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Many of the world’s soils are experiencing degradation at an alarming rate. Climate

change and some agricultural management practices, such as tillage and excessive

use of chemicals, have all contributed to the degradation of soil fertility. Arbuscular

Mycorrhizal Fungi (AMFs) contribute to the improvement of soil fertility. Here, a short

review focusing on the role of AMF in improving soil fertility is presented. The aim of

this review was to explore the role of AMF in improving the chemical, physical, and

biological properties of the soil. We highlight some beneficial effects of AMF on soil

carbon sequestration, nutrient contents, microbial activities, and soil structure. AMF has

a positive impact on the soil by producing organic acids and glomalin, which protect

from soil erosion, chelate heavy metals, improve carbon sequestration, and stabilize

soil macro-aggregation. AMF also recruits bacteria that produce alkaline phosphatase,

a mineralization soil enzyme associated with organic phosphorus availability. Moreover,

AMFs influence the composition, diversity, and activity of microbial communities in the soil

through mechanisms of antagonism or cooperation. All of these AMF activities contribute

to improve soil fertility. Knowledge gaps are identified and discussed in the context of

future research in this review. This will help us better understand AMF, stimulate further

research, and help in sustaining the soil fertility.

Keywords: macro-aggregation, microorganisms, glomalin, rock phosphate, P legacy

INTRODUCTION

The most significant threats to soil function at the global level are soil erosion, soil organic
carbon, excessive use of input, and nutrient imbalance (Montanarella et al., 2016). The depletion
of soil fertility in the world has increased due to unsustainable land management practices,
such as overgrazing, bush burning, continuous crop cultivations, and tillage practices (Dewitte
et al., 2013). However, inoculation with Arbuscular Mycorrhizae Fungi (AMFs) has been
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identified as an eco-friendly approach to improve soil fertility
(Dal Cortivo et al., 2018). AMF is the most widespread soil
microorganisms that form a symbiotic relationship with more
than 80% of plants (Prasad et al., 2017), except for a few plant
families, such as Amaranthaceae, Brassicaceae, Cruciferae,
Chenopodiaceae, Caryophyllaceae, Juncaceae, Cyperaceae, and
Polygonaceae, which do not exhibit any association (Brundrett,
2009). They can be found in various ecosystems worldwide
(Verbruggen et al., 2012). AMF is a key component of soil
microorganisms and belongs to the glomeromycota phylum.
This phylum is divided into three classes (Archaeosporomycetes,
Glomeromycetes, and Paraglomeromycetes), five orders
(Archaeosporales, Diversisporales, Gigasporales, Glomerales,
and Paraglomerales), 14 families, 29 genera, and more than
240 species (Krüger et al., 2012; Redecker et al., 2013). Several
species of AMF have been studied in the world, however, the
most species used as a model are as follows: Funneliformis
mosseae (previously known as Glomus mosseae), Gigaspora
rosea, Gigaspora margarita, Gigaspora gigantea, and Rhizophagus
irregularis (previously known as Glomus intraradices and Glomus
irregulare; Schüßler and Walker, 2010). AMF is not a parasite
but obligate symbionts that need a host plant to complete
their life cycle. They improve crop productivity by increasing
water and nutrient uptake, such as nitrogen (N), phosphorus
(P), and potassium (K) (Anderson et al., 2018). The increase
of the host plant nutrient uptake is due to the characteristics
of AMF mycelium. These mycelia or hyphae absorb nutrients
by osmotrophy and explore more surface area compared to
non-mycorrhizal roots (Duponnois et al., 2011). In return, AMF

FIGURE 1 | Effects of arbuscular mycorrhizal fungi on improving soil fertility.

