of the species of bacteria (for example,

Mycobacterium leprae, Mycobacterium tuberculosis) and protozoa

(for example, species of Plasmodium) which defies conventional or

available methods of culture on a commercial scale, species of

common pathogenic fungi can be grown on a large scale (example

species of Candida). This allowed the development of a whole yeast-

based vaccine. Several studies in the past already showed proof of

concept. For instance, it was observed that the administration of

heat-killed yeast (HKY) provides effective protection against

aspergillosis and coccidioidomycosis (Capilla et al., 2009; Stevens

et al., 2011). However, several pathogenic yeasts remain challenging

to grow on a large scale and therefore need different approaches to

target such yeast species (see the following sections). Further, other

platforms were explored to prevent the need for growing a

pathogenic entity on a large scale.
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TABLE 1 List of studies associated with the development of anti-fungal vaccines.

Fungal
disease

Antigen Type of
vaccine

Status Reference

Candidiasis Als3p Als1p Recombinant Phase I (Pappagianis, 1993; Spellberg et al., 2006; Lin et al.,
2009; Baquir et al., 2010; Schmidt et al., 2012;
Ibrahim et al., 2013; Singh et al., 2019)

SAP2 Recombinant Pre-
clinical

(Sandini et al., 2011; De Bernardis et al., 2012)

Secreted aspartyl proteinase protein, Sap2p PEV-7 Recombinant Pre-
clinical

(Sandini et al., 2011)

Tet-NRG1 (C. albicans strain) Genetically
engineered/Live
attenuated

Pre-
clinical

(Martıńez-López et al., 2008; Saville et al., 2009)

C. albicans PCA-2 strain Live-attenuated Pre-
clinical

(Bistoni et al., 1986)

Cell wall surface proteins (CWSP) Subunit Pre-
clinical

(Carneiro et al., 2016)

C. albicans Mannan extracts Conjugate Pre-
clinical

(Han et al., 1999)

Laminarin (Lam) b-glucan Conjugate Pre-
clinical

(Han et al., 1999; Chiani et al., 2009; Torosantucci
et al., 2009; Bromuro et al., 2010; Pietrella et al.,
2010)

B-1,2 mannan and (rAls1p-N) Conjugate Pre-
clinical

(Liao et al., 2019)

C. dubliniensis mannan/Human serum albumin
(HSA)

Conjugate Pre-
clinical

(Paulovičová et al., 2007)

Fructose bisphosphate aldolase (Fba) (cytosolic and
cell wall peptides)

Subunit Pre-
clinical

(Cutler et al., 2011) (Xin and Cutler, 2011)

C. albicans serotypes a and b ribosomes Recombinant/
Conjugate capsule

phase II (Levy et al., 1989)

Heat-killed C. albicans (HK-CA) Subunit/
Conjugate

Pre-
clinical

(Cárdenas-Freytag et al., 1999)

Glycolytic enzyme enolase Recombinant Pre-
clinical

(Qing Li et al., 2011)

65 kDa mannoprotein (Camp65p) Subunit/
Conjugate

Pre-
clinical

(Sandini et al., 2007)

C. albicans cell surface protein Hyr1 Recombinant Pre-
clinical

(Luo et al., 2011)

C. glabrata secreted proteins Secreted proteins Pre-
clinical

(Kamli et al., 2022)

C. albicans cells Heat-inactivated
whole cells

Pre-
clinical

(Martin-Cruz et al., 2021)

Combining b-mannan and peptide epitopes Subunit/
Conjugate

Pre-
clinical

(Xin et al., 2008)

Aspergillosis Aspergillus fumigatus crude culture filtrate Ags Sonicate and
filtrate Ags

Pre-
clinical

(Cenci et al., 2000)

Asp f3 Subunit/
recombinant

Pre-
clinical

(Diaz-Arevalo et al., 2011)

Aspergillus fumigatus viable conidia Sonicate and
filtrate Ags

Pre-
clinical

(Ito and Lyons, 2002)

Aspergillus fumigatus hyphal sonicate (HS) Recombinan Pre-
clinical

(Ito et al., 2006)

(Continued)
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TABLE 1 Continued

Fungal
disease

Antigen Type of
vaccine

Status Reference

Heat killed yeast (HKY) of S. cerevisiae Live-attenuated Pre-
clinical

(Clemons et al., 2014a; Clemons et al., 2014b)

A. fumigatus epitope p41 from the cell wall
glucanase (Crf1)

Subunit Pre-
clinical

(Stuehler et al., 2011)

Asp 16 f Recombinant/
Subunit

Pre-
clinical

(Bozza et al., 2002)

