
Frontiers in Forests and Global Change 01 frontiersin.org

A climate-spatial matrix growth 
model for major tree species in 
Lesser Khingan Mountains and 
responses of forest dynamics 
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concentration path scenarios
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Introduction: Climate change affects forest distribution, species composition, 
structure, and yield due to the sensitivity of forests to temperature, precipitation, 
and CO2. Therefore, for forest management decisions regarding climate change, 
it is crucial to explore the response of forest growth, mortality, and recruitment 
to future climate. We aimed to establish tree species’ responses by introducing 
variables such as climate, stand spatial structure parameters, and diversity indices.

Methods: We produced fixed parameter transition matrix model (FM), climate-
sensitive matrix growth model (CM) and climate-spatial matrix growth model 
(SCM) using data from 786 plots collected during the 7th (2010), and 8th (2015), 
Chinese National Forest Inventories in Heilongjiang Province, and long-term 
predictive performance of CM, SCM, and FM were compared using same data. 
The models were compared using tenfold cross-validation and long-term 
predictive performance analysis. To predict the response of major tree species in 
the Lesser Khingan Mountains to three future climate change scenarios (RCP2.6, 
RCP4.5, RCP8.5).

Results and discussion: The cross-validation results show small significant 
differences among the three models for short-term prediction (5  years), with the 
FM performing slightly better than the CM and the SCM. In contrast, for long-term 
projections (85  years), SCM outperformed FM and CM under three different RCPs, 
and SCM and CM under three representative concentration paths (RCPs), i.e., 
RCP2.6, RCP4.5, and RCP8.5, suggesting that rather different dynamics are more 
reliable, since climatic factors are taken into account which may significantly 
affect forest dynamics, while changes in stand spatial structure also affect the 
sensitivity of trees to climate, especially in long-term prediction interval, the results 
of this paper may provide a theoretical basis for optimizing forest management 
strategies under climate change.
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1 Introduction

Global warming has become an important issue of global 
concern. According to the IPCC, the global average surface 
temperature increased by 0.85°C from 1880 to 2012 and will continue 
to increase in the future (Liu et al., 2014; Zhao et al., 2014; Tian et al., 
2015). As the main body of forest ecosystems, forests play an 
important role in maintaining ecological balance, biodiversity, 
climate regulation, and carbon sequestration. Conversely, climate 
change will inevitably impact the distribution, species composition, 
stand structure, and timber harvest of forests (Sibyll et al., 2016; Any 
et al., 2021; Bayat et al., 2022). Changes in tree species due to climate 
change often lag changes in tree species abundance or forest 
composition (Zhu et al., 2012; Akane et al., 2021; Liang et al., 2022), 
and the effects of climate change on forests and tree species depend 
on local conditions and physiological thresholds (Allen et al., 2010). 
As forests grow, trees can absorb carbon dioxide from the air and 
convert it to biomass through photosynthesis (Zhao et  al., 2018; 
Holtmann et al., 2021).

To project future climate scenarios, the RCP represents the 
possible future emission pathways (high, medium, and low); the 
concentrations of CO2, other GHGs, and aerosols are calculated 
using the carbon cycle climate model; and each concentration path 
corresponds to the radiative forcing due to concentrations in 2100 
(2.6, 4.5 and 8.5 W/m2). The Northeast China region is mainly 
characterized by an increase in temperature and precipitation under 
the three different RCP scenarios, but at different rates (Chen et al., 
2008; Xu and Xu, 2012; Zhu et al., 2021). While temperature and 
precipitation play key roles in influencing forest growth and forest 
dynamics, it is critical to accurately estimate the impact of climate 
change on future tree growth and mortality and the differential 
response of different tree species, to address forest management 
under climate change (Yang et al., 2006; Gustafson et al., 2020 Guo 
et al., 2022; Ma et al., 2023;).