benefits carbohydrates from the host plants (Diagne et al., 2020).
Many authors demonstrated that AMF obtains up to 20% of
photosynthetic carbohydrates from the host plant (Bonfante and
Desirò, 2015; Kaiser et al., 2015). In addition to carbohydrates,
lipids are a major source of organic carbon delivered to the
fungus (Luginbuehl et al., 2017). It has been discovered that
plants provide the fungus with some of the fatty acids that
the microorganism needs to grow (Keymer et al., 2017). The
biosynthesis of fatty acids has not been observed in AMF in
the absence of the plant. Moreover, the genes encoding for
fatty acid biosynthesis have not been found in AMF, therefore,
these microorganisms depend on the lipid biosynthesis of the
host plant. AMF is an extremely ancient symbiosis. Based on
archeologic records, it dates to the appearance of terrestrial
plants million years ago and would have accompanied vascular
plants to colonize the terrestrial environment (Humphreys et
al., 2010). AMF does not only have an impact on plant growth
and production but it has been also reported that they improve
some soil characteristics, such as soil aggregation, soil nutrients
availability, water retention, microbial activities, nitrogen,
carbon, and phosphorus cycling, and soil acidity correction
(Sadhana, 2014; Jamiołkowska et al., 2018; Parihar et al., 2020).
Several studies have reported that they play a crucial role in plant
resistance against biotic and abiotic stresses. This review aims
to summarize knowledge about AMF symbiosis, in particular,
the beneficial effects on soil (Figure 1). First, the role of AMF
in the physical, chemical, and biological properties of the soil
is considered. The contribution of AMF in soil aggregation,
nutrient availability, and boosting beneficial soil microorganisms
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is discussed. Finally, the role diversity of interactions between
AMF and other soil microorganisms is examined.

ROLE OF AMF ON IMPROVING SOIL
PHYSICAL PROPERTIES

Importance of AMF on Soil Structure
Arbuscular Mycorrhizae Fungi have a beneficial effect on soil
structure. The AMF mycelia are present in massive quantities
in soils (de Novais et al., 2019). These mycelia or hyphae have
the property to create stable soil aggregations. Mycorrhizal fungi
act as a long-term soil binding agent through the production of
a glycoprotein (glomalin) by the extramatrical mycelia (Singh
et al., 2020). This glomalin is a hydrophobic, thermo-tolerant,
or heat-tolerant resistant to the hot temperature of the soil.
The hydrophobic character of the glomalin confers resistance
of soil aggregations to water, the production of this substance
reaches its maximum in senescent mycelia. The glycoprotein
is slowly biodegradable by bacteria and fungi in the soil. The
main function of glomalin is to stabilize soil aggregations
(Hu et al., 2019; Mubekaphi, 2019), act as a glue that binds
together the soil micro-aggregations (diameter <250µm) to
form stable macro-aggregations (Lehmann et al., 2020). These
soil macro-aggregations ensure better water infiltration, reduce
surface runoff, control soil erosion, reduce nutrients and organic
matter losses, increase gas exchange better retention of water
and minerals, especially potassium, therefore, improve crop
productivity (Demenois et al., 2018; Parihar et al., 2020). In
addition, the mycelia network constantly renews itself and the
dead mycelia also preserve soil structure until decomposition
(Gianinazzi et al., 2010). These dead mycelia contribute to the
stocks of organic matter and physical binder involved in soil
aggregation (Hamel and Plenchette, 2017). All these mechanisms
reduce the risks of soil compaction and promote soil fertility
(Norton et al., 2020). It can be said that AMFs improve soil
structure through their chemical and biophysical mechanisms,
such as enmeshment and alignment. However, there is a lack
of information about the lifespan of glomalin in the soil and
the effect of anthropology activities, such as bush burning, on
soil glomalin.

ROLE OF AMF ON IMPROVING SOIL
CHEMICAL PROPERTIES

Arbuscular Mycorrhizae Fungi symbionts are recognized as
being major microbial components in the development of the
main biogeochemical cycles of soils (P, N, and C). This results
in an improvement in the growth of mycorrhizal plants.

