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Ash seedlings in a reciprocal 
transplant experiment—the 
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forest stands affects ash offspring 
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In past decades, ash dieback has caused a rapid decline of European ash 
(Fraxinus excelsior) in temperate forests of Europe. Numerous studies focus 
on mitigating the negative impacts of ash dieback to forest ecosystems or 
identifying resistant genotypes. The role of natural selection toward genotypes 
withstanding ash dieback for ash regeneration has been less frequently studied 
with experimental means to date. This is, however, necessary in times of global 
change, because the preservation of ash in Europe’s forests will depend, above 
all, on the adaptability of the future generations of ash trees. To quantify the 
extent and effects of ash dieback severity for ash regeneration we selected five 
forest stands moderately damaged and five forest stands highly damaged by ash 
dieback, in Schleswig-Holstein, Germany. We reciprocally transplanted naturally 
regenerated ash seedlings sampled in the field between these 10 sites. A shading 
treatment added to each half of the plots per site was meant to test for effects 
of altered light conditions in the herb layer due to canopy opening caused by 
ash dieback. With this approach, we tested seedling survival, performance and 
fungal infection for an interacting effect of origin and target site in regard to 
ash dieback severity and environmental factors over 2  years and recorded leaf 
traits (specific leaf area, leaf dry matter content) in the second year. Reduced 
light conditions under the shading nets had strong effects, influencing first year 
performance and infection probability as well as second year survival, growth 
and leaf trait characteristics. Soil conditions had only a marginal influence on 
transplanted seedlings. Transplantation direction between moderately and highly 
damaged sites affected infection marginally during the first year and survival as 
well as leaf traits significantly during the second year. Most notably, seedlings 
transplanted from moderately damaged to severely damaged sites exhibited the 
highest infection probability and lowest SLA, while seedlings transplanted vice 
versa were least likely to be infected and exhibited the highest SLA. Results hint 
at a first filtering effect by the ash dieback history of a forest stand and might 
indicate a transition from ecologically to evolutionary driven differentiation of 
ash seedling responses.
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1 Introduction

Against the background of ongoing global change, forests are 
subjected to drastic transformation due to interacting imprints of 
climatic alteration, land use change, pollution and exploitation of 
resources (Dale et al., 2001; Pautasso et al., 2015). Aside from the most 
notable effects of increasing frequency and intensity of climate 
extremes (e.g., drought, heavy storms) (Seidl et al., 2017; Venäläinen 
et  al., 2020) and increasing fragmentation (Estreguil et  al., 2012; 
Fischer et al., 2021), the introduction of alien species still adds to the 
pressure on ecosystem functioning and challenges faced by forest 
managers. The accumulation of alien species in forests often involves 
highly competitive plant species, which can quickly become invasive 
in their new environment (e.g., van Kleunen et al., 2015). Moreover, 
fungi (and microbes) are subject to intercontinental translocation as 
well and can act as pathogens in their new ranges (Desprez-Loustau 
et al., 2007; Santini et al., 2013; Panzavolta et al., 2021). In the past 
decades, there have been many examples of invasive forest pathogens, 
some with detrimental effects on their new host species and entire 
forest ecosystems (Thakur et al., 2019). For example, in the late 1800s, 
Cryphonectria parasitica (Murr.) Barr was introduced to North 
America and after only 50 years, the disease, commonly known as 
chestnut blight, had decimated the majority of mature American 
chestnut trees [Castanea dentata (Marsh.) Borkh.] (Anagnostakis, 
2001). Ecological implications involved major changes in tree species 
composition (Woods and Shanks, 1959; Myers et al., 2004) leading to 
changes in the leaf litter composition, often decreasing leaf 
decomposition and mineralization, and generally altering nutrient 
cycling and carbon processing (Smock and MacGregor, 1988). Further 
down the cascade succeeding this major forest disturbance event 
impacts were also seen in other trophic groups (Haney et al., 2001) 
and associated ecosystems (Wallace et al., 2001). Another prominent 
example is the spread of the Dutch elm disease in the early 1900s. The 
disease swept across the northern hemisphere in two major outbreaks 
by Ophiostoma ulmi (Buisman) Nannfeldt and only a few years later 
by the aggressive Ophiostoma novo-ulmi Brasier, which resulted in the 
loss of hundreds of millions elm trees (Brasier, 2001). In Europe, 
major impacts have been seen in riparian forests where the 
replacement of Ulmus minor Mill. was difficult, as only few other tree 
species are suitable for sites characterized by frequent flooding as well 
as summer water deficits (Martín et al., 2010).

European ash (Fraxinus excelsior L.), a tree species overlapping 
with elm in its ecological niche (Marigo et al., 2000), has also recently 
been affected by an introduced tree pathogen causing the ash dieback 
disease. The ascomycete Hymenoscyphus fraxineus (T. Kowalski) 
Baral, Queloz & Hosoya, was first detected as the causal agent in the 
early 1990s (Kowalski, 2006) and has since spread across the entire 
distribution range of F. excelsior. Direct impacts of the fungal pathogen 
include crown defoliation and stem necrosis (Kirisits et  al., 2009; 
Schumacher et al., 2010; Gross et al., 2014), which not only lead to 
reduced growth and loss of tree vitality but to high mortality of ash in 
most temperate European forest stands (Marçais et al., 2017; Coker 
et al., 2018). Subsequent changes in forest structure can range from 
small gaps quickly being taken over by other tree species to large gaps 
forming where drastic changes in light regime and nutrient availability 
often favor the establishment of highly competitive forest-edge plants 
in the understory (Turczański et al., 2020). Accordingly, for the next 
few decades, Hultberg et al. (2020) predict an extinction cascade of 

ash-associated species which is even accelerated by the concurrent 
endangerment of ecologically similar elm species, since ash and elm 
species are considered mutual substitutes (Mitchell et  al., 2016; 
Thomas et al., 2018; Hultberg et al., 2020).

Apart from immediate ecological effects, the introduction of 
invasive forest pathogens might also involve evolutionary 
consequences (e.g., Budde et al., 2016; Zenni et al., 2016). Basically, a 
host species has a long-term coevolution with its antagonist which is 
driven by complex processes varying on multiple spatiotemporal 
scales from the genetic to the landscape level (Burdon and Thrall, 
2009; Dickie et al., 2017). This might also be evident in trees, seeing 
that even with the short-lived pathogens advantage over trees in terms 
of generation time, a rapid onset of adaptive evolutionary processes 
induced by the strong selection pressure of an invasive pathogen has 
been observed (Heiniger and Rigling, 1994; Ahrens et al., 2019). Aside 
from adaptive processes of the host tree species itself, such as natural 
selection toward most tolerant genotypes or phenotypes, the 
evolutionary potential of an affected tree species can also 
be determined by viral or other biological antagonists to the pathogen 
as seen in Dutch elm disease as well as chestnut blight (Heiniger and 
Rigling, 1994; Brasier, 2001).

