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As an important part of the terrestrial ecosystem, vegetation dynamics are

subject to impacts from both climate change and human activities. Clarifying the

driving mechanisms of vegetation variation is of great significance for regional

ecological protection and achieving sustainable development goals. Here, net

primary productivity (NPP) was used to investigate the spatiotemporal variability

of vegetation dynamics from 2000 to 2020 in East Africa, and its correlations

with climate factors. Furthermore, we utilized partial derivatives analysis and

set up different scenarios to distinguish the relative contributions of climatic

and human factors to NPP changes. The results revealed that NPP exhibited a

significant increase with 4.16 g C/m2/a from 2000 to 2020 in East Africa, and

an upward trend was detected across 71.06% of the study area. The average

contributions of precipitation, temperature, and solar radiation to the NPP

inter-annual variations in East Africa were 2.02, −1.09, and 0.31 gC·m−2
·a−1,

respectively. Precipitation made the greatest positive contribution among all of

the climatic factors, while temperature made strong negative contributions. The

contributions of climate change and human activities to NPP changes were 1.24

and 2.34 gC·m−2
·a−1, respectively. Moreover, the contribution rate of human

activities to NPP increase was larger than that of climate change, while the role

of climate change in NPP decrease was larger than that of human activities. The

findings of the study can provide new evidence for a deeper understanding of

ecosystem stability and carbon cycling in East Africa, as well as a reference for

decision-making and scientific support for ecological environmental protection.
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1 Introduction

As an essential part of terrestrial ecosystems, vegetation
performs an irreplaceable role in transferring and transforming
carbon, regulating the global carbon balance, and maintaining
global climate stability (Qu et al., 2020; Wu et al., 2020). Due
to ongoing global warming, coupled with the intensification
of human activities, vegetation ecosystems are facing severe
challenges. Investigating vegetation dynamics and quantifying the
relative impacts of climate and human factors on vegetation
dynamics is crucial for formulating effective adaptation and
mitigation strategies (Ge et al., 2021; Bejagam and Sharma, 2022;
Yang et al., 2022).

Net primary productivity (NPP) is the capacity of vegetation
to fix net carbon through photosynthesis under natural conditions
and serves as a crucial indicator for monitoring vegetation
growth and evaluating ecosystem health (Yan et al., 2019; Ma
et al., 2023). The effects of climate change on the dynamics of
vegetation have received extensive attention (Qu et al., 2020).
Numerous scholars have explored the relationship between NPP
and major climate factors at global or regional scales (Liu et al.,
2021; Gu et al., 2022; Ma et al., 2023). Within the threshold
range, a temperature rise can enhance plant photosynthesis,
thereby promoting vegetation NPP accumulation. When the
temperature is below the threshold, the higher the temperature,
the faster the rate of vegetative photosynthesis; however, excessive
warming can increase evapotranspiration rate and physiological
drought, reduce vegetation photosynthesis rate, and thus inhibit
vegetation NPP (Teng et al., 2020; Alvarado et al., 2021).
Climatic factors are characterized by large spatial heterogeneity,
and thus the climate-dominant factor for vegetation NPP varies
by region and ecosystem. For example, in arid and semi-
arid regions, vegetation development is more constrained by
water, so precipitation changes may have a greater influence on
vegetation NPP changes. In humid and cold regions, vegetation
growth might be restricted by the temperature (Cao et al., 2023;
Zhu et al., 2023).

Human activities have a notable effect on the dynamics of
vegetation, with this effect increasingly expanding. Anthropogenic
impacts on vegetation are usually small-scale and short-
lived compared to climatic factors (Zhu et al., 2023). With
rapid economic development and increasing population,
anthropogenic impacts on vegetation ecosystems are becoming
more intense. Anthropogenic impacts on NPP are both
promoting and inhibiting. Human activities can contribute
to vegetation improvement through ecological construction
activities as well as technological advances in agriculture, while
activities such as overgrazing, urban sprawl, irrational farming,
deforestation, and economic construction can inhibit vegetation
productivity (Liu et al., 2019a; Pan et al., 2021; Wei et al.,
2022). Thereby, distinguishing the relative roles of climate
change and human activities on vegetation changes is crucial for
further understanding the dynamic mechanisms of vegetation
productivity.