Contribution of AMF on Soil Phosphorus
Legacy Availability
Phosphorus is an essential element for plants. It is a component
of many molecules, such as adenosine triphosphate (ATP),
nucleotides, phospholipids, certain enzymes, and co-enzymes
(Agledal et al., 2013). Most soils contain enormous amounts

of organic and inorganic phosphorus (Requejo and Eichler-
Löbermann, 2014). The accumulation of P in soils from fertilizers
is known as legacy P (Sattari et al., 2012). This legacy P has
the potential to play a key role in maintaining agricultural
productivity (Condron et al., 2013; Rowe et al., 2016). It has
been revealed that the accumulated P in soils is sufficient to
sustain crop yields worldwide for about 100 years (Khan and
Zaidi, 2007). Unfortunately, only a few quantities of this soil’s P
are available for the plants (Balemi and Negisho, 2012). The P
is most often in the form of inorganic orthophosphate adsorbed
to soil cations. Thus, the availability of P in soil is affected
by the presence of iron (Fe), calcium (Ca), and aluminum
(Al) oxides, which fix phosphorus as iron phosphate (FePO4),
tri-calcium phosphate [Ca3(PO4)2], and aluminum phosphate
(AlPO4) (Amanullah and Zakirullah, 2010; Shen et al., 2011).
Therefore, only a small proportion (<1%) of the legacy P is
available to plants (Rodrigues et al., 2021). Phosphorus is taken
in the form of orthophosphates (inorganic phosphate Pi) by
plants, but this mineral form of phosphorus is in limited quantity
in the soil and, under the action of root sampling, areas are
quickly created depletion around the roots due to a slow supply
of P, slow phase of the soil, and the low mobility of P in soils
(Javot et al., 2007). The reservoir of P must be hydrolyzed to
make it available in the soil for plants uptake. AMF plays a
key role in improving P availability in the soil. Indeed, it is
a P activator that can accelerate the process to transform P
into bio-available forms via a range of chemical reactions and
biological interactions (Zhu et al., 2018). It was believed that
AMF hydrolyzes the organic P into inorganic phosphorus (Shen
et al., 2011) through a mechanism linked to the production of
enzymes named phosphatase (Tarafdar and Marschner, 1994).
However, recent studies revealed that AMF lack the capacity
to release phosphatases into the soil (Zhang et al., 2016) but
they recruit bacteria known as Phosphate Solubilizing Bacteria
(PSB) that produce phosphatase, whichmineralizes organic P and
provides a function that is absent from the AMF (Zhang et al.,
2018; Etesami and Jeong, 2021). PSB and AMF association is
a beneficial feature that has the ability to mineralize insoluble
phosphate in the soil and release soluble P that can easily be
assimilated by plants (Wei et al., 2017; Mahanta et al., 2018).
In that association, the role of PSB is to produce organic acids,
such as gluconic acid, ketogluconic acids, siderophores, protons,
and acid phosphatases that are involved in the mineralization of
organic P in soil (Dobbelaere et al., 2003; Lucy et al., 2004), while
AMF mycelia improve the absorption of soluble P in the plants
(Taktek et al., 2017). The phosphatase releases P from organic
P or inorganic orthophosphate by hydrolyzing phosphoric acid
monoesters into P ion and a molecule with a free hydroxyl group
(Othman and Panhwar, 2014). It was proven that the double
inoculation of R. irregularis and Rahnella aquatilis improves
solubilization of inorganic P by the increased production of
phosphatase released by the bacteria that is also stimulated
by AMF exuded fructose (Zhang et al., 2018). AMF can also
solubilize inorganic phosphate into soluble forms through the
processes of acidification, chelation, exchange reactions, and
production of organic acids, H+, and metabolites (Relwani et al.,
2008; Behera et al., 2014). It is demonstrated that the metabolic
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activities of AMF produce alkaline phosphatases, which cleave
substrates present in the soil and make the phosphate accessible
(Liu et al., 2013). Moreover, the organic acid produced by
AMF solubilizes insoluble mineral phosphate into a soluble form
(Lapeyrie, 1988). In addition, AMFs help to release P from
rock phosphate (RP) fertilizer. RP has low effectiveness. This is
due to when added as fertilizer only one part is accessible to
the plants and the remaining part is converted into insoluble
fixed forms (Billah et al., 2019). Thus, AMF can solubilize
insoluble phosphate from RP to make it available in the soil
(Andrino et al., 2021). AMF converts the insoluble P into soluble
forms through their production of acids during their metabolic
activities (Kalayu, 2019). However, little is known about whether
there is an activator dose of P that allows AMF to initiate root
infection. Because it is known that a rate of 50 kg N ha−1 is the
starter dose to activate rhizobium symbiosis.

