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Unprecedented seasonal forest fires pose a significant threat to the carbon stocks 
of diverse ecosystems, particularly in regions like Uttarakhand, west Himalaya. 
Understanding the impact of varying fire frequencies on different forest types is 
crucial for effective conservation and management strategies. This study aims to 
assess the loss of carbon stock in three distinct forest types—Sal, Pine, and Mixed 
across an elevation gradient in Uttarakhand, facing unprecedented seasonal 
forest fires. By investigating pre- and post-fire conditions, analyzing biomass 
dynamics, and mapping fire frequencies, the research aims to provide insights 
into the complex interplay of fire regimes and forest resilience. The investigation 
covers vegetation analysis, biomass assessment, and fire frequency mapping. 
Biomass and carbon stock calculations were carried out using a non-destructive 
sampling method. Fire frequency maps were generated using Landsat satellite 
imagery spanning a decade, integrating MODIS hotspot data for classification. 
The study reveals distinct patterns in biomass changes across Sal, Pine, and 
Mixed forests in response to varying fire frequencies. Sal forests exhibit resilience 
to low-intensity fires, while Pine forests show higher sensitivity. Carbon stock 
contributions of dominant species varied significantly, with Sal and Chir-Pine 
forests emerging as crucial contributors. High fire frequencies lead to substantial 
carbon stock reduction in all forest types. The findings emphasize the sensitivity 
of aboveground biomass to fire frequency, with significant carbon stock loss 
observed in higher fire frequency classes. The study underscores the importance 
of nuanced conservation strategies tailored to distinct forest types and species 
characteristics. This research provides valuable insights for policymakers, forest 
managers, and conservationists in formulating targeted conservation and 
management approaches.
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Introduction

Forests provide a wide array of essential goods and services that sustain life (Bisht et al., 
2018), encompassing fuel, timber, food (Joshi and Negi, 2011), bioproducts (Shmulsky and 
Jones, 2019), greenhouse gas regulation (Ribeiro-Kumara et al., 2020), air quality (Baró et al., 
2014), water supply (Cassiano and Ferraz, 2022), carbon storage (Fahey et  al., 2010;  
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Rai et al., 2018), nutrient cycling (Sharma and Sharma, 2004), and 
genetic and species diversity (Connell and Orias, 1964; de Groot et al., 
2002; Singh, 2002). The preservation of forests has become a 
prominent policy objective for environmental safeguarding (Koskela 
and Karppinen, 2021), and sustenance of their critical ecological and 
climatic contributions (Humpenoder et al., 2014; Capellesso et al., 
2021; Maren and Sharma, 2021). Uttarakhand Himalaya, known for 
its rich floral and faunal diversity (Anthwal et al., 2010), geology, and 
ecology, also considered a repository of biological (Bargali et al., 
2022a) and cultural diversity (Negi, 2010), warranting conservation 
and sustainable management for future generations (Kumar et al., 
2015; Mathela et al., 2020).

However, according to the India State of Forest Report (FSI, 2021), 
the forest cover in Uttarakhand is only 45.44% (Kumar and Hole, 
2021; Bargali et al., 2022a), significantly below then the recommended 
forest cover (66%) for hill states in India (National Forest Policy, 
1952). The prevalence of forest fires in the most hill states is one of the 
contributing factors to forest degradation (Babu et al., 2016; Ranjan, 
2018; Babu, 2019; Bargali et al., 2022). Fire, a natural and recurrent 
phenomenon (Vasconcelos et  al., 2017), exerts both positive and 
negative effects on forests (Certini, 2005). Positive outcomes involve 
enhancing biodiversity and stimulating plant growth (Bhatt et al., 
2019; He et  al., 2019), while negative impacts encompass habitat 
destruction, alterations in soil chemistry, and reduction in forest 
biomass (Bargali et  al., 2017; Bowd et  al., 2021). Grasping the 
consequences of fires on forests is vital for their conservation and 
management (Naveh, 1994; Bowman and Balch, 2013), especially in 
regions where fires occur frequently and with intensity (Bargali et al., 
2022a). In Uttarakhand Himalaya, fires are traditionally perceived as 
disruptive and harmful (Rawat et al., 2017), with their role in local 
forest ecosystems historically marginalized (Gururani, 1996; 
Niklasson et al., 2010; Bargali et al., 2020).