Predictions of evolutionary consequences are still vague for 
European ash due to the comparably short time that has passed since 
initial disease outbreak and the long generation time of trees. While it 
was possible to show a genetic basis of resistance toward H. fraxineus 
involving medium to high heritability under controlled conditions in 
planted provenance trials or seed orchards (Pliūra et al., 2011; Kjær 
et  al., 2012; Muñoz et  al., 2016), the situation under natural 
heterogeneous conditions is a substantially different one. For example, 
there was no correlation found between the damage intensity of 
mature ash trees and their offspring as revealed in a parentage analysis 
in a natural ash stand (Wohlmuth et al., 2018). However, the authors 
admit that the inspected sites represent neither typical nor highly 
affected ash stands, therefore, the data set was most likely not able to 
comprehensively encompass the complexity of differences in 
susceptibility toward H. fraxineus. In contrast, Semizer-Cuming et al. 
(2021) observed ash regeneration in a near-natural mixed forest stand 
which had been moderately affected by ash dieback and found that 
healthy ash trees were overrepresented as parents of young natural 
regeneration, thus suggesting incipient selection toward more tolerant 
ash individuals.

To what extent these selection processes are affected by the 
heterogeneity of natural forest stands has not yet been addressed in 
empirical research. While ecotypic differentiation in regard to climatic 
conditions is well known for trees (Kawecki and Ebert, 2004; Davis 
et al., 2005; Jump et al., 2006; Savolainen et al., 2007; Alberto et al., 
2013; Vitasse et  al., 2013), it is still debatable to what extent tree 
performance and fitness also rely on local adaptation to abiotic 
edaphic or even biotic environmental conditions. Manzanedo et al. 
(2018) studied Fagus seedling performance of three geographical 
origins in a reciprocal soil transplant experiment: there was a strong 
signal of plant × soil origin interactions to affect the performance of 
transplanted seedlings, but there was no evidence for a home soil 
advantage for seedlings grown in their own soil. However, the authors 
only tested for soil biota effects and thus rather suggested 
maladaptation to local soil biota including specialized antagonists. In 
contrast, their results showed that seedlings transplanted from 
populations in the central part of a species’ range can still be strongly 
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differentiated despite presumably high levels of gene flow that hamper 
ecotypic differentiation.

There is increasing evidence that processes of local adaptation or 
even maladaptation to antagonists also apply to invasive forest 
pathogens (e.g., see Ahrens et al., 2019). Besides a genetic basis of 
resistance (Budde et  al., 2016), higher tolerance to an invasive 
pathogen could also be due to mechanisms of disease avoidance, e.g., 
by early leaf senescence in ash trees (McKinney et al., 2011; Muñoz 
et al., 2016), or interaction with the associated endophytic community 
(Kosawang et al., 2018; Becker et al., 2020; Griffiths et al., 2020). In 
addition, heritability of tolerance traits can be  affected by strong 
gene × environment interactions and thus vary under different 
environmental conditions (Velásquez et al., 2018; Ahrens et al., 2019). 
At the same time, biotic factors, such as soil biota, endophytes or even 
the pathogen itself, could play a role in a local differentiation in the 
susceptibility of the host species. For F. excelsior, evidence is provided 
that tolerance to the ash dieback pathogen can depend on its infection 
pressure—some ash individuals that are healthy at low pathogen 
infection pressure may become diseased when the infection pressure 
is high (Pliūra et al., 2011, 2014). There is high spatial variation in the 
severity of ash dieback symptoms with some ash stands showing little 
damage while other stands have completely collapsed (e.g., Enderle 
et  al., 2018). Generally, abiotic site conditions and especially soil 
moisture have been identified as major contributing factors to these 
differences (Erfmeier et al., 2019; Haupt et al., 2022; Cracknell et al., 
2023). Especially in areas with highly fragmented forest patches, there 
might also be temporal differences in disease progression. However, 
the extent as to which these differences in ash dieback severity and 
environmental conditions affect natural ash regeneration is still 
unknown, although the question of the natural regenerative capacity 
of ash-rich stands is such an obvious one. Reciprocal common garden 
studies have proven to be appropriate tools to test for local adaptation 
to climatic (Muffler et  al., 2021; Lortie and Hierro, 2022), abiotic 
(Smith et al., 2012), and also biotic factors (Manzanedo et al., 2018).

We make use of the current infestation situation of ash-rich forests 
in fragmented Northern German woodlands to test for the impact of 
the disease status of mature stands on offspring development. In a full 
reciprocal transplant experiment, we examined survival, performance 
and infection status of ash regeneration in forest stands of differing 
pre-existing ash dieback severity. Here, we  distinguish between 
seedling performance during first year establishment and the second 
year early growth phase. Origin and target forest sites are classified as 
showing either moderate or high damage caused by ash dieback. 
Considering light as the environmental condition, which is most 
drastically altered in forest stands affected by ash dieback, artificial 
shading was added as a treatment while also taking abiotic site factors 
into account.

Addressing effects of environments and origins, we hypothesize 
that (1) moderately damaged target stands involve a favorable 
environment and promote a better survival and performance of ash 
regeneration. At the same time, (2) we  assume that an increased 
selection pressure caused by a higher ash mortality will contribute to 
a better performance of ash regeneration originating from highly 
damaged forest stands. Looking at the transplantation direction as a 
combination of these target and origin effects to quantify interaction 
effects, (3) more precisely, we expect origin × target site interactions 
that show seedlings from highly damaged stands (which are more 
likely to be  tolerant to ash dieback) transplanted into moderately 

damaged ash stands (which offer more favorable site conditions) will 
outperform all other transplant combinations.

2 Materials and methods

2.1 Site description

The experimental sites are distributed on the eastern coast of 
Schleswig-Holstein, Germany (Figure 1). A mean annual temperature 
of 9.3°C and a mean annual precipitation of 812.8 mm (1991–2020) 
classify the climate in this northern-most part of Germany as a 
sub-oceanic one [Deutscher Wetterdienst (DWD), 2023]. As a recent 
moraine landscape formed by glaciers during the Weichselian 
glaciation, the region is characterized by a hilly topography, where the 
prevailing soil types are Luvisols replaced by Stagnosols and Gleysols 
in areas with higher soil moisture or groundwater influence. Bearing 
a forest cover of only 11% (173,412 ha) of the total area, Schleswig-
Holstein is the federal state with the least amount in Germany. The 
forests are largely fragmented and thus comprise a mosaic of small 
ancient forest remnants and reforested stands.

Fraxinus excelsior occurs on a wide range of site conditions in 
Schleswig-Holstein (Härdtle, 1995; Haupt et al., 2022), therefore the 
experiment was established under conditions involving fresh to moist 
and meso- to eutrophic soils. All experimental sites are situated in 
ash-rich forest stands currently with differing proportions of 
F. excelsior and high proportions of Fagus sylvatica L. and/or Quercus 
robur L. and a low abundancy of other tree species like Acer 
pseudoplatanus L. (Table  1). Plant communities at all sites can 
be ascribed to the beech forest community Hordelymo-Fagetum with 

FIGURE 1

Location of the 10 experimental sites. The map shows the three 
major landscape types of Schleswig-Holstein, in Germany: recent 
moraines (light gray), ancient moraines (dark gray), and marshland 
(anthracite). All experimental sites are arranged in pairs of each one 
moderately (light green) and one highly (dark green) damaged ash-
rich forest stand on the recent moraines of the Schleswig-Holstein 
east coast.
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some transitions to Galio odorati-Fagetum on sandy to loamy soils 
(Härdtle et al., 2008).