In recent years, numerous approaches have been proposed to
separate the effects of climate and human activities on vegetation
dynamics. Among them, the most commonly used methods
are the following categories: mathematical–statistical method

(e.g., regression analysis and principal component analysis), the
biophysical model-based method, and the residual trend-based
method (Caputo et al., 2016; Jiang et al., 2020; Yin et al., 2020).
While the mathematical–statistical method is the simplest, it will
ignore the ecological processes and is unsuitable for distinguishing
the intricate interplay between vegetation and impact factors
(Liu et al., 2020). The biophysical model-based method uses
process-based simulation models to calculate the potential and
actual NPP to distinguish the relative effects of climate change
and human activities. However, this method requires multiple
vegetation parameters, which may increase model uncertainty (Ge
et al., 2021; Liu et al., 2022). The residual trend-based method
typically predicts vegetation NPP by constructing correlations
between climate factors and vegetation, and treating the difference
between predicted and observed values of NPP as the effect of
human activities. Nevertheless, the NPP prediction value has great
uncertainty, and it is not possible to estimate the impact of
individual climate factors on NPP dynamics using this approach
(Pan et al., 2017; Yan et al., 2019; Qu et al., 2020). Therefore,
to overcome the shortcomings of the above methods, we utilize
the partial derivative method to assess the respective impacts
of climatic and human factors on NPP. Currently, the partial
derivative method is widely used to analyze vegetation dynamics
in response to influencing factors (Qu et al., 2020; Ge et al., 2021;
Zhu et al., 2023).

East Africa is one of the most densely populated regions in
Africa and faces enormous population pressure. The region
is characterized by complex landforms, diverse climates,
susceptibility to climate change and lack of resilience to maintain
stable ecosystems. Over the past 50 years, East Africa has
experienced an average temperature increase of 1.5–2◦C, as well as
significant changes in precipitation, and its rate of warming is much
higher than that of the African continent and the global average
over the same period (Measho et al., 2022). Climate change has led
to a high incidence of extreme events and a further deterioration
of ecological problems in East Africa (Haile et al., 2020). Regional
differences in climate change, coupled with human disturbances
such as urban expansion, agricultural land expansion, overgrazing,
deforestation, and afforestation have complicated vegetation
dynamics in East Africa (Bullock et al., 2021). The contributions of
the various drivers of the spatiotemporal evolution in vegetation
productivity in East Africa, however, remained unclear.

To address the above research deficiencies, the response of
vegetation NPP variation to climatic and anthropogenic factors
in East Africa need to be analyzed. In this article, a quantitative
model is built of influencing factors of vegetation NPP change,
which can be utilized to quantify where and the degree to which
climate change and human activities influence vegetation NPP
variation in this region. Therefore, the objectives of this article
are as follows: (1) to evaluate the spatiotemporal dynamics of
NPP in East Africa from 2000 to 2020; (2) to explore the
relationships between NPP and climatic factors (precipitation,
temperature, and solar radiation); and (3) to quantify the relative
contributions of climatic and anthropogenic drivers to NPP
using the partial derivative method and scenarios designing.
The study outcomes can enhance the comprehension of the
feedback of vegetation dynamics to various drivers in East
Africa. Further, this study can provide reliable information for
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policy making toward sustainable development of vegetation
ecosystem in East Africa.

2 Materials and methods

2.1 Study area

The study area includes five countries in total: Tanzania, Kenya,
Uganda, Rwanda, and Burundi, and is commonly referred to as
East Africa (5◦2′N-11◦45′S, 28◦51′-41◦54′E). East Africa covers a
total area of 1.82 million km2. East Africa has a fluctuating terrain
with an altitude difference of nearly 6,000 m and is characterized by
diverse landscape characteristics such as Rift Valley, Lake Victoria,
Mount Kilimanjaro, and Mount Kenya (Ayugi et al., 2021b). The
average annual temperature and annual precipitation have a range
of 8–31◦C and 200–2000 mm, respectively. Influenced by the
seasonal cycle of the Inter-Tropical Convergence Zone (ITCZ),
East Africa experiences two main rainy seasons: the long rainy
season, March–May (MAM), and the short rainy season, October–
December (OND) (Kimani et al., 2017; Ayugi et al., 2021a). The
region boasts one of the highest population densities in Africa and
is largely dependent on an agrarian economy, with 80% of the
population relying on rainfed agriculture for subsistence, making
it less resilient to climate change (Kalisa et al., 2019). The main
vegetation types in this region are grassland, forest, and cropland
(Figure 1).

2.2 Dataset

In this study, the MODIS product (MOD17A3HGF v006) was
taken from NASA LAADS Web,1 at a pixel of 500 × 500 m,
in HDF format, from 2000 to 2020. The MODIS reprojection
tool (MRT) was used for format conversion, image stitching
and projection conversion of the MODIS NPP data. Annual
precipitation from 2000 to 2020 at a spatial resolution of
0.05◦ was obtained from the CHIRPS product.2 Previous
studies have demonstrated that the CHIRPS dataset performs
reasonably well in capturing rainfall dynamics, especially in
Africa (Zhou et al., 2021). Monthly temperature data at a
spatial resolution of 0.1◦ was collected from the ERA5-Land
reanalysis dataset,3 which was developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF). Solar
radiation data was calculated from the downward shortwave
radiation data in the TerraClimate dataset, a high-spatial-
resolution climate dataset (1/24◦, i.e., approximately 0.0417◦)
(Song et al., 2022). Monthly temperature, and solar radiation
were calculated to generate annual time series data for 2000–
2020. Land cover data in 2000 was provided by the Global
Land Cover Datasets (GlobeLand30, resolution 30 m4). Land
cover data was resampled to a resolution of 1 km based on the

1 https://lpdaacsvc.cr.usgs.gov/appeears/

2 https://www.chc.ucsb.edu/data/chirps

3 https://cds.climate.copernicus.eu/cdsapp#!/da

4 http://www.globallandcover.com/

nearest neighbor algorithm, and other data were resampled to
1 km spatial resolution using the bilinear interpolation method
(Chen et al., 2019).