Studies of paleoecology and fire history indicate that human 
presence in the landscape has increased the frequency of fire events in 
the past (Bahuguna and Upadhay, 2002; Whitlock et al., 2010; Negi 
and Dhyani, 2012; Abrams and Nowacki, 2019). Fire is recognized as 
one of the Earth’s most powerful agents of ecological change 
(Allendorf and Hard, 2009; Stenseth and Dunlop, 2009), with 
far-reaching ecological implications (Harrison et al., 2010). Forest fires 
entail significant losses (Hansen et al., 2010), encompassing human 
lives (Pausas and Keeley, 2009) economic consequences (De 
Mendonça et al., 2004), depletion of forest resources (Sadowska et al., 
2021), destruction of biogeocenosis (Zhukov, 1976), and severe 
impacts on soil (Verma and Jayakumar, 2015) leading to loss and 
erosion post-fire (Scott et al., 2009; Jhariya et al., 2012). Additionally, 
forest fires contribute to greenhouse gas emissions, changes in climate 
patterns (Kurniawan et al., 2022), and the loss of ecosystem values 
(Lecina-Diaz et  al., 2021) and environmental services (Lee et  al., 
2015). Key impacts include reduced floral productivity (Flower and 
Gonzalez-Meler, 2015) changes in regeneration rates (Deb and 
Sundriyal, 2008; Sathya and Jayakumar, 2017; Boucher et al., 2020), 
and the loss of various endemic and endangered fauna species 
(Laurance and Useche, 2009; Yule, 2010; Sati and Bandooni, 2018; 
Ward et al., 2020).

In Uttarakhand Himalaya, forest fire intensities are anticipated to 
increase due to rising temperatures and global warming (Ahmad and 
Goparaju, 2018). Most forest fires in this region are of anthropogenic 
origin (Bhandari et al., 2012), stemming from both accidental and 
intentional sources (Semwal and Mehta, 1996; Chauhan et al., 2018; 

Fulé et al., 2021). Fire behavior, which involves the ignition of fuels 
(Burgan, 1984), flame development (Vahabi et  al., 2015), and fire 
spread (Countryman, 1964), is influenced by the interplay of fuels 
(Bessie and Johnson, 1995) weather, and topography in forest fires 
(Agee, 1996). Additionally, the type of forest, calorific value of fuels, 
dead plant matter, and litter plays a significant role (Hakkila and 
Parikka, 2002; Cornelissen et al., 2017).

In recent decades, forest fires have become more frequent and 
widespread in the Himalayan state of Uttarakhand (Singh et al., 2016; 
Bargali et al., 2017; Ahmad and Goparaju, 2018; Fulé et al., 2021). 
These forests have historically experienced fires for thousands of years 
(Gadgil, 1992; Anthwal et al., 2010; Bargali et al., 2024), with fire being 
a significant influence on landscape patterns and species diversity 
(Delcourt and Delcourt, 1997; Bhandari et al., 2012; Bargali et al., 
2022b). The prevalence of plant populations offers insight into species’ 
capacity to respond to disturbances, including forest fires (Rodríguez-
Trejo, 2014; Miller et al., 2019). In Uttarakhand, the dominance of 
Chir-pine (Pinus roxburghii) covers approximately 28% of the forest 
area (Fulé et al., 2021), contributing to the acceleration of forest fires 
(Kumar et al., 2019; Ray et al., 2019). The altitudinal zone of Chir pine 
forests, between 1,000 and 1800 meters above sea level, is considered 
a fire-prone area in the study region (Negi, 2019). Anthropogenic 
activities, such as the collection of non-timber forest products and 
agricultural practices, have also played a role in forest fires in the study 
area (Bargali et al., 2020; Bhandari and Bijlwan, 2020; Saha et al., 2023).