In Schleswig-Holstein, ash dieback was first recorded in 2002 
(Enderle et al., 2017). Sites were selected in separate forest stands 
according to the ash dieback severity of the remaining mature ash 
trees and the overall damage status of the stand (Figure 2). Along the 
moraine landscape, five pairs of forest stands were selected, each with 
one moderately and one severely damaged stand (Figure  1). The 
sampling in pairs was intended to ensure that the variation in climatic 
conditions within the two groups of infestation situation is 
comparable. An area of approximately 150  m2 of each of these 

experimental sites was selected for experimental implementation and 
fenced in order to ensure exclusion of wildlife.

2.2 Experimental design

The study was set up as a reciprocal transplant experiment across 
10 sites with naturally rejuvenated 1–2-year old ash seedlings obtained 
directly from each of these sites. In September 2019, naturally 
rejuvenated ash seedlings were harvested from each of the 10 forest 
stands (henceforth addressed as sites of “origin”). Seedlings were kept 
moist and dark during transport. Within the day of harvest, roots were 
carefully but thoroughly washed with water and seedlings were potted 
in Quickpot trays (QuickPot QP 96 T) using standard peat culture 
substrate. For the first few days seedlings were kept in a greenhouse to 
ensure that they can take root before being moved to a common 
garden area of Kiel University covered by a shading net (65% shading) 
to simulate forest-like light conditions. In preparation for planting, 
seedlings were rearranged within the Quickpot trays. Only individuals 
lacking any signs of ash dieback or any other damage were transplanted 
to the forest sites (henceforth addressed as “target” sites) in 
October 2019.

The reciprocal transplantation included each of six seedling 
individuals from 10 sites of origin to be (re-)planted into each of the 
10 target sites, yielding 600 individuals in total. At each site, six 
rectangular experimental plots were established as replicates. Each 
plot included one seedling of each origin planted at a distance of 0.5 m 
from each other in a 3 × 4 rectangle (long side facing north, with no 
plant in the north-east and the south-west corner; Figure  3). 
Assignment of seedling origins to planting positions was randomized 
for every plot. In May 2020, dead seedlings were replaced with healthy 
individuals from the same harvest cohort, which had been cultivated 
over winter in the common garden area.

2.3 Shading treatment

Three plots per site were randomly selected and assigned a 65% 
shading treatment resulting in a total of 300 shaded and 300 

TABLE 1 Stand properties extracted from the Schleswig-Holstein State Forest databank for the forest stands in which the 10 experimental sites are 
located.

Site Main tree 
species

Proportion of 
ash [%]

Age (ash) [years] Water regime Nutrient 
availability

1H Beech 25 89 (± 25) Slightly moist to waterlogged Eutroph

1 M Ash 40 77 (± 0) Fresh to slightly waterlogged Mesotroph

2H Beech 5 73 (± 15) Slightly moist to waterlogged Mesotroph

2 M Beech 2 81 (± 7) Slightly moist to waterlogged Mesotroph

3H Ash 30 120 (± 20) Slightly moist to waterlogged Eutroph

3 M Beech 18 100 (± 20) Slightly moist to waterlogged Eutroph

4H Beech 35 80 (± 7) Slightly moist to waterlogged Eutroph

4 M Oak 19 75 (± 11) Slightly moist to waterlogged Eutroph

5H Oak 30 99 (± 7) Slightly moist to waterlogged Eutroph

5 M Oak 25 80 (± 10) Slightly moist to waterlogged Mesotroph

Listed are the main tree species, the proportion and average age of ash and the water regime as well as nutrient availability for each stand as of 01.01.2022.

FIGURE 2

Boxplots showing (A) crown damage and (B) collar necrosis by forest 
stand damage class (High / Moderate). Crown damage was 
determined as the proportion of loss of crown foliage and collar 
necrosis as proportion of necrotic tissue of the total stem diameter 
measured at 15  cm above ground level. In each forest stand, five 
standing mature ash trees (BHD  >  15  cm) closest to the experimental 
site were evaluated in summer 2020. Graph (A) shows a median 
crown defoliation of 15% (mean 19.4%) in forest stands characterized 
as moderately damaged compared to a median loss of crown foliage 
of 50% (mean 56.5%) in stands characterized as highly damaged. 
Graph (B) shows a median collar necrosis of 0% (mean 13.6%) in 
forest stands characterized as moderately damaged and 17.9% (mean 
34.2%) in stands characterized as highly damaged.
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non-shaded ash seedlings. Shading nets were installed on a wooden 
frame of 0.5 m height. The nets were set up in April before bud break 
each year and removed at the end of each vegetation period. Since 
light conditions generally differed between forest stands due to 
differences in forest composition and amount of leaf loss caused by 
ash dieback, light conditions were measured once per summer in 2020 
and 2021 each at standardized positions. Four point measurements of 
photosynthetic active radiation (PAR) (LI-1500, LI-COR) were 
recorded in each plot at seedling height (approximately 15–20 cm) 
while an additional sensor logged reference levels in an open field near 
the forest stand (Figure 3). From this, relative light was calculated and 
averaged over the four measurements per plot.

2.4 Data acquisition

Shoot length as the total length of the main shoot and basal 
diameter at ground level were measured directly after planting in 
October 2019 as baseline information. In the following years, growth 
(as increase in shoot length and basal diameter) and infection with 
H. fraxineus was recorded at the end of each vegetation period 
(December 2020, October 2021). In addition, growth and infection 
was repeatedly monitored each month from May to August during the 
first year. Infection by the ash dieback pathogen is visible as necrotic 
tissue on leaves and shoots, the former appearing typically in mid to 
late summer and the latter during the following winter or spring. In 
2020, we  recorded seedlings showing any amount of ash dieback 
symptoms as infected without distinguishing between leaf and shoot 
infection [thereby recorded as presence (1)/absence (0)]. Thus, a 
seedling that was recorded as infected in 2020 might have exhibited 
leaf infection, shoot infection or both. In 2021, the infection status was 
assessed only once at the end of the vegetation period and represents 
only shoot infection. Functional leaf traits were determined once, in 
June 2021 on all individuals. One fully developed leaf per seedling was 

harvested, quickly stored in a cooler box for transport, scanned, 
analyzed (WinFOLIA, Regent Instruments, Québec, Canada), 
weighed, dried (at least 48 h at 110°C) and weighed again to determine 
specific leaf area (SLA) and leaf dry matter content (LDMC) at the 
Environmental Lab, Kiel University.

For characterization of edaphic conditions, soil samples were 
taken from the uppermost mineral horizon at the center of each plot 
in November 2019. Soil samples were sieved and air-dried. Soil pH 
values were determined in a 1 N KCl solution using a single rod glass 
electrode [pH-meter Lab 860 Sen Tix HW (Schott Instruments)]. 
Total carbon (C) and nitrogen (N) contents were analyzed following 
the Dumas method using the C/N-Analyzer EURO EA 3000 
(HEKAtech GmbH, Wegberg, Germany). In October 2021, soil types 
were determined from a drill stick profile according to the German 
soil classification (Boden, 2005) in the middle of each of the 60 plots. 
For each soil profile, field capacity at medium bulk density of each soil 
type was added up to a depth of 1 m (Boden, 2005).