Contribution of AMF on Soil Nitrogen
Availability
Like phosphorus, nitrogen (N) is a vital part of plants. It is
a constituent of phospholipids, coenzymes, and amino acids
(Hawkesford et al., 2012). In the soil, N is present in organic
and mineral forms (nitrites, nitrates, and ammonium ions).
The ammonium form is weakly absorbed by plants that prefer
nitrogen in the form of nitrate (NO−

3 ). AMF helps to mobilize
the inorganic form of nitrogen (NH+

4 ) from the soil (Casieri
et al., 2013). The AMFmycelium is able to absorb nitrogen in the
form of ammonium ions (NH+

4 ), in the form of nitrates (NO−

3 ),
and in the form of amino acids (Chen et al., 2018; Drechsler et
al., 2018; Jansa et al., 2019). Nitrogen availability requires the
activity of local transporters in the AMF hyphae. It has also
been demonstrated that mycorrhizal associations could play a
significant role in the decomposition and mineralization of plant
organic matter and mobilize nutrients, particularly nitrogen, for
the benefit of the host plant (Lambers et al., 2008). However,
more research should be conducted in a controlled environment
to determine the quantity of nitrogen that transits through the
AMF mycelia network. Moreover, a study should be carried out
to determine whether AMFs use nitrogen from the soil or from
the host plant.

Contribution of AMF on the Soil Carbon
Cycle and C Sequestration
Arbuscular Mycorrhizae Fungi play an essential role in the global
C cycle. AMF hyphae are involved in C translocation into the
soil and provide a key link in the terrestrial C cycle (Finlay,
2008). Indeed, AMF is an efficient agent to improve carbon
sequestration in a mechanism of translocation C away from
the high respiratory activity around the root and into the soil
aggregations (Zhu and Miller, 2003). It has been demonstrated
that mycorrhizal roots create a sink demand for carbon. When
the atmospheric CO2 increases, the allocation of C from the
plants to AMF also increases and stimulates the growth of AMF
(Drigo et al., 2010). This C demand is provided by the host
plant from the C fixed through photosynthesis (Parihar et al.,
2020). In addition, AMF extramatrical hyphae represent 20–80%
soil microbial biomass which consists of 15% of soil organic
C (Kabir et al., 1997; Leake et al., 2004). As discussed above,

AMF plays also a critical in the formation and maintenance
of soil aggregations through the production of Glomalin. This
glomalin protects organic matter from microbial degradation,
increases the hydrophobicity and stability of macro-aggregations,
which control soil carbon loss and increase soil carbon stocks (C
sequestration;Wilson et al., 2009; Rillig et al., 2010). More studies
are needed to distinguish the role of AMF in the dynamics of soils
carbon sequestration. This involves in particular determining
the quantity of carbon fixed by the AMF because this lack of
knowledge means that AMF cannot currently be included in the
models of reducing the rate of atmospheric carbon. In addition,
limited information is available on the regulation of carbon to
nutrient exchange across the mycorrhizal interface.