Forests act as the key carbon pool (C) and store more carbon per 
unit area compared to other terrestrial ecosystems (Zhao et al., 2014). 
Forest cover is around 30% of the Earth’s total surface area, and 
contains 19% of the Earth’s overall biomass and carbon pool 
(Kindermann et  al., 2008; FAO and UNEP, 2020); forests having 
greater carbon in biomass and soil than in any natural ecosystem and 
atmosphere (Pan et al., 2011; Zhao et al., 2014; Jiang et al., 2022). 
Tropical and temperate forests are global centers of biodiversity, which 
play an important role in the regulation of the global and regional C 
cycles (Poorter et al., 2015). Among various forests, tropical forests 
fixes higher biomass, and serve as a major potential sink of carbon due 
to high species diversity and high net primary production (Malhi 
et al., 1999; Kothandaraman et al., 2020). Approximately 767 million 
hectares (25%) area covered by temperate forest globally of the total 
land surface, and they storage about 14% of total carbon (Pan et al., 
2011). Currently, climate change is a global concern, and forests plays 
vital role in climate change regulation and mitigation through 
reducing CO2 concentrations in the atmosphere (Streck and Scholz, 
2006; Scholz and Huber, 2017; Bracki, 2019; Ali et al., 2020; Burman 
et  al., 2021). Thus, estimation of carbon stocks of different forest 
ecosystems would help in appropriate decision-making on carbon (C) 
management. This kind of information also contributes toward 
atmospheric carbon reduction targets as part of international 
obligations (UNFCCC, 2014; Sahu et al., 2016; Mayer et al., 2020). The 
amount of total biomass stored in a forest indicates the quantity of C 
that can be sequestered to meet the emission targets (Brown et al., 
1999; Raha et al., 2020).

Carbon sequestration is among the most important ecosystem 
services provided by forest ecosystems that play an important role in 
global climate mitigation. For example, in a recent study Tolangay and 
Moktan (2020) reported that the Indian Himalayan region (IHR) 
sequesters about 65 million tonnes of carbon each year. This has 
leaded to conclude that ‘the Himalayan forests have the potential to 
mitigate climate change and global warming’. We hypothesize that 
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seasonal forest fires in Uttarakhand Himalaya lead to significant losses 
in carbon stocks within forest ecosystems. This hypothesis is based on 
the understanding that forest fires contribute to habitat degradation, 
alter vegetation dynamics, and release stored carbon into the 
atmosphere, thereby impacting the overall carbon sequestration 
capacity of the forests. With the above background and hypothesis in 
mind, a first-of-its-kind study was conducted in the Himalayan region 
on forest fires, it was aimed to analyze the loss of carbon stock in the 
forest of Uttarakhand due to unprecedented seasonal forest fires.

Materials and methods

Study area

The investigation encompassed three primary forest types along 
the elevation gradient (300–1700 m a.s.l) in Uttarakhand state of 
Western Himalaya, India. Among the chosen forest stands, the 
Motichur, Haridwar site (Site-I) was characterized by the dominance 
of Shorea robusta Gaertn. (Sal), while the Mona, Nainital range (Site-
II) was dominated by Pinus roxburghii Roxb. Chir-Pine and the 
Dhaulchina, Almora site (Site-III) was primarily dominated by 
Quercus leucotrichophora A. Camus (Banj-oak). Geologically, all the 
sites (stands) were situated in the lesser Himalayan region (Valdiya, 
1980). All the selected forests are managed by the forest department. 
A comprehensive overview of the geographical and ecological 
characteristics of the study sites are provided in Table 1.

Vegetation analysis

Vegetation analysis was conducted by deploying random quadrats 
within identified forest stands both before and after a fire event. A 
total of 30 (10 × 10 m) quadrats were randomly placed for the 
investigation. The Circumference at Breast Height (CBH) of each tree 
species was measured at 1.37 m above the ground. The collected field 
data underwent analysis for various phytosociological parameters, 
including density, frequency, basal area, and species richness (Mishra, 
1968). Standard phytosociological methods, as outlined by Ellenberg 

and Muller-Dombois (1974), were employed for obtaining field data. 
Microsoft Excel 2019 was used to analyze phytosociological data.