2.3 Methods

2.3.1 Trend analysis
The variation coefficient was utilized to measure the fluctuation

of NPP dynamics, with larger values indicating greater fluctuations
in NPP and more unstable vegetation conditions, and vice versa
(Zhu et al., 2023). The formula is as follows:

CV =

√∑n
i = 1 (NPPi−NPP)

n−1

NPP
(1)

where CV is the variation coefficient; NPPi is the vegetation NPP in
year i; NPP is the average value of NPP over a 21-year period; n is
the number of research years.

The linear regression model based on the least square method
was utilized to characterize the long-term trends of NPP in East
Africa from 2000 to 2020 (Teng et al., 2020; Ge et al., 2021).

θslope =
n ×

∑n
i = 1 (i × Vari)−

(∑n
i = 1 i

) (∑n
i = 1 Vari

)
n =

(∑n
i = 1 i2

)
−
(∑n

i = 1 i
)2

(2)
where θslope is the long-term trend of NPP; n is the number of
research years, here n = 21; i is the sequence number of the year;
Vari represents the NPP value in year i. A positive θslope indicates
that NPP shows an increasing trend over time, while vice versa
indicates that NPP shows a decreasing trend. Moreover, the t-test
was utilized to test the significance of slope in this study, where
p < 0.05 represents statistically significant, and p < 0.01 represents
statistically extremely significant (Ge et al., 2021).

2.3.2 Partial correlation analysis
In this study, correlations between NPP and climate factors

(temperature, precipitation, and solar radiation) were calculated
using the second-order partial correlation analysis (Ma et al., 2023).

Correlation analysis method:

rxy =
∑n

i = 1 (xi−x)
(
yi−y

)√∑n
i = 1 (xi−x)2

√∑n
i = 1

(
yi−y

)2 (3)

where rxy represents the correlation coefficient; n represents
the sample size; x and y represent the mean values of x and
y, respectively.

First-order partial correlation method:

rxy,z =
rxy−rxzryz√(

1−r2xz
) (

1−r2yz
) (4)

where rxy,z represents the partial correlation coefficient between
the variable x and y when the variable z is regarded as a
constant; rxy, rxz , and ryz represent the correlation coefficient
between two variables.

Second-order partial correlation method:

R = rxy,zt =
rxy,z−rxt,zryt,z√(
1−r2xt,z

) (
1−r2yt,z

) (5)
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FIGURE 1

Map of location (A) and land cover (B) of East Africa.

where R represents the second-order partial correlation coefficient
between the variable x and y when the variables z and t are
regarded as constant; rxy,z , rxt,z , and ryt,z represent first-order
partial correlation coefficients.

The significance of the second-order partial correlation
coefficient was verified using t-test, and the formula is:

T =
R
√
n−q−1
√
1−R2

(6)

where R is the second-order partial correlation coefficient, n is the
number of samples, and q is the number of independent variables.
Based on the results of the t-test, the significance test results
of the partial correlation coefficients between NPP and climate
factors can be divided into the following types: (1) ESN: extremely
significant negative correlation (R< 0, p< 0.01); (2) SN: significant
negative correlation (R < 0, p < 0.05); (3) NN: nonsignificant
negative correlation (R < 0, p > 0.05); (4) SP: significant positive
correlation (R> 0, p< 0.05); (5) ESP: extremely significant positive
correlation (R > 0, p < 0.01); and (6) NP: nonsignificant positive
correlation (R > 0, p > 0.05).