Asp 3 f Recombinant/
Subunit

Pre-
clinical

(Ito et al., 2006)

Proteins: Gel1p, Crf1p, Pep1p, Cat1p, Sod1p,
Dpp5p, RNUp, Mep1p, Polysaccharides: _1–3
glucan, _1–3 glucan, GM, Glycolipids: GSL, LGM

Recombinant/
Subunit

Pre-
clinical

(Bozza et al., 2009)

Pan fungal b-glucans of S. cerevisiae Heat Killed Yeast
(HKY)

Pre-
clinical

(Liu et al., 2011)

Blastomycosis Adhesin BAD1 gene Whole organism/
Live-attenuated

Pre-
clinical

(Wüthrich et al., 2003)

Paracoccidioidomycosis
(PCM)

(PCM) gp 43 (P10) DNA vaccine
(pcDNA3-P10)

Pre-
clinical

(Pinto et al., 2000; De Amorim et al., 2013)

(PCM) gp 43 (P10) Recombinant
protein

Pre-
clinical

(Assis-Marques et al., 2015)

P10- FliC fusion protein Recombinant Pre-
clinical

(Braga et al., 2009)

rPb27 Recombinant Pre-
clinical

(Fernandes et al., 2011)

Heat shock protein 60 (HSP60) Recombinant Pre-
clinical

(De Bastos Ascenço Soares et al., 2008)

Mycobacterium leprae derived HSP65 Recombinant DNA Pre-
clinical

(Ribeiro et al., 2010)

Cryptococcosis GXM Conjugate/Soluble
antigenic fractions

Pre-
clinical

(Devi, 1996)

GalXM Subunit/Conjugate Pre-
clinical

(Chow and Casadevall, 2011)

C. neoformans strain H99g (serotype A, Mata) Live-attenuated Pre-
clinical

(Wozniak et al., 2011)

Mutant C. neoformans strain lacking the enzyme
sterylglucosidase 1 named (Dsgl1)

Live- attenuated-
recombinant

Pre-
clinical

(Rella et al., 2015)

CneF (culture filtrate Ags), Mannoprotein Subunit/
Recombinant

Pre-
clinical

(Specht et al., 2007)

GXM GXM–protein
conjugate

Pre-
clinical

(Oscarson et al., 2005)

P13 (a peptide mimetic of GXM) Conjugated Pre-
clinical

(Zhang et al., 1997; Fleuridor et al., 2001; Pirofski,
2001; Beenhouwer et al., 2002; Maitta et al., 2004;
Datta et al., 2008)

Cryptococcus neoformans fbp1D Heat-Killed cells Pre-
clinical

(Wang et al., 2019)

Laminaran Subunit (algal b
glucan based)

Pre-
clinical

(Rachini et al., 2007)

Pneumocystis
pneumonia

Kexin genes Kexin-CD40 L
DNA vaccine

Pre-
clinical

(Zheng et al., 2005)

P55 protein (major surface glycoprotein) Recombinant (Feng et al., 2011)

(Continued)
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6.2 Recombinant yeast

Usually, regular harmless yeast is used as a host to express

proteins from pathogenic fungi. The recombinant yeast was then

injected, and efficacy was noted. For example, the injection of

budding yeast expressing P. brasiliensis gp43 was able to protect

mice from paracoccidioidomycosis (PCM) (Assis-Marques et al.,

2015). A vaccine preparation using hemolysin expressed in the S.
Frontiers in Fungal Biology 09
cerevisiae vector has been reported to confer partial protection in an

infection model of coccidioidomycosis (Capilla et al., 2009). One

can use cells expressing heterologous protein intracellularly or as

yeast display or both approach combines. The advantage of this

approach is that the basic nature of the fungal cell wall is conserved

across fungal species; therefore, even the budding yeast cell will act

as a suitable adjuvant. Thus, preventing the need for adding

adjuvants makes vaccine development more straightforward and
TABLE 1 Continued

Fungal
disease

Antigen Type of
vaccine

Status Reference

Pre-
clinical

Major surface glycoprotein (also known as gp120) Recombinant Pre-
clinical

(Theus et al., 1998)

Histoplasmosis Water-soluble ethylenediamine extract from cell wall Inactivatedfiltrated
Ags/Soluble
antigenic fractions

Pre-
clinical

(Garcia and Howard, 1971)

Ribosomes or live yeast cells of H. capsulatum Live-attenuated Pre-
clinical

(Tewari et al., 1977)

Cell wall and cell membrane of yeast-phase H.
capsulatum G217B

Live-attenuated Pre-
clinical

(Gomez et al., 1991)