Contribution of AMF on Soil Trace
Elements Transfer
Trace elements play roles in enzymatic activities involved in
photosynthesis, oxidative respiration, protection against free
radicals, or even lipid biosynthesis (Dominguez-Nuñez et al.,
2016). It is known that AMF allows better absorption of low
mobile trace elements in soils, such as potassium (K), calcium
(Ca), magnesium (Mg), copper (Cu), zinc (Zn), iron (Fe),
manganese (Mn), and cobalt (Co) (Garcia et al., 2016; Hashem
et al., 2018). For instance, according to Krishna and Bagyaraj
(1984), the level of Zn, Fe, and Mn is twice in mycorrhizal
peanut plants compared to non-mycorrhizal plants. It has also
been revealed that mycorrhizal inoculation improved Zn and
Cu nutrition in soybeans and clover (Schoeneberger et al.,
1989). However, when some of these elements are present in
high quantities and therefore possess a toxic character, the
mycorrhization can play a role in the protection of the plant, by
strong retention of these elements (Liu et al., 2000). Besides trace
elements, more research studies are needed on the role of AMF
to synthesize or transport phyto-hormones (auxin, cytokinins,
gibberellic acid, etc.) and antibiotics from plant to plant and from
plant to soil microorganisms.

ROLE OF AMF ON IMPROVING SOIL
BIOLOGICAL PROPERTIES

Microorganisms are one of the most important soil components.
These microorganisms interact between them and with their
environment to contribute to the functioning of the soil and
thus participate in the provision of ecosystem services necessary
for our survival (plant production, purification of pollutants,
etc.; Nielsen et al., 2011). Soil is therefore a continually active
biological reactor where diverse biochemical reactions and
essential ecological processes happen (solubilization of organic
matter, the biogeochemical cycles of the elements, etc.; Gessner
et al., 2010). The microbial activities in the soils contribute to its
fertility through synergy between microorganisms, competition,
and parasitism (Topalović and Vestergård, 2021).Within the soil,
AMFs interact with a wide range of microorganisms to better
improve soil fertility. It has been demonstrated that the secretions
of AMF influence the composition and activity of microbial
communities in the rhizosphere (Veresoglou and Rillig, 2012).
The biological activities of AMF lead to the appearance of a
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TABLE 1 | Examples of some interactions between AMF and soil microorganisms.

Interactions AMF + microbes Mechanisms Effects References

AMF and Pseudomonas

fluorescens

Glomus intraradice (AMF) stimulates the

production of antibiotic

(2,4-diacetylphloroglucinol) by Pseudomonas

fluorescens.

The antibiotic protects the host plants against

Gaeumannomyces graminis.

Ma et al., 2019

AMF and saprotrophic fungi AMF increase the biomass of saprotrophic

fungi.

Dissolution of soil organic matter into mineral

matter.

Albertsen et al., 2006;

Carteron et al., 2021

AMF and Gram-positive/negative

bacteria

AMF has a deletion effect on certain

Gram-positive and Gram-negative bacteria.

This interaction affects the production of

bioactive metabolites and the decomposition

of organic matter.

Welc et al., 2010

AMF and Rhizobia AMF work in synergy with Rhizobia Provide legumes woody and crop legumes

(Faba bean) with essential soil nutrients

Chatarpaul et al., 1989;

Xavier and Germida, 2002

AMF, Rhizobia, and phosphorus

solubilizing microorganisms

(PSM)

Tripartite relationship. Solubilize P by

mineralization, low soil pH, chelation and

production of phosphatase, organic acid and

proton.

Improve host plant phosphorus uptake. Afkhami and Stinchcombe,

2016; Kalayu, 2019;

Nacoon et al., 2020

AMF and Mycorrhization Helper

Bacteria (MHB)

MHB help: in the receptivity of the root to the

AMF, in root-AMF recognition, in AMF growth,

in the modification of the rhizospheric soil, and

in the germination of AMF propagules.

Beneficial effect of bacteria on mycorrhizae.

Improve soil fertility and nutrients uptake by

the host plants.