2.3.3 Contributions of climate factors and human
activities to NPP dynamics

Vegetation NPP changes are a function of climate (mainly
referring to precipitation, temperature, and solar radiation) and
other variables (dominated by human activities) (Qu et al., 2020).
In this study, we used the partial derivative method to calculate the
contributions of each driver to NPP, as followed (Yan et al., 2019;
Ge et al., 2021; Zhu et al., 2023):

θslope = C_con+H_con = Tem_con+Pre_con+Rad_con+UF

=
∂NPP
∂tem

×
∂tem
dt
+

∂NPP
∂pre

×
∂pre
dt
+

∂NPP
∂rad

×
∂rad
dt
+UF (7)

where θslope is the NPP trend; C_con, H_con, Pre_con, Tem_con,
and Rad_con are the contributions of climate change, human
activities, precipitation, temperature, and solar radiation to the
inter-annual NPP changes, respectively; C_con is the sum of
Pre_con, Tem_con, and Rad_con; ∂tem

dt ,
∂pre
dt , and ∂rad

dt are the
inter-annual variation rates of temperature, precipitation and solar
radiation, respectively; ∂NPP

∂tem , ∂NPP
∂pre , and ∂NPP

∂rad are the slopes of the
linear regression curves between NPP and three climate factors,
respectively; UF is the residual of the equation, representing
the contribution of unknown factors to NPP. In this study, we
hypothesize the dominance of human factors in UF concerning
related studies (Zhang et al., 2016; Zhu et al., 2023).

Based on Eq. 7, a positive θslope represents NPP increase,
whereas a negative θslope denotes NPP decrease. The positive
C_con and H_con represent climate change and human activities
that benefit vegetation growth, whereas the negative values
represent that they hinder vegetation growth. Moreover, scenarios
were designed to isolate climate and anthropogenic impacts on
vegetation NPP trend (Table 1).

Under the condition of θslope 0 (NPP increase), if C_con 0
and H_con 0, climate change and human activities combine to
promote an increase in vegetation NPP. In this scenario (Scenario
IDCH), the relative contribution of the two factors to the increase
in NPP can be calculated based on the equation shown in Table 1.
If C_con 0 and H_con < 0, then climate change contributed to the
vegetation NPP increase and human activities facilitated a decrease
in vegetation NPP. Therefore, Scenario IDC represents that the
NPP increase is entirely attributed to climate change. If C_con < 0
and H_con 0, the NPP increase is entirely attributed to human
activities, because C_con < 0 shows that climate change is harmful
to vegetation growth and caused a decrease in vegetation NPP,
whereas H_con 0 indicates that human activities are beneficial
to vegetation growth and promoted an increase in vegetation
NPP. Therefore, this scenario represents that NPP increases due to
human factors (IDH).
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TABLE 1 Relative effects scenario of climate change (CC) and human activities (HA) on NPP increase/decrease.

Scenario C_con H_con Contribution rate of CC (%) Contribution rate of HA (%)

θslope = 0 IDCH 0 0 |C_con|
|C_con|+|H_con|

|H_con|
|C_con|+|H_con|

IDC 0 <0 100 0

IDH <0 0 0 100

θslope = 0 DDCH <0 <0 |C_con|
|C_con|+|H_con|

|H_con|
|C_con|+|H_con|

DDC <0 0 100 0

DDH 0 <0 0 100

Under the condition of θslope < 0 (NPP decrease), if C_con < 0
and H_con < 0, the NPP decrease was caused by the combined
effects of climatic and human factors (DDCH). If C_con < 0
and H_con 0, the NPP decrease is entirely attributed to climate
change, because C_con < 0 indicates that climate change is harmful
to vegetation growth and induced a decrease in NPP, whereas
H_con 0 shows that human activities promoted an increase in
NPP. Therefore, Scenario DDC represents that NPP decreases due
to climate change. If C_con 0 and H_con < 0, climate change
promoted an increase in NPP and human activities caused a
decrease in NPP. In this scenario, the NPP decrease is caused by
human activities (DDH).

3 Results

3.1 Inter-annual variation in vegetation
NPP

Annual average vegetation NPP in East Africa exhibited an
increasing trend from 2000 to 2020, and its linear increasing trend
reached a significant level (p < 0.01) (4.16 g C/m2/a). For East
Africa, NPP increased from 701.11 to 928.50 g C/m2/a with an
average value of 806.21 g C/m2/a. The minimum and maximum
NPP values appeared in 2000 and 2020, respectively. In terms of
specific countries, growth rates of vegetation NPP in Uganda and
Tanzania from 2000 to 2020 were higher than that of the East
African average, while growth rates in Burundi, Kenya, and Rwanda
were lower than that of the East African average, and the growth
trends in Kenya and Rwanda were not significant (Figure 2).

3.2 Spatiotemporal variation in
vegetation NPP

The average vegetation NPP in East Africa was 801.29 g
C/m2/a, and its distribution presented distinct spatial heterogeneity
(Figure 3A). The areas with a mean value below 400 g C/m2/a
accounted for 19.18% of the total area in East Africa and were
mainly located in Kenya. Areas with a mean value above 1,500 g
C/m2/a were distributed in southwestern Kenya, northeastern
and south-central Tanzania, western Uganda, and southwestern
Rwanda. In general, the spatial distribution of NPP in Kenya
was the most heterogeneous, followed by Tanzania, while Uganda,
Burundi, and Rwanda had a more homogeneous distribution of
multi-year average NPP. Moreover, based on Eq. 1, the variation