2.5 Statistical analysis

To characterize abiotic site conditions on all experimental plots, a 
non-metric multidimensional scaling of pH, C:N ratio, field capacity 
and relative light in the first year was calculated.

In order to distinguish between effects on plant establishment and 
effects on early growth, we separated the data set into first year data 
after planting as the establishment phase and second year data as the 
early growth phase, and analyzed the establishment and early growth 
phases separately. For each phase, mixed models were built using 
survival (1|0), performance [relative growth rates (RGR), SLA, and 
LDMC] and infection (1|0) as response variables. Models for SLA and 
LDMC were only available for the second phase. Seedlings which were 
dead at the end of the first year were removed from second year 
survival analysis. Performance analysis was conducted only for 

FIGURE 3

Schematic of an experimental site. Each site contains each three plots with (gray) and without (white) shading treatment. In every plot, one individual of 
each of the 10 sites of origin was planted. Light green circles depict individuals from moderately damaged, dark green from highly damaged sites. 
Numbers indicate the site of origin. Markings in the upper left plot depict the locations where light measurements (L) and soil samples (S) were taken in 
every experimental plot.
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seedlings alive at the end of each year, resulting in a model N of 524 
for year 1 and 450 for year 2. Performance analysis included relative 
growth rates of basal diameter (BD) and shoot length (SL) as response 
variables. Prior to analysis a square root-transformation was used to 
obtain a normal distribution, therefore all RGR equal to or smaller 
than zero were set to 0.001 to avoid a zero. For infection in the first 
phase, all monitoring assessments between June and December of the 
first year were summarized into a binomial variable showing if a 
seedling was either alive and infected (1) or alive and not infected (0) 
at any one or multiple points during the year. Second phase infection 
data reflect a single assessment at the end of 2021.

To test whether damage status and site conditions of origin and 
target sites had an effect on survival, performance and infection of the 
transplanted seedlings, we determined four transplantation treatments 
based on the direction of transplantation between the moderately and 
highly damaged stands: two treatments with origin in low damage 
stands, i.e., from moderately into moderately damaged stands (M2M), 
from moderately into highly damaged stands (M2H), and two 
treatments with an origin in highly damaged stands, i.e., from highly 
into moderately damaged stands (H2M) and from highly into highly 
damaged stands (H2H). In the full model, we considered direction of 
transplantation and shading treatment (1|0) as fixed factors and 
included relative light, pH and C:N ratio in the upper soil and field 
capacity as a proxy for soil moisture as covariates. For first year 
survival analysis only, basal diameter and shoot length at time of 
planting (initial plant BD|SL) were included as covariates in two 
separate models.

To account for potential spatial autocorrelation between plots, 
sites and the regions, which include one site from each of the two 
damage classes, a nested random structure of plot nested in site nested 
in region was included in all models. In a few cases, a singularity in 
the nested random structure prevented further model inference. In 
those cases, the causal random factor was removed from the model 
and these changes were indicated in the model inference tables 
(Table 2; Supplementary Table S4). Few extreme values for single sites 
or even plots resulted in correlations between environmental 
parameters and transplantation direction. Since correlation was low 
to moderate and we detected no problems in model evaluation, such 
as multicollinearity, we included both transplantation direction and 
environmental parameters in our models. All covariates were tested 
for correlation. To account for correlation between covariates, e.g., 
light incidence and shading treatment, as well as chemical soil 
properties, models were selected by their fit. Results presented refer to 
models including pH and shading treatment (which generally showed 
the best model fit) but deviations in model inference are indicated 
where appropriate. For results of alternative models, refer to the 
Supplementary material.

Survival and infection were analyzed with generalized linear 
mixed models (GLMM) fitted with a binomial error distribution and 
cloglog-link function. Performance and functional traits (SLA, 
LDMC) were analyzed with linear mixed models (LMM) and final 
models were fit with restricted maximum likelihood. All data analysis 
was performed in R (v4.3.1) (R Core Team, 2023). NMDS of abiotic 
site conditions was calculated with vegan (v2.6-4) (Oksanen et al., 
2022). GLMMs were built with glmmTMB (v1.1.7) (Brooks et al., 
2017). LMMs were calculated with lme4 (v1.1-34) (Bates et al., 2015). 
We  used the R packages DHARMa (v0.4.6) (Hartig, 2022) and 
performance (v0.10.5) (Lüdecke et  al., 2021) to check model 

diagnostics, emmeans (v1.8.8) (Lenth, 2023) for post-hoc comparisons, 
Car::Anova (v3.1-2) (Fox and Weisberg, 2019) and insight (v0.19.5) 
(Lüdecke et al., 2019) for model interpretation and ggeffects (v1.3.1.3) 
(Lüdecke, 2018) for model predictions. Plots were created using 
ggplot2 (v3.4.3) (Wikham, 2016).

3 Results

3.1 Abiotic site conditions

Upper soil pH varied between 3.14 and 6.22 across all plots with 
a median of 3.76 while C:N ratios displayed a range between 11.7 and 
19.4 with a median of 13.7. Soil moisture characteristics also differed 
between sites but generally showed high field capacities from 140 to 
177 mm with a median of 156 mm. In 2020, relative light availability 
ranged from 0.2 to 27.2% at seedling height. In 2021, light conditions 
were slightly lower but overall similar to the first year with relative 
light availability between 0.1 and 21%. Most sites were characterized 
by low light conditions below 15% with a mean relative PAR of 5.5% 
for non-shaded and 2.1% for shaded plots in the first year and a mean 
relative PAR of 4.5% for non-shaded and 1.5% for shaded plots in the 
second year (Supplementary Table S1; Supplementary Figures S1A–E).

The NMDS revealed that the types of forest stands differed in their 
chemical soil properties with highly damaged sites exhibiting more 
alkaline conditions and lower C:N ratios in the upper soil (Figure 4). 
However, there is some overlay where plots from both damage classes 
show similar site conditions. Sites that have been classified as highly 
damaged by ash dieback are more differentiated especially in their 
light conditions compared to moderately damaged sites. Overall, the 
magnitude of plot differentiation varied strongly between sites.

3.2 Establishment phase (year 1)

3.2.1 Survival
One year after planting 524 out of the 600 ash seedlings (87%) 

were still alive. Generalized linear mixed effects models showed that 
only initial plant size (BD or SL at time of planting) significantly 
affected survival during the initial establishment phase (Table  2; 
Supplementary Tables S4, S5) with a higher survival probability for 
larger seedlings (Figure 5A). However, in the establishment phase, 
none of these models was able to explain more than 17% of the 
variance in survival (Supplementary Table S6).