Rigamonte et al., 2010

AMF and Plant Growth

Promoting Rhizobacteria (PGPR)

AMF work in synergy with PGPR to stimulate

Ammonia production, N fixation, solubilization

of mineral phosphate, and other essential

nutrients, production of plant hormones.

Accumulate ascorbate peroxidase and

glutathione peroxidase. Secrete organic acids

responsible for dissolving phosphorus phytate

mineralization and inorganic P solubilisation.

PGPR found in AMF mycelia produce

siderophore and indol acetic acid production.

Soil fertility and plant growth. Increase the

diversity and abundance of soil parasite

antagonists. Mitigate water deficit damage

and improve water stress tolerance (i.e.,

Cupressus arizonica).

Linderman, 2000; Ahemad

and Kibret, 2014; Vafadar

et al., 2014; Battini et al.,

2016; Moreira et al., 2020

AMF and Frankia Synergistic interaction between AMF and

Frankia (nitrogen-fixing actinobacteria).

Improve actinorhizal plants’ height, the

numbers and dry weight of root nodules, leaf

area, shoot height, total biomass, and N and

P leaf contents (i.e., Alnus glutinosa).

Oliveira et al., 2005

AMF and Bacillus subtilis AMF stimulate the production of nitrate and

nitrite reductase and nitrogenase activities and

osmoprotectants such as glycine, betaine, and

proline by Bacillus subtilis.

Increase shoot and root dry weight, nodule

number, and leghemoglobin content.

Hashem et al., 2017

AMF, Arbuscular Mycorrhizae Fungi.

positive, neutral, or negative relationship between AMFs and
other soil microorganisms.

Many microbial components of the soil work synergistically
with AMF, promoting the growth and protection of plants
(Gryndler, 2000; Barea et al., 2002). The positive interactions
involve the nutrient acquisition, biological control of root
pathogens, improvement of plant tolerance to abiotic
stresses, and soil fertility. AMF communities influence
the physicochemical environment of the rhizosphere and
control various soil microbial interactions (Alimi et al., 2021).
Mycorrhization directly affects the quantity and quality of
root exudates. These exudates influence the composition of
the microflora of the rhizosphere (Baltrus, 2017). Table 1

shows some examples of interactions between AMFs and
other microorganisms. However, these interactions depend
on several factors, such as the amounts of phosphorus and
nitrogen available (Larimer et al., 2014). This is confirmed by
Wang et al. (2011) and Xu et al. (2018) who demonstrated a
synergistic relationship between AMF and the bacterial (i.e.,

rhizobia) and fungal communities depends on N and P status
in the soil. However, there is a lack of information and pending
questions which need to be answered. How soil microorganisms
may hamper or totally inhibit the activities and functioning
of AMF? What is the role of AMF in the trophic chain? In
another word, can AMFs subject to any kind of predation or
parasitism from soil microorganisms? In addition, a study on
AMF and free native nematode interactions and their impact on
the development of cereal crops under water stress conditions
are also needed.

INFLUENCE OF CROP AND SOIL
MANAGEMENT PRACTICES ON THE AMF
FUNCTIONING AND PERFORMING
VARIOUS SOIL FUNCTIONS

Arbuscular Mycorrhizae Fungi improve soil health by improving
its physical, chemical, and biological health. The previous
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sections have described its role in nutrient cycling and interaction
with other soil microorganisms. However, agriculture practices
significantly impact AMF communities and their performance,
influencing various soil functions. This section will discuss some
crop and soil management practices and their influence on AMF
functioning and performing activities in the soil.