FIGURE 2

Inter-annual variation of average vegetation NPP in East Africa,
2000–2020. East Africa: y = 4.16x-7558.30, R2 = 0.33**; Kenya:
y = 2.18x-3883.93, R2 = 0.06; Tanzania: y = 4.75x-8582.87,
R2 = 0.35**; Uganda: y = 7.54x-14215.99, R2 = 0.42***; Rwanda:
y = 0.13x-1192.93, R2 = 0.02; Burundi: y = 3.18x-5315.22,
R2 = 0.21*. ***p < 0.001, **p < 0.01, *p < 0.05.

coefficient of NPP had a similar spatial distribution to the multi-
year average NPP. Specifically, the areas with high NPP had a
smaller coefficient of NPP variation and more stable vegetation
status, while a more fluctuating vegetation status was observed in
areas with low NPP values (Figure 3B).

During 2000–2020, determined by Eq. 2, vegetation NPP
exhibited an increasing trend and a decreasing trend in 71.06%
and 28.94% of the study area, respectively (Figure 4A). Moreover,
36.05% of the study area had statistically significant trends in
vegetation NPP (p < 0.05). In the significantly change areas,
the significant increasing trend (p < 0.05) accounted for 87.14%,
mainly located in northern Uganda, western Tanzania, and
central and western Kenya. The area ratio with a significant
downward trend was 12.86%, mainly in eastern Kenya, central
and eastern Uganda, western Rwanda, and western, northern
and central Tanzania (Figure 4B). In Uganda, 96.26% of the
significantly change areas exhibited a significant increase trend. In
the significantly change areas, the significant decrease of NPP in
Rwanda (33.92%) and Kenya (32.22%) was greater than in Uganda
(3.74%), Tanzania (8.82%), and Burundi (11.15%). Meanwhile,
there were more significantly increased areas of NPP in Tanzania
(91.18%) and Burundi (8.85%) than in Rwanda (66.08%) and Kenya
(67.78%) (Figure 5).

In the past 21 years, NPP change trends varied for different
types of vegetation (Figure 5). In the significantly change areas,
compared with other land types, construction land had the lowest
increase ratio (44.44%) and the highest decrease ratio (55.56%).
Bare land accounted for 98.33% and 1.67% of the significantly
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FIGURE 3

Spatial distribution of the multiyear average NPP (A) and variation coefficient (B).

change areas with significant improvement and degradation,
respectively. In shrubland, grassland and cropland, a total of
76.70%, 89.90%, and 89.48% of the pixels exhibited significant
improvements, respectively. There are 84.11% and 69.87% of the
pixels representing forest and water body exhibited significant
improvement, respectively.

3.3 Correlations between NPP and
climate factors

The results of second-order partial correlation analysis are
shown in Figure 6 (Eqs 3–6). The correlation coefficient values
between NPP and precipitation had a maximum of 0.92 and a
minimum of −0.88, with a median value of 0.56 (Figures 6A, 7).
In areas where NPP was significantly correlated with precipitation
(p < 0.05), the maximum, minimum, and median values of
the correlation coefficients were 0.49, 0.11, and 0.32, respectively
(Figure 7). The proportion of NPP positively correlated with
precipitation was 83.26%, of which 29.84% was significantly
positive (p < 0.05), mainly concentrated in the northern,
northeastern and mid-western Kenya, northern and eastern regions
of Uganda, and the western and northwestern corners of Tanzania.
The proportion of vegetation NPP negatively correlated with
precipitation was only 1.03% (Figure 6D).

The median correlation coefficients of vegetation NPP
with temperature and solar radiation were −0.55 and −0.46,
respectively, while the two medians that passed the significance test
were −0.20 and −0.02, respectively (Figures 6B, C, 7). For 71.95%
of East Africa, NPP had a negative correlation with temperature,
of 20.19% had a significant negative correlation (p < 0.05),
mainly distributed in Kenya and the northeastern, central and
eastern coastal areas of Tanzania. Regions with a significant
positive correlation with temperature accounted for 2.04% and
was located in central and western Uganda, as well as southern
and southwestern Tanzania (Figure 6E). Furthermore, NPP has a
weak correlation with solar radiation. Specifically, the proportion of
area with a significant negative correlation between NPP and solar
radiation is 3.38%, and the proportion with a significant positive
correlation is 2.91% (Figure 6F).