A research hotspot is the use of growth models to study the 
response of forest growth and harvesting to climate change. The 
matrix growth model, on the other hand, represents the state of the 
stand distribution at a given time in terms of vectors. It simulates 
and predicts changes in the structural state of uneven-aged forests 
using a transition matrix. Later, researchers used the matrix model 
as the basis for forest management by fitting the dynamic growth 
system model of natural uneven-aged forests using tree recruitment, 
diameter upward growth, and mortality (Hao et al., 2005; Choi and 
An, 2008). Early applications of matrix growth models used fixed 
transition matrix, indicating that stand diameter growth, 
recruitment, and mortality probabilities do not change with time or 
environment, but fixed transition matrix models excel at short-term 
prediction (Roberts and Hruska, 1986; Roitman and Vanclay, 2015). 
However, forest dynamics are closely related to stand conditions 
and the stand environment and they do change over time (Liang 
et al., 2011; Liang and Picard, 2013), so the accuracy of long-term 
predictions cannot be guaranteed. By replacing the fixed transition 
matrix with a variable that is limited by stand (stand density, stand 
structure), site (elevation, slope, aspect), and environmental 
(temperature, precipitation) drivers, the above problems are more 
fully addressed, and the model becomes more accurate and robust 
in the long-term (Liang et al., 2005; Zhao et al., 2005; Du et al., 
2020; Zhang et al., 2022).

Traditionally, the growth of trees has been mainly influenced by 
the size of the trees themselves, competition factors, and stand 
conditions, but as research progresses, an increasing number of 
scientists are focusing on the effects of stand spatial structure and 
stand diversity on stand growth (Wang et al., 2016; Vannoppen et al., 
2019). There is a significant correlation between species diversity, tree 
size diversity, and stand growth, and climate warming will lead to 
changes in these patterns of dominance and species composition 
relationships (Here et al., 2020; Campbell et  al., 2021). Regarding 
forest structure, the forest spatial structure focuses on the arrangement 
of trees across a landscape and their associated characteristics. Tree 
growth and mortality, competition between trees, and natural 
regeneration all affect the spatial arrangement of tree characteristics 
and thus the structural characteristics of forests. Climate change 
affects forest structure and function to some extent. Tree competition, 
distribution patterns, stand structural diversity, and mixed degree all 
influence forest growth and productivity (Murray and Woodward, 
2003; Young et al., 2011; Hui et al., 2019).

Based on the above, this study aimed to (1) introduce climate, 
diversity indicators, stand spatial structure parameters, and stand 
factors based on the traditional matrix growth model and then 
establish a climate-sensitive matrix growth model (CM) and a climate-
spatial matrix growth model (SCM) for different tree species in the 
study area. This was to reveal the relationship between stand growth, 
recruitment, and mortality with climate, stand spatial structure, and 
species diversity; and (2) assess and contrast the effectiveness of the 
SCM with a fixed parameter transition matrix model (FM) and a 
climate-sensitive transition matrix model (CM); and (3) investigate 
the response of different tree species in the Lesser Khingan Mountains 
to future climate change and simulate changes in stand density, basal 
area, and diversity indices under three future RCP scenarios to provide 
a basis for forest management under climate change.

2 Method

2.1 Study site

The study area is in the northern part of Heilongjiang Province 
in the Lesser Khingan Mountains, 46°10′22″–51°2′22″N, 125°54′00″–
130°56′00″E, close to the Russian region, separated by the 
Heilongjiang River. The Lesser Khingan Mountains are a key forestry 
base in China, with rich forest vegetation and forest coverage rate of 
72.6%. The eastern part of the Lesser Khingan Mountains belongs to 
the Changbai flora, which contains more than 2,000 species of plants 
and undisturbed forests with dense trees and ground cover above and 
below the forest canopy. The climate is cold and humid, with a 
minimum temperature of −48.1°C and a maximum temperature of 
37.7°C. The frost-free period is 100–125 days, and the ground is 
covered with snow for 6 months of the year. The annual snow 
thickness is 30–60 cm; the annual precipitation is 480–650 mm and is 
mostly concentrated in June–August due to the warm and rainy 
summer, providing a short and favorable season for forest growth. 
There are many valuable species in the Lesser Khingan Mountains, 
such as Picea asperata Mast, Abies fabri, and Pinus koraiensis Sieb. 
Among them, broad-leaved forests are the most abundant and they 
play an important role in maintaining the ecological balance 
in China.
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2.2 Data and pre-analysis