Histone H2B–like protein Live-attenuated/
Recombinant

Pre-
clinical

(Nosanchuk et al., 2003)

Heat Shock Protein 60 (HSP-60) Recombinant Pre-
clinical

(Deepe et al., 2002; Scheckelhoff and Deepe, 2002)

HIS-62 Recombinant Pre-
clinical

(Gomez et al., 1991)

80-kilodalton antigen Recombinant Pre-
clinical

(Gomez et al., 1992)

Sec31 homologue Recombinant Pre-
clinical

(Scheckelhoff and Deepe, 2006)

H antigen (H. capsulatom) Recombinant
antigen

Pre-
clinical

(Deepe and Gibbons, 2001)

Coccidioidomycosis Killed spheroles Whole organism/
Inactivated

Phase
III

(Pappagianis, 1993)

C. immitis spherule-phase genes DNA Pre-
clinical

(Ivey et al., 2003) (Zheng et al., 2005)

T-cell epitopes Antigen 2/proline rich Ag (Ag2/
PRA)/Chimeric polyprotein

Recombinant
protein

Pre-
clinical

(Abuodeh et al., 1999) (Shubitz et al., 2006)
(Tarcha et al., 2006)

Attenuated mutant (DT vaccine strain) Live-attenuated Pre-
clinical

(Hung et al., 2011)

Immunodominant T cell epitopes Recombinant Pre-
clinical

(Hurtgen et al., 2012)

C. posadasii Gel-1 (b 1,3 glucosyltransferase) Recombinant
protein

Pre-
clinical

(Delgado et al., 2003)

Urease (rURE) Recombinant Pre-
clinical

(Li et al., 2001)

Spherule phase of C. posadasii Peroxisomal matrix
protein (Pmp1)

Recombinant Pre-
clinical

(Orsborn et al., 2006)

Chimeric protein-aspartyl proteinase, phospholipase
B and a mannosidase

Recombinant
protein

Pre-
clinical

(Tarcha et al., 2006)
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economical. Note that the level of immune response is independent

of yeast’s live or dead nature. Still, due to the safety point, yeast cells

are heat-inactivated before administration into animal or human

subjects. Since heat inactivation is easy, simple, and economical, it

prevents using chemicals like formalin, commonly used to attenuate

the pathogen during vaccine development (Kumar, 2018b; Kumar

and Kharbikar, 2021).

On top of that, several studies already showed the integrity and

stability of heterologous proteins and native yeast proteins during

heat inactivation (Kumar and Kharbikar, 2021). The long-term

stability of heterologous proteins in yeast cells, even at ambient

temperature, allowed the use of yeast cells as a biodegradable

immunogenic microcontainer (Kumar et al., 2022a). Heterologous

expression of proteins from different pathogenic fungi in budding

yeast and the use of whole recombinant yeast can be an excellent

way to mount immunity against fungal infection.
6.3 Subunit vaccines

Subunit vaccines use only one or a few components of the

pathogen. It can be DNA, mRNA, protein, peptide, or glycan from

the pathogen. Since this approach uses only a few components

from the pathogen, it is relatively safer and does not require

pathogenic entity handling. However, this may require cloning,

expressing, and purifying the protein. Subunit vaccine

formulation needs the addition of stabilizer, adjuvant, and other

components, including preservatives. Because of their non-

particulate nature, subunit vaccines showed rapid or fast body

clearance, and immune cells are not good at the uptake of soluble

immunogens. Therefore, subunits vaccines may sometimes fail to

mount a robust immune response and thus need modification (see

the following subheading). However, despite all these issues,

several studies showed encouraging results and provided

protection against Candidiasis (Cutler et al., 2011; Xin and

Cut le r , 2011) , Asperg i l los i s (S tuehler e t a l . , 2011) ,

Cryptococcosis (Specht et al., 2007). A detailed discussion of

peptide-based vaccines for fungal diseases can be found

elsewhere (BR Da Silva et al., 2020).
6.4 Conjugate vaccines

Conjugate vaccines are also subunit vaccines involving only a

few components from pathogens. In conjugate vaccines, a weak

immunogen is attached covalently to a stronger immunogen

acting as a carrier. The immunogen from the pathogen

provides specificity and carrier help in mounting a robust

immune response. Therefore, conjugate vaccines can be

considered the next level in subunit vaccines. Using this

approach, several studies showed promising results and were

able to protect against Candidiasis (Chiani et al., 2009;

Torosantucci et al., 2009; Bromuro et al., 2010; Pietrella et al.,

2010) and Cryptococcosis (Beenhouwer et al., 2002; Datta

et al., 2008).
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6.5 Nanotechnology

Nanotechnology is a relatively new approach to vaccine

development. An immunogen of interest is bound or coated onto

nanomaterial (nanoparticles or beads). Because of its particulate

nature, this approach is better in raising immune response than

soluble protein immunogen. For example, applying plasma bead

coated with C. albicans cytoplasmic proteins provides a positive

immune reaction against Candida infection (Ahmad et al., 2012).