3.4 Contribution of climatic and
anthropogenic factors to NPP changes

Correlation coefficients measure the degree of correlation
between vegetation NPP and climatic factors, but do not distinguish
the relative contribution of each climatic factor to annual variations
in NPP. Therefore, based on Eq. 7, the partial derivative method
is used to quantify the contribution of each climate factor to
the NPP changes (Figures 8A–C). From 2000 to 2020, the
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FIGURE 4

Spatial distribution of change trend (A) and significance test (B) of NPP in East Africa from 2000 to 2020.

contributions of precipitation, temperature and solar radiation
on vegetation NPP trend in East Africa were 2.02, −1.09, and
0.31 g C·m−2

·a−1, respectively (Table 2). Specifically, in 87.45%
of the study area, precipitation presented a positive contribution
to the NPP trend. Regions with large contributions were mainly
distributed in midwestern and southwestern Kenya, northern
Uganda, and western, northeastern, and southeastern Tanzania.
Temperature mainly presented a negative contribution to the NPP
trend, accounting for 73.46% of the whole study area, mainly
concentrated in Kenya and Tanzania. Positive contributions of
solar radiation to NPP changes mainly have been observed in
northeastern and western Tanzania, southwestern Kenya, and
western and northwestern Uganda. For all countries, precipitation
made a greater positive contribution than that of temperature
and solar radiation. Temperature made the greatest negative
contributions to NPP changes in Kenya (−1.73 g C·m−2

·a−1) and
Tanzania (−1.24 g C·m−2

·a−1). Overall, vegetation growth in East
Africa is most affected by precipitation.

In addition to climatic factors, anthropogenic disturbances
to vegetation dynamics cannot be ignored. The cumulative
contributions of climate change and human factors to NPP trend
were obtained (Figures 8D, E). The inter-annual growth rate of
vegetation NPP was 3.58 g C·m−2

·a−1, with a contribution of
1.24 g C·m−2

·a−1 from climate change and 2.34 g C·m−2
·a−1 from

human activities (Table 2). It can be seen that human activities and
climate change are jointly contributing to the trend of vegetation

FIGURE 5

Percentage of NPP significant changes for different countries and
land use types.

greening in East Africa, and that the contribution of human
activities (65.36%) is higher than that of climate change (34.64%).
Human activities contributed positively to NPP changes in most
of East Africa, with the largest positive contribution concentrated
in western Tanzania and northern Uganda. Moreover, human
activities made a strong negative contribution to NPP changes
in northern and eastern Tanzania, southwestern and southeastern
Kenya, and western Rwanda (Figure 8E).

On the basis of the different scenarios designed in Table 1,
the relative impacts of climate change and human activities to
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FIGURE 6

Second-order partial correlations and significance test between NPP and precipitation (A,D), temperature (B,E), solar radiation (C,F).

NPP changes were assessed (Figures 8F, 9). Increased NPP due
to the combined contribution of human activities and climate
change accounted for 46.84% of the study area, primarily in western
and northern Tanzania, northern Uganda, and midwestern and
northern Kenya. Areas with vegetation NPP increase promoted
by human activities accounted for 16.27% of the total study area,
and mainly distributed in northeastern and southwestern Kenya,
southwestern Uganda, and southern Tanzania. The regions with
vegetation NPP increase induced by climate change accounted for
8.06% of the total study area, which mainly located in eastern
Tanzania and midwestern Kenya. For NPP decrease, the climate-
dominated NPP decreased area occupied 11.58% of the total study
area, and 13.52% of the study area was induced by the combined
effects of the climatic and human factors, which mostly distributed
in eastern and southwestern Kenya, eastern and central Uganda,
western Rwanda, and northern, western, and central Tanzania.
Human-dominated NPP decrease occupied an area of 3.73% of
the study area, which mostly occurred in northern and eastern
Tanzania, central Uganda, southern Rwanda, and southeastern
Kenya (Figure 8F).

Figure 9 shows the contribution rates of climate change and
human activities to NPP changes. The contribution rate to NPP
increase of human activities (59.60%) was larger than that of climate
change (40.40%) in East Africa. For NPP decrease, the contribution
rate of climate change (67.48%) was larger than that of human
activities (32.52%). Overall, human activities were the dominant
factor affecting the NPP increase, while climate change was the
dominant factor in the decrease of NPP.

4 Discussion

4.1 Vegetation NPP variations in East
Africa

The inter-annual variation in NPP observed in this study
may be the result of the combined effects of climate change and
human activities. The vegetation NPP in East Africa significantly
increased by 4.16 g C/m2/a over the past 21 years, confirming
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FIGURE 7

Box-plot of second-order partial correlations between NPP with
climate factors.

an improvement in vegetation growth of East Africa (Tong et al.,
2019). And the spatiotemporal heterogeneity could be found across
East Africa. For instance, NPP in parts of the regions (mainly
in northern Uganda, western Tanzania, and midwestern Kenya)
significantly increased since increased precipitation and some
positive human activities such as afforestation and agricultural
technology (Gebrechorkos et al., 2020; Akinyemi and Speranza,
2022). This result is consistent with Ugbaje et al. (2017) and Tong
et al. (2019) who found that NPP significantly increased in northern
Uganda and midwestern Kenya from 2000 to 2014 and 2000
to 2015, respectively. Vegetation NPP was observed significantly
decreased in eastern Kenya, central Uganda, and western Tanzania,
which is inconsistent with Ugbaje et al. (2017). The inconsistency
is probably because of time lag effect due to the differences in
time intervals in this study (2000–2020) compared to Ugbaje et al.
(2017) – 2000–2014.