Biomass analysis

Biomass and productivity were assessed using a non-harvesting 
sampling method, with 1.0 ha areas sampled in each site. All trees with 
a diameter less than 30 cm in the sampled quadrat were recorded and 
measured for Circumference at Breast Height (CBH) at 1.37 m above 
the ground. Yellow paint was used to mark all trees for long-term 
monitoring. Carbon stock was considered as approximately half 
(0.475) of biomass, and carbon sequestration was estimated as half of 
productivity, following the approach by Magnussen and Reed (2004). 
Trees measured in permanent plots during the first year (2017) were 
re-measured in the subsequent years (2018 and 2019).

Biomass for different components (bole, branch, twig, foliage, 
stump root, and fine roots) in the first year (Y1), second year (Y2), and 
third year (Y3) was calculated using the regression equation of the 
allometric method (Rawat and Singh, 1988; Rana et al., 1989; Basuki 
et al., 2009; Navar, 2009; Dabi et al., 2021): Y = a + b·lnX. Here, ln 
denotes the natural log, Y represents the dry weight of the component 
(kg), X is CBH (cm), a is the y-intercept, and b is the slope of the 
regression (Table  2). Net productivity was determined by the 
difference in biomass between 2 years: ΔY=Y2 − Y1. Where ΔY is the 
net primary productivity, Y1 is the biomass in the first year, and Y2 is 
the biomass in the second year. Biomass and carbon stock were 
computed in Megagrams per hectare (Mg ha−1). Carbon stock and 
sequestration were assumed to be half of the total estimated biomass 
of each tree species, following the methodology by Magnussen and 
Reed (2004): stock = Biomass·0.475; sequestration = NPP·0.475 
stock = Biomass·0.475; C sequestration = NPP·0.475.

Fire frequency mapping

Forest fire frequency maps were created for the state of 
Uttarakhand by using Landsat 5, 7, and 8 satellite imagery 
spanning a decade (2011–2020). The MODIS hotspot data 

TABLE 1 General features of surveyed forests in Uttarakhand, Western Himalayan region.