This paper uses the national forest inventory established in the 
Lesser Khingan Mountains for different stand conditions, in different 
forests, and at different densities and elevations; the data include the 
seventh (2010) and eighth (2015) National Forest Inventory (NFI) 
plots of 0.06 ha in the area. Clearly disturbed plots, such as logging or 
artificial disturbance, were excluded, and a total of 786 plot 
observations were selected. Tree species, number, diameter at breast 
height (DBH), condition, and coordinates were recorded, and the 
elevation, slope, aspect, and other stand factors were investigated (see 
Tables 1, 2).

2.3 Climate data

In this study, the climate data were downloaded from,1 a database 
of high spatial resolution (1 km × 1 km) global weather and climate 
data. We chose the average annual temperature and average annual 
precipitation, summarized as annual averages by ArcGIS 10.8 
software. The descriptions of climate variables are shown in Figure 1. 
MAP and MAT represent mean annual temperature and mean annual 
precipitation, respectively.

To predict the diameter distribution of different tree species’ 
responses to future climate change, ClimateAP generated the future 
mean annual precipitation and temperature from 2015 to 2100 (Wang 
et al., 2018). The main future scenarios are high emissions (RCP8.5), 
moderate emissions (RCP4.5), and low emissions (RCP2.6) (Xu and 
Xu, 2012). The changes in temperature and precipitation under the 
three scenarios are shown in Figure 2. Overall, the future MAT and 
MAP trends, from 2010 to 2100, increased under the three RCP 
scenarios. Additionally, MAP increased under the three RCP 
scenarios, although fluctuations were expected.

1 https://www.worldclim.org/

2.4 Model variable and model structure

The study included seven stand parameters, such as diameter at 
breast height (DBH), basal area (BA), and number of trees per hectare 
(N); two diversity indicators, including tree species diversity (H1) and 
size diversity (H2), H1 indicates species diversity represented by the 
Shannon–Wiener index; H2 denotes tree size diversity represented by 
the Shannon–Wiener index; six stand structural parameters, including 
aspect, slope, and soil thickness; two climate factors, including 
temperature and precipitation, which mainly affect forest growth; and 
four stand spatial structural parameters, such as uniform angle index, 
mingling, dominance and competition index. Based on the transition 
matrix growth model, the above variables were used to determine the 
multicollinearity between the independent variables by using variance 
inflation factor (VIF) to exclude the variables with strong covariance 
with VIF >10 and introduced to construct the CM and SCM. All 
variables are defined in Table 3.

The transition matrix growth model can be described as follows:

 y G y h Rt t t t t t� � �� � � �1   (1)

where yt = [yijt] denotes a column vector denoting the number of 
trees alive in species group i (i = 1, 2, 3, …, sp.) and diameter class j 
(j = 1, 2, 3, …, dc) at time t; yt is a column vector of space and time 
affected by forest dynamics and harvesting. ht = [hijt] denotes the 
number of trees logged in species group i and diameter class j at time 
t, if there is no logging at time t, ht = 0; the growth matrix Gt describes 
the growth or mortality of individual trees between t and t + 1; Rt 
represents the number of trees recruited between t and t + 1 for each 
species group in the smallest diameter class; and t indicates the 
random error vector.

The G and R matrices are:
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(2)

 aij bij mij� � �1  (3)

where aij is the probability that a tree in species group i and 
diameter class j is alive and still in the original diameter class j between 
t and t + 1; m and n denote the number of species groups and diameter 
classes, respectively; and bij represents the probability that a tree in 
species group i and diameter class j remains alive and grows to the 
next diameter class j + 1, where mij denotes the probability of tree 
mortality in species group i and diameter class j between t and t + 1. Ri 

TABLE 1 The main tree species surveyed in plots.

Species group Frequency Main species

OA 11.7%
Quercus mongolica

Acer pictum Thunb.

OS 29.1%
Alnus sibirica

Populus davidiana

OC 24.6%
Larix gmelinii

Abies nephrolepis

Birch 34.6%
Betula platyphylla

Betula dahurica Pall.