3.2.2 Growth
At time of planting, basal diameter of the seedlings varied from 

1.0 to 3.8 mm (mean 1.8 mm) and shoot length from 37 to 139 mm 
(mean 83 mm). After 1 year, seedlings had grown to a mean basal 
diameter of 2.5 mm with a maximum of 4.6 mm while the lowest basal 
diameter of all living seedlings remained 1.0 mm. Mean shoot length 
increased to 111 mm with the smallest and the tallest seedling 
measuring 57 and 183 mm, respectively (Supplementary Table S2). 
When disregarding negative values as no growth (i.e., setting negative 
values to zero), mean RGR was calculated at 0.29 mm mm−1 year−1 for 
both basal diameter and shoot length. However, basal diameter 
exhibited a higher maximum RGR with 0.99 mm mm−1  year−1 
compared to 0.82 mm mm−1 year−1 for shoot length. Basal diameter 
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growth during the establishment phase was affected by light conditions 
with significantly lower RGR on shaded plots compared to open plots 
(Figure 5B). The model has a conditional R2 (considering both fixed 
and random effects) of 0.42 and a marginal R2 (providing variances 
explained by fixed effects only) of 0.19 (Supplementary Table S6). No 
such effect was found for shoot growth (Table 2).

3.2.3 Infection
Throughout the first year, ash dieback symptoms were recorded 

on 187 living seedlings on at least one occasion. This may have been 
leaf infection as well as shoot infection. During the establishment 

phase, infection was significantly affected by shading treatment 
(Table  2). Shading decreased infection probability significantly 
(Figure 5D). The effect of transplantation direction on infection was 
only marginally significant. Seedlings transplanted from moderately 
to highly damaged stands showed the highest and seedlings 
transplanted from highly to moderately damaged stands the lowest 
infection probability (Figure  5C). The GLMM for infection has a 
conditional R2 of 0.32 and a marginal R2 of 0.12 
(Supplementary Table S6).

Although infection probability differed significantly between 
treatment levels with lower probabilities under shading nets, this effect 

TABLE 2 Type III ANOVA statistics on the generalized linear mixed effect models predicting survival, RGR of basal diameter and shoot length, and 
infection of the seedlings in the establishment phase (2020) as well as the early growth phase (2021) and generalized linear mixed effect models 
predicting the functional plant traits SLA and LDMC in the early growth phase (2021) only.

Establishment phase Early growth phase

df Chisq Pr (Chisq) SignCode df Chisq Pr (Chisq) SignCode

Survival 

(N2020 = 600, 

N2021 = 524)

(Intercept) 1 1.298 0.255 n.s. 1 3.993 0.046 n.s.

Transplantation dir. 3 3.302 0.347 n.s. 3 9.255 0.026 *

Initial basal diameter 1 27.716 < 0.001 *** - - - -

Shading 1 3.726 0.054 . 1 6.335 0.012 *

pH 1 1.184 0.276 n.s. 1 3.438 0.064 .

Field capacity 1 1.224 0.269 n.s. 1 0.034 0.854 n.s.

Growth_BD 

(N2020 = 524, 

N2021 = 450)

(Intercept) 1 9.686 0.002 ** 1 5.66 0.017 *

Transplantation dir. 3 4.378 0.223 n.s. 3 2.042 0.564 n.s.

Shading 1 74.151 < 0.001 *** 1 9.69 0.002 **

pH 1 3.4e-04 0.985 n.s. 1 1.329 0.249 n.s.

Field capacity 1 1.925 0.165 n.s. 1 3.774 0.052 .

Growth_SLa,b 

(N2020 = 523, 

N2021 = 450)

(Intercept) 1 8.818 0.003 ** 1 2.206 0.138 n.s.

Transplantation dir. 3 5.297 0.151 n.s. 3 2.220 0.528 n.s.

Shading 1 3.281 0.070 . 1 37.235 < 0.001 ***

pH 1 1.870 0.171 n.s. 1 0.030 0.862 n.s.

Field capacity 1 0.182 0.670 n.s. 1 0.167 0.683 n.s.

Infectionb 

(N2020 = 593, 

N2021 = 449)

(Intercept) 1 3.416 0.065 . 1 1.437 0.231 n.s.

Transplantation dir. 3 7.266 0.064 . 3 1.539 0.673 n.s.

Shading 1 6.701 0.010 ** 1 1.634 0.201 n.s.

pH 1 0.304 0.581 n.s. 1 0.694 0.405 n.s.

Field capacity 1 3.012 0.083 . 1 0.014 0.907 n.s.

SLA (N2021 = 459) (Intercept) - - - - 1 0.884 0.347 n.s.

Transplantation dir. - - - - 3 17.699 0.001 ***

Shading - - - - 1 142.345 < 0.001 ***

pH - - - - 1 0.535 0.465 n.s.

Field capacity - - - - 1 1.628 0.202 n.s.

LDMC 

(N2021 = 461)

(Intercept) - - - - 1 19.599 < 0.001 ***

Transplantation dir. - - - - 3 10.060 0.018 *

Shading - - - - 1 99.186 < 0.001 ***

pH - - - - 1 0.396 0.529 n.s.

Field capacity - - - - 1 0.326 0.568 n.s.

Letters in superscript indicate following changes to the nested random structure: (A) “Site” removed from establishment phase model, (B) “Region” removed from early growth phase model. 
Significance levels: *** < 0.001; ** < 0.01; * < 0.05; and .< 0.1. Significant values are written in bold.
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is not confirmed in models including light incidence 
(Supplementary Table S4). Here, no such effect of light conditions on 
infection probability was found.

3.3 Early growth phase (year 2)

3.3.1 Survival
After the second year, overall survival rate dropped to 75% when 

referred to the beginning of the experiment (450 out of 600 seedlings). 
When referred to those individuals, which survived the first year 
alone, survival in the early growth phase was 86% (450 out of the 524 
individuals). Results of the mixed models show significantly lower 
survival under shading nets during the early growth phase (Figure 6B). 
While transplantation direction showed a significant effect on 
survival, differences between the levels of transplantation direction 
were only close to significance (Supplementary Table S7). At the 10% 

significance margin, seedlings transplanted from moderately into 
highly damaged sites were more likely to survive compared to 
seedlings transplanted from highly damaged sites into either 
moderately or highly damaged sites (Figure 6A). Models could overall 
only explain 17% of total variation in the survival data 
(Supplementary Table S6).

3.3.2 Growth
In the early growth phase, growth was much lower than in the 

establishment phase with seedlings reaching a mean RGR of 0.12 
and 0.16 for basal diameter and shoot length, respectively. At the 
end of the second year, basal diameters measured between 1.0 and 
6.1 mm with a mean of 2.8 mm while shoot length measured 
between 11 and 261 mm with a mean of 132 mm 
(Supplementary Table S2). Overall, mixed effects models for 
growth showed the same effect as during establishment, i.e., RGR 
both for basal diameter and shoot length was significantly lower 

FIGURE 4

Result of the non-metric multidimensional scaling (NMDS) of abiotic site conditions on all experimental plots (n  =  60). Variables included are pH and 
C:N ratio of the upper soil, field capacity, and light incidence measured in 2020. The two forest stand damage classes are marked in different colors 
(dark green  =  highly damaged, light green  =  moderately damaged) and geographically paired sites are depicted in the same shape.
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in shaded plots (Figure 6D). However, early growth models for 
basal diameter and shoot length could explain less variance with 
a conditional R2 of 0.37 and 0.34 and a marginal R2 of 0.09 and 
0.14, respectively (Supplementary Table S6).