Again, this may require expressing and purifying the immunogen of

interest followed by coating it onto the nanoparticle. The amount of

immunogen that can be loaded on a nanoparticle and whether a

given nanoparticle can be used for different immunogens need

further investigation. The detailed discussion on the application of

nanotechnology for developing anti-fungal vaccines is beyond the

scope of the present review and can be found elsewhere (Kischkel

et al., 2020).
6.6 Nucleic acid-based vaccines

Nucleic acid-based vaccines are the newest entry in the vaccine

formulation strategy. Nucleic acid-based vaccines can be DNA-

based, or mRNA based, depending on the nucleic acid used in

vaccine formulation. The best example of mRNA-based vaccines is

those used against COVID-19 (manufactured by Pfizer and

Moderna). So far, no DNA-based vaccine has been approved for

clinical use. In the future, we may see the use of DNA-based

vaccines in clinical settings as several pre-clinical studies showed

encouraging results when targeted against fungal infection (Ivey

et al., 2003; Zheng et al., 2005).
6.7 Pan fungal vaccine

The conserved nature of cell wall components, particularly

polysaccharides like beta-glucan, mannans, and zymogen, and

their absence in the host, including mammals, and poultry birds,

make them suitable for inducing the immune response against

fungal infection. Apart from the conserved nature of the fungal cell

wall and many associated proteins, components of the cell wall are

suitable immunogens and make the cell wall a promising adjuvant.

These features suggest that even a common budding yeast with a

similar cell wall should be able to mount an immune response and

should it protect from other fungal species. Thus, a given anti-

fungal vaccine (with inactivated yeast) can be used against several

fungal infections. Several studies validate this assumption that heat-

inactivated budding yeast could mount a robust immune response

and provide protection against other fungal infections (Liu et al.,

2011). In another strategy to develop an anti-fungal vaccine with

broad application, an antigenic component of the fungal cell wall is

conjugated with a carrier protein. For example, one study showed

that the covalent attachment of fungal cell wall b-glucans to

diphtheria toxin could mount a robust immune response and

provide protection against two common fungal pathogens
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(Torosantucci et al., 2005). Thus, it may be possible that only a few

anti-fungal vaccines may protect against almost all common

pathogenic fungi.
7 mRNA-based anti-fungal vaccines

Despite the dramatic success of mRNA-based vaccines in

preventing the spread of SARS-CoV-2 infection during the

COVID-19 pandemic, it is surprising that there is no study where

this platform has been tested to fight against fungal infections

(Bruch et al., 2022). However, several studies are available where

DNA-based vaccines were used to prevent fungal infection

(Table 1). Like a recombinant, conjugate, and subunit-based anti-

fungal vaccine, we may soon come across studies where mRNA-

based technology will be used to develop anti-fungal vaccines.

Indeed, using mRNA-based technology to develop an anti-fungal

vaccine is complex and needs more work in identifying suitable

protein immunogen(s) and safe adjuvant. Regarding an adjuvant, in

the case of anti-fungal vaccine(s), the fungal cell wall components

can be used as an adjuvant. The protein immunogen used as a

vaccine should be highly immunogenic and not share any similarity

with host proteins, ideally conserved in broad fungal species. One

may go with a panel of proteins (and not just one immunogenic

protein) if needed.

Therefore, finding or identifying fungal proteins that fulfill the

above criteria can be a significant roadblock in developing an anti-

fungal vaccine using mRNA-based technology. However, the

combined application of genomics and proteomics can be helpful

in finding a candidate’s immunogen protein (Thomas et al., 2006).

Fungal proteomics can be used to identify surface or cell wall

proteins (Asif et al., 2006). Identified proteins can be checked for

immunogenicity using bioinformatics or other available in silico

predicting tools (Poran et al., 2020). The same bioinformatics tools

can be used to check the similarity of candidate proteins. Those that

show any similarity (with host protein) should be dropped, and the

remaining should be taken further. The gene encoding for the

remaining protein should be searched in the fungal genome. The

availability of nucleotide sequences will help downstream processes,

including mRNA synthesis (Pardi et al., 2018). A broad pipeline for

developing mRNA-based anti-fungal vaccines is shown in Figure 4.
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One can look for previously published fungal cell wall proteomic

studies or fungal secretomes (Choi et al., 2010; Rasheed et al., 2019;

Gong et al., 2023).