S. no. Parameter (s) Sal forest Chir-Pine forest Mixed forest

l. Forest location Motichur, Haridwar Mauna, Nainital Dhaulchina, Almora

2. Altitude (m a.s.l) 320 1,109 1,642

3. Latitude 29°29′ 29.912″ 29°23′ 42.447″ 29°27′ 56.309″

4. Longitude 79°32′ 21.770″ 79°39′ 09.842″ 79°39′ 07.832″

5. Canopy species Shorea robusta Pinus roxburghii Quercus leucotrichophora

6. Soil moisture (%) 18.04 ± 3.91 22.15 ± 4.09 28.90 ± 5.43

7. WHC (%) 49.27 ± 2.23 54.54 ± 3.22 62.78 ± 4.32

8. pH 6.44 ± 0.13 6.43 ± 0.34 5.89 ± 0.76

9. SOC (%) 1.22 ± 0.034 2.32 ± 0.12 3.42 ± 0.23

10. N (%) 0.12 ± 0.012 0.21 ± 0.091 0.41 ± 0.023

11. Soil texture (%) Loamy sand Sandy clay Sandy loam

WHC, water holding capacity; N, nitrogen; SOC, soil organic carbon.
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(MOD14) from NASA’s Fire Information for Resource 
Management System (FIRMS) official website were downloaded 
and integrated with shape-file data representing fire points 
(Bargali et al., 2023). The satellite images for specific sites were 
extracted, geo-corrected, and classified into four frequency 
classes—namely, low fire, moderate fire, and high fire frequency 
classes (Figure  1). Supervised classification was applied to 
categorize the extracted and geo-corrected satellite images of 
chosen study sites, including Sal Forest, Chir-Pine Forest, and 
Mixed Forest. Using the data management tool in ArcMap 
software, a fishnet was generated, and fire points and raster data 
were spatially joined to produce the fire frequency map. A total of 
16,206 fire points were recorded and classified into four fire 
frequency classes for the entire state. To exclude fire points in 
settlements, the settlement layer was overlaid onto the fire point 
layer, ensuring that only fire points within forest regions were 
considered for analysis. The fire frequency was further divided 
into four classes—low fire, moderate fire, and high fire frequency 
classes, as illustrated in Figure  1. To maintain objectivity, a 1 
hectare area for each forest type was selected within each fire 
frequency class.

Data analysis

The statistical analysis involved paired t-tests independently for 
both aboveground and belowground carbon stock components. Using 
Statistical Package for the Social Sciences (IBM, SPSS) Statistics 
26 package.

Results

The paired t-test analysis was conducted on the pre-fire and 
post-fire carbon stock of three forest types: Sal Forest, Chir-Pine 
Forest, and Mixed Forest. For the aboveground carbon stock, the 
mean differences and their respective standard errors (SE or ±) 
were calculated. In Sal Forest, the mean difference was 12 Mg ha−1 
with an SE (±) of 8 Mg ha−1, resulting in a t-statistic of 1.29 
[t(2) = 1.29, p = 0.29], indicating a lack of statistical significance. 
However, in Chir-Pine Forest, the mean difference was 20 Mg ha−1 
with an SE (±) of 10 Mg ha−1, yielding a t-statistic of 2.00 
[t(2) = 2.00, p = 0.12], which was statistically significant. 
Conversely, Mixed Forest showed a mean difference of 8 Mg ha−1 
with an SE (±) of 4 Mg ha−1, also not reaching statistical 
significance [t(2) = 2.00, p = 0.12]. Moving to Belowground carbon 
stock, Sal Forest had a mean difference of 4 Mg ha−1 (SE = 2) and a 
t-statistic of 2.00 [t(2) = 2.00, p = 0.12], indicating no significant 
difference. Chir-Pine Forest exhibited a mean difference of 
6 Mg ha−1 (SE = ± 4) with a t-statistic of 1.50 [t(2) = 1.50, p = 0.23], 
also not statistically significant. However, Mixed Forest showed a 
notable mean difference of 7 Mg ha−1 (SE ± 2) with a significant 
t-statistic of 3.50 [t(2) = 3.50, p = 0.04], indicating a significant 
change in Belowground carbon stock post-fire.

Impact of pre-and-post fire frequencies on 
different forest types

Sal forest
Pre-fire, tree biomass in the Sal forest ranged from 270 Mg ha−1 

(Low fire) to 219 Mg ha−1 (High fire) (Figure 2). Among all fire classes, 
aboveground biomass was highest in the low fire class (270 Mg ha−1), 
followed by moderate fire (250 Mg ha−1), and high fire (230 Mg ha−1). 
Post-fire, the tree biomass in the Sal forest exhibited changes, ranging 
from 265 Mg ha−1 (Low fire) to 219 Mg ha−1 (High fire) (Figure 2). 
Aboveground biomass remained highest in the low fire class 
(265 Mg ha−1), followed by moderate fire (243 Mg ha−1), and high fire 
(219 Mg ha−1).

Chir-Pine forest
Pre-fire, tree biomass in the Chir-Pine forest ranged from 

200 Mg ha−1 (Low fire) to 122 Mg ha−1 (High fire) (Figure 2). Among 
all fire classes, aboveground biomass was highest in the low fire class 
(200 Mg ha−1), followed by moderate fire (160 Mg ha−1), and high fire 
(130 Mg ha−1). Post-fire, the tree biomass in the Chir-Pine Forest 
displayed changes, ranging from 198 Mg ha−1 (Low fire) to 123 Mg ha−1 
(High fire) (Figure 2). Aboveground biomass remained highest in the 
low fire class (198 Mg ha−1), followed by moderate fire (155 Mg ha−1), 
and high fire (123 Mg ha−1).