3.3.3 Infection
At the end of the second year, 30 out of the living 450 seedlings 

showed symptoms of ash dieback. During the early growth phase, 
infection was not affected by any parameters included in the mixed 
models (Table  2). Even though conditional R2 of 0.61 was higher 
compared to first year infection models, marginal R2 and thus the 
variance explained by fixed effects only was much lower with 0.07 
(Supplementary Table S6).

3.3.4 Functional traits (SLA and LDMC)
Specific leaf area (SLA) of the ash seedlings varied between 20.1 

and 158.8 m2 kg−1 with a mean of 55.5 m2 kg−1 while leaf dry matter 

content (LDMC) ranged from 59.9 to 325.9 mg g−1 with a mean of 
186.6 mg g−1. Both functional leaf traits were significantly affected by 
the shading treatment and transplantation direction (Table  2). 
Seedlings growing under lower light conditions showed higher SLA 
and lower LDMC. Even though transplantation direction was 
identified as an influencing factor for both leaf traits in the mixed 
models, differences between the single levels of transplantation 
direction were only significant for the SLA model including light 
incidence (Figure  6C; Supplementary Table S7). At the 10% 
significance margin, seedlings that had been transplanted from 
moderately to highly damaged stands (M2H) also differed in their 
SLA from seedlings transplanted from highly to moderately (H2M) 
damaged stands when including shading treatment as a measure of 
light conditions in the model (Supplementary Table S7). Leaf trait 
models have a conditional R2 of 0.63 and 0.67 and a marginal R2 
of 0.36 and 0.24 for SLA and LMDC, respectively 
(Supplementary Table S6).

FIGURE 5

Predicted mean values and 95% confidence intervals of the establishment phase generalized linear mixed models for (A) survival probability in response 
to basal diameter at time of planting, (B) relative growth rate of the basal diameter (RGRBD) in response to shading treatment, and infection probability 
in response to (C) transplantation direction and (D) shading treatment. Plot (B) additionally shows variation of RGRBD data in light gray.
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4 Discussion

4.1 Habitat quality and ash seedling 
performance

Habitat quality, most notably determined by soil humidity, soil 
acidity, nutrient availability and light availability, is a main driver for 
seedling survival and establishment (Messaoud and Houle, 2006; 
Major et  al., 2013; Muffler et  al., 2021). Small-scale spatial 
heterogeneity of the abiotic environment can determine survival and 
successful establishment of tree seedlings (Mejía-Domínguez et al., 
2012; Magee et al., 2021). However, effects of soil properties recorded 
in our study were not found to be  significant either during the 
establishment phase or during the early growth phase. At the same 
time, there is huge variation in the data, which is mirrored by high 
explanatory values of the random structure of our models and which 

is largely due to the variation of sites and plots therein. In Northern 
Germany, ash-rich forest sites are typically situated in very small-scale 
transitional areas between fresh beech dominated habitats and wet 
alder forests (Haupt et al., 2022). For the present study, we explicitly 
constrained the range of the factor soil moisture, which is considered 
most influential to differences in ash dieback severity (Marçais et al., 
2016; Timmermann et al., 2017; Chumanová et al., 2019; Erfmeier 
et  al., 2019; Klesse et  al., 2021), by selecting sites of similar soil 
moisture. While field capacity, as a proxy for soil moisture, was indeed 
not correlated with ash dieback severity in the experimental stands, 
moderately and highly affected stands could clearly be separated by 
differences in their top soil chemistry. In fact, there is evidence that 
abiotic site conditions, such as soil pH, significantly affect ash dieback 
severity and ash mortality (Havrdová et al., 2017; Turczański et al., 
2020, 2021). However, although we  included soil properties with 
careful consideration in all final models, no significant effects on ash 

FIGURE 6

Predicted values and 95% confidence intervals of the early growth phase generalized linear mixed models for (A) survival probability in response to 
transplantation direction, (B) survival probability in response to shading treatment, (C) specific leaf area (SLA) in response to transplantation direction 
including light incidence instead of shading treatment, and (D) relative growth rate of the shoot length (RGRSL) in response to shading treatment. p 
values depicted in plot (C) were derived from post-hoc pairwise comparisons between all transplantation levels. Plots (C,D) additionally show variation 
in RGRSL and SLA in light gray.
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seedling establishment and growth were found. Since we restricted site 
selection to only a limited range of habitat diversity, correlation 
between transplantation direction and upper soil pH could mainly 
be attributed to extreme values of single sites or even plots rather than 
strong overall differences between the two damage classes 
(Supplementary Figure S1A).

While we  did not identify edaphic variables to contribute to 
explaining ash seedling performance, in contrast, light conditions 
significantly affected almost all plant properties in both establishment 
and early growth phase. This is very much in accordance with 
observational studies that attribute a strong impact of light availability 
on ash regeneration displaying high correlation of ash juvenile density 
and performance with light availability as approximated by tree layer 
cover (Tabari et al., 1998; Petriţan et al., 2009; Turczański et al., 2022). 
Compared to soil conditions, light is altered more severely and rapidly 
by ash dieback. Continuous dieback of ash crowns as well as loss of 
mature ash trees quickly opens up the forest canopy. While damage 
classes did not differ in their overall light conditions, most highly 
damaged sites showed more heterogeneous light conditions compared 
to less damaged sites, which reflects increasing canopy opening due to 
ash dieback in our study sites. In Schleswig-Holstein, F. excelsior is 
often admixed as a co-dominant species in low to medium 
proportions. In consequence, even in ash-rich forest stands, crown 
dieback or loss of dominant ash trees mostly results in multiple small 
rather than large canopy gaps, which contribute to an overall increase 
in heterogeneity of the light conditions. Expanding crowns of 
neighboring trees, which in many cases intercept more light compared 
to ash, will then often close these small gaps and create darker 
conditions, to which juvenile ash have to respond.

Accordingly, the shading treatment as well as relative light 
incidence significantly reduced basal stem growth during the 
establishment phase, whereas shoot growth did not show such an 
effect. In the early growth phase, however, the positive effect of light 
on seedling performance was then even more pronounced for shoot 
growth compared to basal growth. This is in line with current 
knowledge that ash will typically invest heavily in its root system, thus 
increasing its basal stem diameter, during establishment to support an 
increased shoot growth in the following years (Kerr and Cahalan, 
2004; Eisen, 2007). In seedlings, basal growth generally correlates with 
growth of the root system, which is one of the main factors influencing 
early seedling establishment since root expansion allows the seedling 
early provisioning of resources such as nutrients and water and 
reduces susceptibility toward drought and other stresses (Burdett, 
1990; Grossnickle, 2012). Accordingly, survival in the establishment 
phase was affected by seedling size at the time of planting. Larger 
seedlings would likely have a more pronounced root system, which in 
turn affects physiological attributes, such as drought stress resistance 
and nutritional status of the plant, giving them an advantage during 
establishment. In the same way, higher basal growth in unshaded plots 
translate directly to a better establishment, which is then conveyed 
into higher survival rates on these plots in the following year. However, 
low light conditions in many plots could explain the overall reduced 
growth performance of the ash seedlings during the early growth 
phase as well (see Annighöfer et al., 2017; Xu et al., 2023). This is a 
typical growth strategy of many light demanding tree species, initially 
exhibiting minimal growth under a closed canopy, which can 
be maintained for long periods of reduced light conditions, but that 
will rapidly turn into increased growth once light incidence rises due 

to gap formation in the canopy (Tabari et al., 1998; Petriţan et al., 
2007, 2009). However, light conditions might also be too dark for ash 
seedling survival since especially under the shading nets some light 
measurements did not reach the light compensation point of ash 
seedlings (5 ± 3 μmol m−2 s−1) (Thomas, 2016) in one or both years. 
Darkening of ash-rich forest stands due to replacement of 
F. excelsior with more shade-producing species such as F. sylvatica 
could thus further endanger survival and establishment of ash 
natural regeneration.