OA, OS, OC, and Brich represent 4 species classes of hardwoods, softwoods, coniferous and 
birch, respectively.
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is a time-, stand-structure-, and climate-related recruitment vector 
that shows the number of trees recruiting the smallest diameter class 
of each species between t and t + 1. The most important step for 
developing a transition matrix growth model is to define three 

submodels, i.e., aij, bij, and mij. The bij probability could be derived by 
dividing the annual tree diameter increment, gij, by the diameter class 
width. The functional expression for gij is as follows:
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A generalized least squares (GLS) method was used to estimate 
the parameters of the tree diameter increment model, and the 
parameters in the model were defined in Table 3. Because the recruited 
trees show a continuous, skewed, bounded, and non-normal pattern, 
it is truncated to positive and zero values (Tobin, 1958; Liang et al., 
2011). Therefore, the Tobit model was used to estimate the trees 
recruited for species group i from t to t + 1. The expression of the Tobit 
model is as follows:
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TABLE 2 Plot information statistics.

N (trees/ha)
DBH 
(cm)

Basal 
area 
(m2/
ha)

OA OS OC Birch

Mean 1060.78 1227.04 1244.49 1193.78 11.55 15.22

SD 545.69 622.21 835.45 730.56 6.98 6.79

Max 2516 3933 3933 3933 74.5 37.25

Min 83 0 0 0 5 0.036

Recruitment (trees/ha) Species 
diversity

Size 
diversityOA OS OC Birch

Mean 252.39 306.69 318.69 228.86 0.49 1.47

SD 426.82 692.37 358.21 312.93 0.29 0.35

Max 1883 1883 1716 1883 1.09 2.23

Min 0 0 0 0 0 0

FIGURE 1

Mean annual temperature (MAT) and mean annual precipitation (MAP) in the initial two inventories in Lesser Khingan Mountains of Heilongjiang 
province.
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The maximum likelihood (ML) method was used to estimate 
the Tobit recruitment equation parameter. Ω and ω denote the 
standard normal cumulative function and density function, 
respectively; σi is the standard deviation of the residuals νi obtained 
by estimating the parameter β. The annual probability of tree 
mortality was expressed using a probit model. The expression of the 
probit model is as follows:
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(7)

The maximum likelihood (ML) method was used for parameter 
estimation; where Mij is the probability of a tree in species i and 
diameter class j dying within T years; δs; ξij denote the parameter and 
error, respectively.

2.5 Model validation and comparison

In this study, the simulation results of the model were tested using 
a 10-fold cross-validation method under the R caret package, and then 
the root mean square error (RMSE), and coefficient of determination 
(R2) were calculated directly from the prediction errors as quantitative 
measures of accuracy, and then the total RMSE, MAE and R2 were 
calculated as follows. We also produced SCM (climate-spatial matrix 
growth model), CM (climate-sensitive matrix growth model) and FM 
(fixed parameter transition matrix) mode using the same plots. Firstly, 
the fit of these three models was compared using the Akaike 
information criterion (AIC) and the Bayesian information criterion 
(BIC). Second, the CM, the SCM with the addition of spatial structure 
parameters, the FM were subjected to the same cross-validation 

FIGURE 2

Temporal changes of MAT (°C) and MAP (mm) under future three RCPs in Lesser Khingan Mountains of Heilongjiang province.
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technique to compare the accuracy of these three models by 
calculating the RMSEs.
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RMSEj, MAEj and R2
j represent the RMSE, and R2 in the jth folder; 

where k is equal to 10; Yij is the ith observed value in the jth fold; Y ij


 
represents the ith estimated value in the jth fold; Yij is the mean 
observed value in the jth fold; nj denotes the number of observations 
in the jth fold.

2.6 Long-term prediction of major tree 
species to future climate change

To investigate the response of different tree species to future 
climate change in the area, two groups of four plots were selected at 
the same temperature with different precipitation and at the same 
precipitation with different temperatures. Changes in stand density, 
basal area, species diversity, and tree size diversity were simulated for 
three future climate change scenarios (RCP2.6, RCP4.5, and RCP8.5) 
to explore how different climate scenarios affect forest dynamics 
(2010–2100). Plot information is shown in Figure 3.