TABLE 2 Allometric relationships between the biomass of tree 
components (Y, kg−1 tree) and circumference of tree at breast height (X, 
cm at 1.37  m height) for different tree used.

Biomass (Kg 
tree−1)

Intercept (a) Slope (b) r2

Pinus roxburghii

Bole −6.418 2.598 0.985

First order brance −9.833 2.978 0.979

Other branches −9.338 2.630 0.963

Foliage −6.111 1.872 0.952

Stamp root −7.220 2.448 0.978

Lateral root −9.161 2.593 0.974

Fine root −9.102 2.069 0.938

Interspecies or mixed forest

Bole −0.861 1.425 0.915

Branch −0.908 1.327 0.907

Twig −0.506 1.028 0.796

Leaf −1.106 1.042 0.755

Stump root −0.098 0.948 0.789

Lateral root −2.346 0.997 0.724

Fine root −2.874 0.529 0.722

Sal forest

Boie −2.832 1.976 0.980

Branch −2.037 1.501 0.922

Twig −2.688 1.463 0.980

Leaf −1.736 1.175 0.960

Total −1.789 1.892 0.980

The equation is: Ln Y = a + by Ln X; where Ln is natural log, a Intercept of Y and b slope or 
regression coefficient (based on Tewari et at., 1985; Rana et al., 1989). Interspecies equation 
is significant at p < 0.05, rest are significant at p < 0.01.
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Mixed forest
Pre-fire, tree biomass in the Mixed forest ranged from 170 Mg ha−1 

(Low fire) to 123 Mg ha−1 (High fire) (Figure 2). Among all fire classes, 
aboveground biomass was highest in the low fire class (170 Mg ha−1), 
followed by moderate fire (150 Mg ha−1), and high fire (135 Mg ha−1). 
Post-fire, the tree biomass in the Mixed Forest showed changes, 
ranging from 164 Mg ha−1 (Low fire) to 123 Mg ha−1 (High fire) 
(Figure 2). Aboveground biomass remained highest in the low fire 

class (164 Mg ha−1), followed by moderate fire (142 Mg ha−1), and high 
fire (123 Mg ha−1).

Sal forest
The analysis of carbon stock changes in the Sal forest, categorized by 

different fire frequency classes, revealed distinct patterns in the aftermath 
of fires. In the low fire frequency class, a relatively minor reduction of 5 
MgC in carbon stock was observed. This suggests that low-intensity fires 

FIGURE 1

Fire frequency map, sampling points, and selected forest types in the studied sites.
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have a limited impact on carbon storage within the Sal forest. Moving to 
the moderate fire frequency class, a more substantial decrease of 7 MgC in 
carbon stock was noted. This indicates that as the fire intensity increases, 
the magnitude of the impact on carbon stocks also increases. Notably, in 
the high fire frequency class, the most significant reduction was observed, 
with a noteworthy decline of 11 MgC in carbon stock. This underscores the 
heightened vulnerability of the Sal forest to carbon loss in the presence of 
frequent and intense fires (Figure 3).

Chir-Pine forest
The examination of carbon stock dynamics within the Chir-Pine 

forest, classified by varying fire frequency classes, revealed distinctive 
trends in the aftermath of fires. In the low fire frequency class, a minimal 
reduction of 2 MgC in carbon stock implies that low-intensity fires have 
a limited impact on carbon storage within the Chir-Pine forest. 
Transitioning to the moderate fire frequency class, a more pronounced 
decrease of 5 MgC in carbon stock suggests an escalating impact as fire 
intensity increases. Notably, in the high fire frequency class, the most 
substantial reduction was observed, with an 8 MgC decline in carbon 
stock (Figure 3).

Mixed forest
Examining the carbon stock dynamics in the mixed forest across 

different fire frequency classes reveals distinctive patterns prior to and 
after fire incidents. In the low fire frequency class, there was a marginal 
reduction of 6 MgC in carbon stock, indicating a relatively modest 
impact of low-intensity fires on carbon storage within the mixed 
forest. Moving to the moderate fire frequency class, a more significant 
decrease of 8 MgC in carbon stock was observed, suggesting an 
escalating impact as fire intensity increases. Notably, in the high fire 
frequency class, the most substantial reduction was evident, with a 
noteworthy decline of 12 MgC in carbon stock (Figure 3).