A significant shading effect is also visible for infection. While 
decreasing light incidence under the forest canopy usually goes along 
with more sheltered and humid conditions (De Frenne et al., 2019; 
Zellweger et al., 2019; Leuschner et al., 2023), we would accordingly 
assume a higher infection on shaded than on open plots as the 
pathogen favors humid conditions (Chumanová et al., 2019; Marçais 
et al., 2023). It is well known that ash dieback is more severe in moist 
to waterlogged stands (Marçais et  al., 2016; Pušpure et  al., 2017; 
Erfmeier et  al., 2019; Klesse et  al., 2021) where higher humidity 
facilitates ideal conditions for fruiting and sporulation of H. fraxineus 
and subsequent infection of ash (Timmermann et al., 2011; Dvořák 
et al., 2016; Burns et al., 2022). Conversely, trees under more open 
conditions seem to be less affected by ash dieback (Havrdová et al., 
2017; Grosdidier et al., 2020), leading to the assumption that seedlings 
on open, non-shaded plots should exhibit less ash dieback symptoms. 
This might also be in line with a ventilation and thinning effect: Since 
a lower infection rate at lower light conditions was not evident when 
including light incidence instead of shading treatment in our models, 
we also need to consider a caging effect of the shading nets. While 
ascospore distribution is generally wind-dependent, the active 
ascospore discharge mechanism of H. fraxineus (see Hietala et al., 
2013) suggests that wind turbulence is not needed for near-ground 
transmission under the shading nets so it is more likely that differences 
in the amount of infectious material here indicate a caging effect. Even 
though we ensured presence of infectious material on all plots by 
removing the shading nets during winter, the majority of ash foliage 
would fall before net removal. Thus, it is likely that the shading nets 
acted as a mechanical barrier in two ways: by preventing the entry of 
ash leaves (i.e., the rachis that serves as the substrate for pathogen 
ascomata formation after overwintering) before net removal, and by 
preventing the deposition of pathogen ascospores formed by ascomata 
located outside the shaded areas. This would substantially decrease 
infection pressure on shaded plots and result in the observed lower 
infection probability.

4.2 Ash dieback damage as a driver of 
selection

In both, the establishment and the early growth phase, seedlings 
showed differences between transplantation treatments. During 
establishment, seedlings which originated from highly damaged 
stands and were transplanted into moderately damaged stands 
displayed a significantly lower infection probability compared to 
seedlings which were transplanted from moderately damaged stands 
into highly damaged ones. A similar effect was detected in SLA during 
the early growth phase with lower SLA in individuals transplanted 
from moderately into highly damaged stands compared to seedlings 
originating from highly damaged stands. While one might argue that 
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these effects reflect overall differences in ash vitality due to contrasting 
habitat quality between moderately and highly damaged forest stands, 
all models accounted for effects due to environmental variation and 
assigned no significant effect to edaphic conditions tested. 
Transplantation treatment showed an opposing significant effect on 
survival during the early growth phase. However, post-hoc pairwise 
testing revealed only marginally significant differences between 
transplantation directions, which are most likely caused by unrecorded 
biotic or abiotic factors that were not addressed by our experimental 
setup, such as rodent damage (e.g., clipping the main shoot at the root 
collar or rooting out the seedling).

Differences in ash seedling performance and susceptibility 
between transplantation directions also display a signature of the 
transplants’ origin. This involves different intensities of pathogen-
induced damage, which might correlate with disease history, i.e., how 
long the pathogen H. fraxineus has been present in the respective 
forest stands. In fact, there is increasing evidence of ongoing natural 
selection processes in ash-rich forest stands, thereby conferring wild 
grown offspring some advantage in withstanding subjection to 
pathogen pressure or an infection. Multiple studies showed that 
natural ash regeneration is in general not as severely affected by ash 
dieback compared to planted trials (Lygis et al., 2014; Enderle et al., 
2015; Dietrich, 2016; Turczański et  al., 2021; Osewold and Nagel, 
2023). In a Danish forest, Semizer-Cuming et al. (2021) were able to 
show that seedlings originating from symptom free parent trees were 
overrepresented in the natural regeneration compared to seedlings 
from highly susceptible parents. Varying degrees of selection pressure 
in highly and moderately damaged stands could indeed partially 
explain the significant differences in infection probabilities between 
transplantation directions we found during the establishment phase. 
On the one hand, seedlings from moderately damaged stands, which 
have not been subjected to a strong selection pressure, are more often 
infected when subjected to the strong selection pressure on highly 
damaged sites. On the other hand, seedlings originating from highly 
damaged stands might already have undergone a filtering process and 
are more likely a less susceptible genotype. While the existing literature 
most often ascribes patterns of adaptive divergence to abiotic drivers 
(Leimu and Fischer, 2008; Solarik et al., 2018), local adaptation in tree 
populations might also be due to biotic factors (Manzanedo et al., 
2018)—such as pathogens.

An additive resistance in some ash trees, which is strongly under 
genetic control, was confirmed in planted trials with a well-known 
genetic background (Sollars et al., 2017; Stocks et al., 2019) and several 
studies revealed moderate to high heritability of susceptibility traits in 
ash (Pliūra et al., 2011; Kjær et al., 2012; Lobo et al., 2015; Muñoz 
et al., 2016; Stener, 2018). Equally, there is evidence that mechanisms 
behind the variation in susceptibility in ash trees are more complex. 
Even in clonal trials, susceptibility to ash dieback varied between 
genetically identical individuals (McKinney et al., 2012; de Vries and 
Kopinga, 2017) and a study focusing on natural ash regeneration was 
not able to find a correlation between ash dieback severity in parent 
trees and their offspring (Wohlmuth et al., 2018). Under natural, more 
heterogonous conditions, phenotypic plasticity in phenological 
responses might play a more important role in ash susceptibility. In 
fact, we  found significant variation in leaf traits, which reflects a 
portion of the phenotypic variation in a tree: in the early growth 
phase, SLA differed between transplantation directions similar to the 
transplantation effect in infection found during the establishment 