Impact of Crop Management on AMF
Tomaintain and improve nutrient availability and soil health and
minimize pest and disease incidence, farmers use management
strategies, such as crop rotation and intercropping, to achieve
sustainable agriculture production. These two practices influence
the diversity, abundance, and functioning of AMF in the soil.
For instance, crop rotation increases the number of AMF spore
density and root colonization in maize, and it also increases
wheat yield when the preceding crop is soybean or chickpea
(Higo et al., 2013; Bakhshandeh et al., 2017). These positive effects
are not the effects of leguminous nitrogen fixation but rather due
to higher AMF activities in the soil (Bakhshandeh et al., 2017).
However, crop rotation with non-mycorrhizal crops, such as the
Brassica family, reduces the abundance of AMF in the soil and the
symbiotic benefits conferred to the crops through the production
of antimicrobial isothiocyanates (Valetti et al., 2016). Moreover,
some plants are more mycorrhizal-dependent than others. For
instance, maize crop is moremycotrope than soybean (Troeh and
Loynachan, 2003; Wang et al., 2016), while wheat is considered a
non-mycorrhizal or mycorrhizal plant species depending on the
cultivar (Hetrick et al., 1993; Stefani et al., 2020). Wheat cultivars
respond differently to AMF inoculation in terms of growth, root
colonization, and carbon for nutrient exchange; depending on
the age of a cultivar, old cultivars benefit more consistently from
AMF than new cultivars that effectively exploit highly fertilized
systems with less reliance on symbiosis (García de León et al.,
2020). This mechanism is known as a mycorrhizal dependency,
whereby AMF presence in the soil affects the growth response of
plant species differentially (Kandhasamy et al., 2020). In addition,
intercropping various plant species in similar conditions impacts
the composition of the community and diversity of AMF and
the plant diversity. Indeed, AMF is involved in transporting
plant assimilates from the dominant species to plant species
subordinated through the AMF mycelium network (Egerton-
Warburton et al., 2007). Therefore, the presence of AMF impacts
the type of vegetation, the relative abundance of plant species,
and their diversity (Yadav et al., 2020). This mechanism operates
through a change in the soil microorganisms and soil properties
(soil structure; Liu L. et al., 2020). AMF influences soil microbiota
through mycelium products and biophysical mechanisms, such
as enmeshment and alignment. All these mechanisms occur in
a complex interaction process that involves various factors in a
cycling way. However, we need to carry more research studies at
the field level to really understand the impact of plant biodiversity
on AMF diversity and functioning.

Impact of Soil Management Practice on
AMF
Soil management practices have a significant impact on soil
properties and microbial diversity. Mineral fertilizer, chemical

pesticides, and herbicides applications are essential for crop
nutrition, and they replenish the soil nutrients pool removed
or harvested by crops, weed control, and pest management
(Rana et al., 2019). However, high- and long-term inorganic
fertilizer application reduces the plant’s dependency on AMF,
subsequently, mycorrhizal diversity, and abundance (Kour et al.,
2020). This phenomenon can be explained by the fact that
the symbiotic relationship between the plant and AMF is
energetically costly for the plant; therefore, when the soil is
rich in nutrients, plants allocate fewer carbohydrates to AMF,
which ultimately affects the spore development and hyphae
production (Tian et al., 2013). Soil phosphorus plays the
most significant role in regulating plant mycorrhizal symbiosis
(Kowalska et al., 2015). Thus, high P application negatively affects
root colonization and AMF diversity (Cheng et al., 2013). On
the other side, low fertilizer application optimizes the plant
mycorrhizal symbiosis (Rana et al., 2020). For instance, Liu
et al. (2016) found that P application in nutrient-deprived soil
improves the mycorrhizal-mediated benefits to the plant. In
addition, organic fertilizer application also has both positive
and negative impacts on AMF diversity (Liu J. et al., 2020).
According to Zhu et al. (2016), organic matter improves the
AMF community composition in the rhizosphere of maize. In
the same vein, inorganic pesticide and herbicide applications also
have both positive and negative effects on AMF. These effects are
mediated by the secretion of active substances up taken by plants
via root or hyphal from the rhizosphere (Hage-Ahmed et al.,
2019). For instance, azoxystrobin and glyphosate, respectively,
fungicide and herbicide, inhibit the spore germination of
some AMF species (Buysens et al., 2015). In addition to
the chemical application, extensive tillage greatly influences
the community composition of AMF by reducing mycelium
extension, colonization rate, and diversity structure (Säle et al.,
2015; Zhao et al., 2015). This is due to the effects of tillage on
the soil’s permeability, texture, and microbial food substrates,
which ultimately affect the soil microbiota activity and their
habitat type (Wang et al., 2020). Several studies demonstrated
that conservation or zero tillage improves AMF diversity and
abundance, resulting in better plant growth (Qin et al., 2017; Gu
et al., 2020). However, a study carried out in a Mediterranean
agroecosystem found that AMF spore density or extraradical
mycelium density is not affected by conventional tillage practices
(Curaqueo et al., 2011). These contradicting results indicate that
the effects of different chemical applications and tillage practices
on AMF still need further studies to understand better the effect
of different soil management practices on soil AMF.