Species wise contribution of carbon stock

Sal forest
The carbon stock contributions of different tree species in the Sal 

forest are presented in the Figure 4. In the Low fire, Shorea robusta 
exhibited the highest carbon stock contribution among the species 
with a value of 36 MgC ha−1, followed by Mallotus philippensis with 16 
MgC ha−1. Syzygium cumini, Butea monosperma, and Aegle marmelos 
contributed 18, 12, and 14 MgC ha−1, respectively. Under Moderate 
fire conditions, S. robusta maintained its leading position, contributing 
33 MgC ha−1, followed by M. philippensis with 13 MgC ha−1. S. cumini, 
B. monosperma, and A. marmelos contributed 14, 9, and 7 MgC ha−1, 
respectively. In the High fire class, the contribution of S. robusta 
declined to 12 MgC ha−1, while M. philippensis became the highest 
contributor with 14 MgC ha−1. S. cumini, B. monosperma, and 
A. marmelos contributed 16, 16, and 6 MgC ha−1, respectively.

Chir-Pine Forest
In the Chir-Pine forest, the carbon stock contributions of two 

dominant tree species, Pinus roxburghii and Myrica esculenta, are 
outlined in the Figure  4. Under Low fire conditions, P. roxburghii 
dominated the carbon stock contribution with a value of 73.68 MgC ha−1, 
while M. esculenta contributed 26.31 MgC ha−1. In the Moderate fire 
scenario, P. roxburghii maintained a substantial carbon stock contribution 
of 46.18 MgC ha−1, surpassing M. esculenta, which contributed 28.12 
MgC ha−1. In the High fire class, both species experienced a reduction in 
carbon stock contributions. P. roxburghii contributed 16.12 MgC ha−1, 
while M. esculenta contributed 14.13 MgC ha−1.

FIGURE 2

Status of carbon stock (MgC ha−1) during pre-and-post fire in the selected forest types.

FIGURE 3

Carbon losses due to seasonal forest fire in the selected forest types 
in Uttarakhand, western Himalaya Carbon loss due to forest fire in 
selected forest types and fire frequencies.
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Mixed forest
In the mixed forest, the carbon stock contributions of three dominant 

tree species—Quercus leucotrichophora, Myrica esculenta, and Pinus 
roxburghii—are detailed in the Figure 4. Under Low fire conditions, 
Q. leucotrichophora emerged as the primary contributor to carbon stock 
with 38.35 MgC ha−1. M. esculenta and P. roxburghii contributed 13.69 
and 18.26 MgC ha−1, respectively. In the Moderate fire class, the dynamics 
shifted, and P. roxburghii took the lead with a carbon stock contribution 
of 26.26 MgC ha−1. M. esculenta followed closely with 18.1 MgC ha−1, 
while Q. leucotrichophora’s contribution decreased to 16.46 MgC ha−1. In 
the High fire scenario, M. esculenta became the top contributor and 
yielded a carbon stock of 26.26 MgC ha−1. Q. leucotrichophora and 
P. roxburghii contributed 8.16 and 4.26 MgC ha−1, respectively.

Discussion

Aboveground biomass (AGB) stands as a crucial quantitative 
parameter for assessing the health and sustainability of forest 
ecosystems (Joshi et al., 2022). AGB reflects the cumulative biomass of 
trees and vegetation above the soil surface and serves as a key indicator 
of the ecosystem’s carbon storage capacity. Our investigation into AGB 
changes in three diverse forest types—Sal, Chir-Pine, and Mixed—in 
response to varying fire frequencies provides valuable insights into the 
complex interplay of factors influencing forest dynamics. The observed 
alterations in tree biomass were influenced by a multitude of factors 
inherent to forest ecosystems. These include stand age, species 
composition, forest type, size class of trees, site conditions, rainfall 
patterns, edaphic factors, and elevation (Peichl and Arain, 2006; Gairola 
et al., 2011). Each of these factors contributed uniquely to the overall 
dynamics of AGB, shaping the structure and function of the forest. Our 
results affirmed that fire, whether occurring as a low frequency event 
or high frequency, exerts a discernible influence on AGB. The observed 
changes in AGB following fires in the Sal, Chir-Pine, and Mixed forests 
underscore the sensitivity of this parameter to variations in fire 
frequency. The impact of fire on AGB was particularly pronounced in 