phase. On the one hand, seedlings originating from moderately 
damaged stands developed low SLA leaves when transplanted into 
highly damaged stands, which is a typical reaction to high stress 
conditions (Poorter et al., 2009). On the other hand, seedlings from 
highly damaged stands transplanted into moderately damaged stands 
formed low-cost and short-lived leaves, presented as a higher SLA and 
conforms to the leaf economic spectrum balancing leaf construction 
costs against growth potential (Díaz et al., 2016). The formation of 
tender and short-lived leaves is typical for well supplied sites (Poorter 
et al., 2009), but could also reflect a defense mechanism to ash dieback. 
There is evidence that differences in leaf traits can affect pathogen 
resistance in trees (González-Teuber et al., 2021; Wang et al., 2022). In 
regard to ash dieback, multiple studies have explored possible 
mechanisms of plant-pathogen interaction in ash leaves (Agan et al., 
2020; Griffiths et al., 2020; Ulrich et al., 2020; Nielsen et al., 2022). 
Apart from differing SLA between transplantation directions, 
we noticed much lower infection rates in winter, when only the shoot 
was available for assessment, compared to summer, when the 
assessment was based on the whole plant, including leaves. During 
establishment, continuous monitoring showed that infection peaked 
at almost 27% in August and dropped to under 3% at the end of the 
year (Supplementary Table S3). This discrepancy cannot solely 
be attributed to seedling mortality but rather shows that infection 
must have mostly been located on leaves and not the shoot during 
summer. It is common that symptom appearance in the shoot is 
delayed from infection and arises during late winter or spring (Gross 
et al., 2014). Thus, shoot symptoms can also be interpreted as signs of 
infection in the previous year. However, during the only assessment at 
the end of the following year, only 7% of the living seedlings showed 
necrotic tissue. While our data does not allow us to distinguish 
between leaf and shoot necrosis, these discrepancies heavily imply that 
leaf infection did not necessarily lead to shoot colonization by the ash 
pathogen in a lot of infected individuals. This is in accordance with 
other observations that leaf infection does not always translate into 
shoot necrosis (de Vries and Kopinga, 2017) and underlines the fact 
that leaf traits and the phenological response of a tree might play a 
vital role in ash dieback susceptibility. Multiple studies observed a 
lower susceptibility of ash trees that exhibit early leaf shedding 
(McKinney et al., 2011, 2012) or early spring flushing (Cleary et al., 
2017; Nielsen et al., 2017; Pliūra et al., 2017; Rozsypálek et al., 2017). 
Fussi and Konnert (2014) even found a higher proportion of 
heterozygotic ash trees, which generally have a higher plasticity, in the 
group with lower susceptibility to ash dieback. This might also 
translate onto the evolutionary selection processes through maternal 
effects, which are strongly expressed in the offspring’s phenotype and 
fitness. Maternal effects can be  triggered when the mother tree is 
subjected to biotic stress and can result in an increased resistance or 
tolerance in offspring subjected to the same biotic stress (Vivas et al., 
2020). Thus, in addition to the estimated 1% ash trees considered 
resistant (see, e.g., Enderle et al., 2019), maternal effects and plastic 
responses might facilitate survival of ash natural regeneration in the 
early stages of establishment and growth.

Nonetheless, there is a lot of evidence that ash dieback severity 
is affected by a multitude of variable and interacting factors (e.g., 
Marçais et  al., 2016; Havrdová et  al., 2017; Pušpure et  al., 2017; 
Turczański et al., 2020) such as stand characteristics (Marçais et al., 
2017; Grosdidier et al., 2020; Madsen et al., 2021) or time of disease 
presence (Díaz-Yáñez et al., 2020; George et al., 2022), which might 
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contribute to differences in ash dieback damage severity between 
experimental sites and thus affect the transplanted seedlings. 
However, most studies connecting site and stand characteristics to 
ash dieback severity were conducted on mature ash trees and 
ignored effects on seedlings and saplings and thereby on the 
regeneration. Dietrich (2016) has already reported that ash 
regeneration smaller than 1.3 m in height was generally less affected 
by ash dieback. Disease severity in this height class was not related 
to canopy cover while canopy cover significantly affected seedlings 
larger than 1.3 m. The author theorized that even though spore 
concentration of H. fraxineus is significantly higher at near-ground 
levels (Chandelier et al., 2014; Dvořák et al., 2023), small seedlings 
might simply escape infection more easily. Lower infection 
probabilities in stands only moderately affected by ash dieback 
would thus point toward a lower infection pressure and 
consequentially a higher proportion of seedlings that escape 
infection in these stands. However, ash dieback severity and 
infection pressure are usually not directly positively correlated since 
disease progression and not infection itself is hampered in less 
susceptible individuals. Marçais et al. (2023) recently confirmed that 
ash trees exhibiting no or only slight ash dieback symptoms still 
function as carriers of H. fraxineus. Hence, a less susceptible tree 
with only a little crown defoliation can still produce large amounts 
of infectious material compared to a highly affected ash tree with 
only a little foliage left (Grosdidier et al., 2020; Marçais et al., 2023) 
leading to a possibly higher infection pressure in less damaged 
stands. This relation between inoculum level and disease severity can 
thus be complex and measuring the amount of infected rachis in the 
litter could help interpreting data in future studies. In addition, one 
has to take into consideration that any selection pressure due to 
pathogen load might differ across season and sites (Hietala et al., 
2013; Grosdidier et  al., 2018; Burns et  al., 2022). While disease 
escape can explain the overall low proportion of infected seedlings 
in our study, it cannot solely explain differences in infection 
probability between the transplantation directions. A longer 
experimental period would allow seedlings to grow taller, which 
might go along with an increase in the prevalence of ash dieback 
symptoms and allow for a clearer detection of factors influencing ash 
dieback severity.

5 Conclusion

Fully reciprocal transplant experiments are often considered as 
the gold standard in testing for local adaption to climatic, abiotic 
as well as biotic site conditions (Kawecki and Ebert, 2004; Brady 
et  al., 2019; Johnson et  al., 2022). Capturing processes under 
multivariate environmental conditions and complex interactions 
of an ecosystem is one major advantage of this approach, compared 
to, e.g., common garden transplant setups. At the same time, the 
limited possibility to control for environmental factors is a 
considerable difficulty. Both are especially evident in the case of 
ash dieback in the experimental region. While highly damaged 
sites were more differentiated in their abiotic site conditions 
compared to only moderately damaged ash stands, the influence of 
soil conditions on the survival, growth and infection of ash natural 
regeneration was only marginal. In contrast, ash dieback related 
transformations of forest sites as expressed through changes in 

light conditions due to rapid crown defoliation or loss of ash trees, 
affected the performance of the transplanted ash natural 
regeneration. Together with the hint of a filtering effect by the ash 
dieback history of a forest stand already in the first year after 
planting, this might indicate evolution in response to ash dieback. 
Further quantifying selection effects at the ecosystem level would 
require to control for the amount of effective infection pressure on 
the stands, involving annual recording of leaf and shoot symptoms 
and consideration of the habitat conditions over a longer 
experimental period. Ecological and evolutionary processes are 
likely to change during dynamic phases of regeneration in the 
presence of new agents (Dietz and Edwards, 2006). At this point in 
time, however, studying ash regeneration is just in the middle of a 
transition from ecologically driven to evolutionary shaped 
differentiation in seedling responses.
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