4.2 Impacts of climate change on
vegetation productivity

Climate change is undoubtedly a critical factor in vegetation
variation. Studies have shown that the most important climatic
factors affecting vegetation productivity are precipitation,
temperature, and solar radiation (Teng et al., 2020; Ge et al., 2021).
According to the results of the study, these three climate factors
all affect the vegetation NPP changes in East Africa, which is
also consistent with previous studies (Jones et al., 2018; Measho
et al., 2022). However, these contributions vary spatially. The
responses of vegetation NPP to climate variables are likely to
vary depending on the combinations of thermal condition and
moisture availability (Liu et al., 2019b). Due to the complex
topography and circulation, the distribution of precipitation
in Africa is spatially different, resulting in uneven dry and wet
conditions (Guo et al., 2022). In Figures 6A, 8A, precipitation
is the main climatic factor affecting the growth of vegetation in
arid and semi-arid regions, such as northern Kenya and western
Tanzania. Nevertheless, higher temperatures have been found to
inhibit vegetation growth in these regions (Figures 6B, 8B). This

could be due to the fact that in arid and semi-arid areas where
water is the most crucial factor for vegetation growth, increased
temperatures may promote stronger evaporation, exacerbate
drought stress, and lead to degradation of vegetation (Luo et al.,
2018). These findings are consistent with the previous studies
(Liu et al., 2019b; Tong et al., 2019; Umuhoza et al., 2023). Our
results were also consistent with the study by Bai et al. (2008),
which pointed out that grassland aboveground NPP was positively
correlated with precipitation and increased significantly with
increasing precipitation across grassland ecosystems in arid and
semiarid ecosystems. The negative correlation between NPP and
precipitation is predominantly distributed in the vicinity of Lake
Victoria, Lake Kivu, and Lake Rukwa, where water resources are
abundant and water availability is no longer the major constraint to
vegetation development. Yet, higher levels of precipitation can lead
to a decrease in both sunshine hours and solar radiation, which
hinders vegetation photosynthesis and diminishes productivity
(Ge et al., 2021). This is consistent with Schuur et al. (2001),
who found that surplus precipitation could induce the decrease
of solar radiation inputs and shortage of soil oxygen availability,
which may decrease NPP in humid areas. Vegetation NPP and
temperature are significantly positively correlated in central
and western Uganda, southern and southwestern Tanzania, and
surrounding areas of Mount Kenya and Kilimanjaro, where
temperature acts as a constraint on vegetation growth in this
area. Rising temperatures promote vegetation growth and lead
to extended growth seasons, resulting in the accumulation of dry
matter in these regions (Bai et al., 2020; Li et al., 2021). Liang et al.
(2015) analyzed the impact of climate variability on NPP dynamics
in China and similarly found that vegetation NPP controlled by
temperature was mainly observed in regions where vegetation
growth might be non-restricted by water availability. This is
consistent with Pan et al. (2015) who found that the dominant
driving climate factor for NPP variations varies among various
regions in Africa.

4.3 Impacts of human activities on
vegetation productivity

In recent years, the impact of human activities on vegetation
changes has gradually increased (Ge et al., 2021). Therefore, it
is crucial to precisely measure the impact of human activities
on changes in vegetation. Similar to climate change, the
effects of human activities on vegetation change are spatially
heterogeneous. Human activities displayed significant positive
effects on NPP changes in western and northwestern Tanzania,
northern and southwestern Uganda, eastern Rwanda, and
midwestern Kenya, indicating that farming, afforestation, and
biodiversity conservation had favorable effects on vegetation
growth (Bullock et al., 2021; Akinyemi and Speranza, 2022).
This is consistent with the findings of Akinyemi and Speranza
(2022) who found that reforestation was carried out in Tanzania,
northern Uganda and Rwanda. Areas where human activities
negatively impacted vegetation NPP were mainly found in the
northern, southwestern, and eastern Tanzania and southwestern
and southeastern Kenya. These effects are potentially due to
deforestation, overgrazing, and construction land expansion
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FIGURE 8

Spatial distribution of relative contributions of climate and anthropogenic activities to NPP changes, including (A) precipitation, (B) temperature, (C)
solar radiation, (D) climate factors, (E) human activities, and (F) relative impacts of climate change and human activities.

TABLE 2 Statistical analysis of the contributions of climatic and human factors to NPP changes (g C·m−2·a−1).