higher fire frequency classes, as demonstrated by the substantial 
reductions in carbon stock. The Sal forest, known for its resilience to 
lower intensity fires, exhibited a gradient of AGB loss corresponding to 
increasing fire frequency. The Chir-Pine forest, characterized by higher 
sensitivity to fire, displayed more substantial biomass reductions across 
all fire frequency classes. In the Mixed forest, the diversity of tree 
species contributed to varied responses to fire and further emphasized 
the complexity of factors influencing AGB dynamics. The paired t-test 
analysis also revealed significant changes in the carbon stock dynamics 
post-fire, with Chir-Pine Forest showing a notable shift in Aboveground 
carbon stock and Mixed Forest exhibiting a significant change in 
Belowground carbon stock. The comparison of carbon stock 
contributions across the three distinct forest types—Sal, Pine, and 
Mixed—revealed interesting patterns and species-specific dynamics in 
response to varying fire intensities. Examining the data collectively 
provides valuable insights into the overall carbon sequestration capacity 
and highlights the contributions of individual tree species in each forest 
type. In the Sal forest, S. robusta consistently emerged as a significant 
contributor to carbon stock, leading the pack across all fire frequencies. 
Its remarkable resilience in maintaining high carbon stock levels 
showcased its importance in carbon sequestration, underscoring the 
need for its preservation in forest management strategies. Contrastingly, 
the Chir-Pine forest displayed a different pattern, with P. roxburghii 
playing a pivotal role in carbon stock contributions. This species 
demonstrated a robust ability to sequester carbon, particularly evident 
in low and moderate fire scenarios. While contributing substantially, 
M. esculenta does not match the carbon stock levels of P. roxburghii. 
The mixed forest presented a unique scenario, where 
Q. leucotrichophora, M. esculenta, and P. roxburghii showcased varying 
contributions across different fire intensities. Q. leucotrichophora 
dominated in low fire frequency, whereas P. roxburghii took the lead in 
moderate fires, and M. esculenta became the primary contributor in 
high fire frequency. It was evident that the species response to fire 
intensity played a crucial role in determining their carbon sequestration 
capacity. Across all forests, P. roxburghii consistently exhibited 
significant carbon stock contributions, showcasing its resilience in the 

FIGURE 4

Species-wise contribution (dominant species) of above ground biomass (MgC ha−1) in different fire classes.
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face of different fire regimes. This emphasized the importance of 
understanding the unique characteristics of each species for effective 
forest management and conservation.

Conclusion

Our findings emphasize the need for a comprehensive 
understanding of the interactions between fire, forest type, and above 
ground biomass (AGB) dynamics. The identification of specific fire 
frequency classes associated with minimum and maximum biomass 
losses provides critical information for targeted conservation 
strategies. Acknowledging the multifaceted nature of AGB changes 
which contributes to the development of nuanced and effective forest 
management approaches, ensuring the resilience and sustainability of 
these diverse ecosystems in the face of evolving fire regimes. The 
findings suggest that preserving and promoting certain key/local/
native species, such as Shorea robusta in Sal forests and Pinus 
roxburghii in Chir-Pine forests, can contribute significantly to 
maintaining or enhancing carbon rather than new species. These 
insights will be instrumental for policymakers, forest managers, and 
conservationists in devising strategies to ensure the sustainability and 
resilience of diverse forest ecosystems in the context of changing fire 
dynamics and global climate patterns.
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