Apart from looking at previously published fungal cell wall/

surface or secretome proteomics, one can also take fungal protein

used in previous studies related to developing anti-fungal vaccines

with positive or encouraging outcomes in pre-clinical or clinical

studies (Table 1). For example, genes used in the last DNA-based

vaccine development can be a good starting point in developing a

mRNA-based anti-fungal vaccine. The DNA sequence in previous

studies can be used for mRNA synthesis, which can be used in

developing anti-fungal vaccine. This is important as information

about immunogenicity in human subjects or animal models,

efficacy, and safety is already available. Therefore, one can take

any path in checking the possibility of developing mRNA-based

anti-fungal vaccines. Although vaccines offer several advantages in

fight against infectious diseases, but it is important to mention that

vaccines also suffer from several issues like thermolabile nature,

need for cold chain for storage and distribution and so on. Issues

associated with vaccines are discussed separately (Kumar et al.,

2022a; Kumar et al., 2022b). It is surprising to note that study

related to use of virus like particle for developing anti-fungal

vaccines is lacking, although this approach is successfully applied

against several infectious diseases (reviewed by Srivastava

et al., 2023).
8 Conclusion

From all the information mentioned above, it can be very well

justified that fungal infections are as common as bacterial or viral

infections. However, unlike bacterial or viral infections, fungal

infections are not documented or appropriately addressed. If

recorded or reported correctly, it may be possible that deaths

associated with all fungal infections may surpass the ones related

to common infectious diseases due to bacteria (for example,

Mycobacterium sp.), protozoa (for example, Plasmodium sp.) or

viral infections which gets much more attention and have a proper

policy for their monitoring (Brown et al., 2012). Treating fungal

infections is becoming more problematic due to the persistent rise

in resistance against limited anti-fungal drugs. Since several factors
FIGURE 4

Cartoon presentation showing a possible workflow for developing a mRNA-based anti-fungal vaccine. Schematic is only for conveying the primary
message. Some steps involved in mRNA-based vaccine development against fungal infection may vary.
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increase the global fungal burden, we need to adopt or formulate a

policy (at both international and local levels) addressing all the

elements contributing to the rise in global fungal burden to avoid

any fungal endemic or possibly pandemic.

The availability of refined genome sequences of both host

(human) and pathogenic fungal species makes genome mining

possible, thereby identifying ORFs unique and specific to only the

fungal domain. Those ORF need to be studied and used as a target

in discovering anti-fungal drugs where possible. For example,

several data mining studies have shown the presence of ORF

unique to only S. cerevisiae or budding yeast and their absence

from the mammalian genome (Hopkins and Groom, 2002). This

may speed up the discovery of new anti-fungal molecules.

Combining genome mining and better prediction of structures

(including motifs and folds) may also help develop an anti-fungal

drug with fewer side effects or toxicities, as candidate target proteins

sharing motifs or folds with host proteins can be dropout at early

stages of drug discovery. Said this, identifying anti-fungal molecules

remains expensive and lengthy, and therefore world needs a safe

and effective alternative for treating or preventing fungal infection.

Owing to the success of vaccines against viral and bacterial

infection, it is worth developing anti-fungal vaccines. Anti-fungal

vaccines, as a preventative measure, will reduce society’s economic

burden and fungal load and help better manage anti-fungal

resistance. The vaccine will also help save resources, time, and

efforts needed to develop or identify anti-fungal molecules as

modern vaccine development technology is safer and more rapid,

as seen in the case of mRNA-based vaccines against COVID-19.

Although many studies showed the utility of antibodies and cell

therapy for fungal infections, the cost and scale to which these

immunotherapies can be done remain an essential question.

A safe and effective anti-fungal vaccine is needed as well as a

wish. However, several challenges must be overcome before the safe

anti-fungal vaccine is available for public use. Encouraging results

from several pre-clinical (or animal studies) and clinical trials of a

few potential anti-fungal vaccines suggest that the world may soon

have an anti-fungal vaccine approved for public use (Table 1).

Given the better understanding of host and fungal genomes and
Frontiers in Fungal Biology 12
parallel advancement in vaccine development platforms, it is no

surprise that the world may get its first anti-fungal vaccine at any

time soon, maybe in the coming few years. The availability of an

anti-fungal vaccine with broad protection (effective against several

pathogenic fungi) will be ideal.
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