Regions Precipitation Temperature Solar radiation CC HA

East Africa 2.02 −1.09 0.31 1.24 2.34

Kenya 1.80 −1.73 −0.09 −0.01 1.12

Tanzania 2.25 −1.24 0.63 1.64 2.81

Uganda 1.93 1.05 0.18 3.16 3.90

Burundi 0.80 0.05 0.15 1.00 1.81

Rwanda 0.71 −0.29 −0.57 −0.15 0.57

(Ugbaje et al., 2017; Lunyolo et al., 2021). Chen et al. (2022) found
that shifting agriculture and commodity-driven deforestation
were preeminent in Sub-Saharan Africa. Abera et al. (2022) found
that Kenya meets more than 70% of the national energy needs by

clearing forests for wood fuel. In this research, climate change and
human activities contributed 40.40% and 59.60%, respectively, to
vegetation NPP increase in East Africa. The spatial distribution of
the relative contributions of climate change and human activities is
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FIGURE 9

Spatial distribution of the contribution rates of (A,C) human activities (HA) and (B,D) climate change (CC) to NPP changes.

inconsistent with the findings of Tong et al. (2019). The reason for
this may be because Tong et al. (2019) only focused on grassland,
while this study focused on all vegetation types. In addition, Tong
et al. (2019) calculated Potential NPP through Thornthwaite
memorial model, which may bring certain uncertainties. Zhang

and Huang (2019) suggested that anthropogenic disturbances had
a stronger impact on global vegetation dynamics compared to
climate change. This is in line with the widely accepted consensus
that anthropogenic disturbances significantly affect the ecology of
Earth’s surface (IPCC, 2021; Li et al., 2021).
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4.4 Uncertainty and limitations

This study still has some shortcomings, which come from the
data and method. The NPP data used in this study come from
remote sensing data. Although this dataset is the latest version of
MODIS data, it is still the indirect remote sensing data for model
simulation. The input variables of the model will bring uncertainty
to the data set, which may affect the results of this study (Pan
et al., 2021; Bejagam and Sharma, 2022; Ma et al., 2022). Climate
data used in this study come from the CHIRPS dataset, ERA5-
Land analysis dataset, and TerraClimate dataset, which have low
spatial resolution, which can also have an impact on the findings
of this study (Shen et al., 2022; Xuan and Rao, 2023). The partial
derivative method simplifies the nonlinear relationship between
NPP and impact factors into a linear relationship, but disregards the
intricate interplays between climate change and human activities,
thus compromising the accuracy of the study (Chen et al., 2020;
Bejagam and Sharma, 2022). The effects of climate on vegetation are
also complex, and this article ignores the time-lag and cumulative
effects of climate factors (Liu et al., 2021; Gu et al., 2022). Setting the
residual error to the anthropogenic effect on vegetation dynamics
may ignore the effects of factors such as CO2 fertilization effects,
nitrogen deposition and fires on vegetation productivity (Chen
et al., 2020; Qu et al., 2020). Moreover, the impacts of human
activities were considered as a whole in this study. Nevertheless, it
remains crucial to quantify the effects of various human activities
(Pei et al., 2021; Gu et al., 2022).

5 Conclusion

This study analyzed the spatiotemporal changes in vegetation
NPP across East Africa from 2000 to 2020 and quantified the
responses of different driving factors to the vegetation dynamics.

Temporally, the average NPP showed a fluctuating upward
trend at a rate of 4.16 g C/m2/a. Spatially, the average NPP exhibited
obvious spatial heterogeneity, and the distribution in Kenya is
the most uneven, followed by Tanzania. The spatial distribution
pattern of the NPP variation coefficient was similar to that of
the NPP mean, with the higher the mean value, the more stable
it is. 71.06% of the study area indicated an increasing trend
in vegetation NPP, and 31.44% of which reaching a statistically
significant level. The median partial correlation coefficients of
vegetation NPP with precipitation, temperature, and solar radiation
were 0.32,−0.2, and−0.02, respectively. Vegetation NPP exhibited
a prevalent positive correlation with precipitation within 83.26% of
the study area. Conversely, NPP was mainly negatively correlated
with temperature (71.95%). The correlation between NPP and
solar radiation was not significant in the vast majority of the
regions (93.71%).

The contributions of precipitation, temperature, and solar
radiation to the inter-annual trend of NPP were 2.02, −1.09,
and 0.31 g C/m2/a, respectively. Precipitation exerted the most
significant impact on the inter-annual variation of NPP, being the
dominant climate factor. Climate change and human activities

contributed 1.24 and 2.34 g C/m2/a to the inter-annual variation
of NPP, respectively. Human activities (59.60%) contributed more
toward vegetation NPP increase than climate change (40.40%)
in East Africa, while climate change (67.48%) predominantly
caused vegetation NPP decrease compared with human activities
(32.52%). These findings can provide new evidence for the in-
depth understanding of ecosystem stability and carbon cycle in
East Africa, and can also provide decision-making reference and
scientific assistance for biodiversity conservation and ecological
environment protection in East Africa.
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