CONCLUSION AND FUTURE AREAS OF
RESEARCH

Arbuscular Mycorrhizal Fungi appear to be one of the most
important soil organisms to take into account. AMFs are involved
in plant mineral nutrition, water absorption, and protection
against biotic and abiotic stresses in plants. Despite the fact
that the importance of AMF in improving soil fertility is well-
established, our understanding of the underlying mechanisms
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is still limited. There are a few studies that simultaneously
investigated the effects of AMF on the physical, chemical,
and biological properties of the soil. Therefore, the current
review provides a holistic overview of the existing information
regarding the role of AMF symbiotic relationships with crops
in improving the physical, chemical, and biological properties
of the soil. Regarding the impact of AMF on soil fertility,
we highlighted several mechanisms, such as the production
of glomalin, which is beneficial to the accumulation and
circulation of soil carbon and enhances soil stability. In
addition, the beneficial interaction between AMF with other
soil microorganisms, such as PSB, which produce phosphatase
and mineralize organic P, was highlighted. However, some
of the functions involved in this symbiosis that determine
the performance of AMF in the soil should be addressed in
future studies.

• Future studies are required to characterize the soil P and N
critical threshold below which AMF establishes symbiosis and
above which AMFs are not active on a broader range of plant-
AMF species combinations, soil types, and edaphic conditions.

• Furthermore, future research should investigate the regulation
of N and its uptake from the soil during AMF symbiosis by
using molecular tools, such as transcriptomic, gnomonic, and
the development of fungal mutants.

• Further attention is needed on the role of glomalin in
improving carbon sequestration efficiency from various
climate and soil types to expedite its use in solving soil
degradation problems that will be worsened by prevailing
climate disturbances. Assessing the accumulation and lifespan
of glomalin in soil fertility parameters under different climate,
land use, andmanagement conditions is of critical importance.

• It is well-established that the interactions between AMF and
certain soil microorganisms are beneficial to soil fertility;
however, the interaction between AMF and free native
nematode and their impact on soil structure under drought
stress calls further research.

• The role of AMF in the synthesis or transport of
phytohormones, such as auxin, cytokinins, gibberellic

acid, and antibiotics from plant to plant and from plant to soil
microorganisms, is also poorly understood. Therefore, studies
targeting the identification and characterization of such AMF
function are paramount.

• Moreover, the role of AMF in soil basal respiration is an
interesting field to investigate.

• Advances in our knowledge of the functions played by AMFs
in the soil are partly hindered by the obligate biotrophic
nature of these fungal microorganisms. Therefore, more field
experiments on the impact of plant biodiversity on AMF
diversity and functioning are necessary.

• Moreover, future studies on the effects of different
soil management practices (i.e., tillage) and chemical
applications on AMF functioning and performance in the soil
are important.

All these research topics should be based on new approaches,
such as recent methodological advances in physiology, molecular
biotechnology, and agroecology integrated into both laboratory
and field conditions. Such interventions are paramount to our
ability to establish a new “green revolution” aligned to the
requirements for achieving a sustainable development ingrained
in agricultural production.
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