3 Results

3.1 Estimates of parameters

The estimated parameters of tree diameter increment model and 
the lack-of-fit statistics are provided in Tables 4, 5. The DBH size had 
a significant effect (p < 0.01) on the growth of Birch and OC, and DBH 
size was positively correlated with tree growth; that is, the larger the 
tree’s diameter at breast height, the faster the tree grew. DBH2 and B 
had significant effects (p < 0.01) on the growth of all tree species 
(groups), and they were negatively correlated with growth. BA had a 
significant effect (p < 0.01) on Birch, OA and OC and was negatively 
correlated with birch, OA, and OC growth. Dg had a significant effect 
on OS and OA growth (p < 0.01) and was positively correlated with 
tree growth; H1 had a significant effect on Birch, OA, and OC growth 
(p < 0.05) and was positively correlated with tree growth; H2 had a 
significant effect on birch and OA growth and was positively correlated 
with Birch growth and negatively correlated with OA growth 
(p < 0.01). ST, HT, and SLcosASP had significant effects on Birch, OS, 
and OC growth (p < 0.01), where ST and SLcosASP were negatively 
correlated with tree growth and HT was positively correlated with 
tree growth.

MAT had a significant effect on Birch, OS and OC growth 
(p < 0.01), where MAT was negatively correlated with Birch and OS 
growth, and positively correlated with the OC growth. For instance, 
the higher MAT is, the faster the growth of OC, and conversely, the 
higher MAT is, the slower the growth of Birch and OS. MAP had a 
significant effect on Birch and OC growth (p < 0.01), with MAP being 
negatively correlated with Birch and positively correlated with 
OC. The W-index, C-index and U-index had significant effects 
(p < 0.01) on all species groups, and the U-index and C-index were 
negatively correlated with tree growth, i.e., competition among trees 
in the stand inhibited tree diameter growth; the W-index was 

TABLE 3 Variable and definition.

Variables Definition

Variables in 

5 years

G Tree diameter growth during 5 years

R
Number of trees recruited to the 

minimum diameter class during 5 years

M
Mortality rate of a live tree during 5 years; 

1 for death tree and 0 for alive tree

Stand variables

DBH Diameter at breast height

DBH2 Square of diameter at breast height

N Number of trees per hectare

BA Stand basal area

Dg Average diameter at breast height of stand 

basal area

B Overall basal area of trees larger than the 

object tree

D Ratio of the diameter at breast height of 

the object tree to the maximum tree

Diversity 

variable

H1 Tree species diversity Shannon–Wiener 

indexH2 Tree size diversity

Site variables

Aspect Plot aspect; north as 0, west as 90, south as 

180 and east 270

Slope Plot slope

SLcosASP Slope*cos (Aspect) Combined effect 

of aspect and 

slope Stage 

(1976)
SLsinASP Slope*sin (Aspect)

HT Humus thickness

ST Soil thickness

Climate 

variables

MAT Mean annual temperature

MAP Mean annual precipitation

Spatial 

structure 

variables

M-index The mingling degree

Hui et al. (2019)

U-index
The degree of size 

differentiation

C-index Competition index

W-index The uniform angle 

index
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negatively correlated with tree growth because the clustered 
distribution of trees increases the pressure between trees and thus 
inhibits tree growth. The M-index, as a spatial structure index 
reflecting the diversity of tree species, had a significant effect on Birch 
and OS (p < 0.01) and was positively correlated with Birch and 
OS growth.

Based on the mortality model (Tables 6, 7), DBH, DBH2, and HT 
significantly affected the mortality of Birch and OS, and DBH was 
positively correlated with Birch and OS, i.e., the smaller the diameter 
at breast height size, the higher tree mortality; DBH2 and HT were 
negatively correlated with Birch and OS (p < 0.05). BA, Dg, B and H2 
significantly affected mortality for all tree species (groups) (p < 0.05), 
where Dg was negatively correlated with tree mortality, BA, B and H2 
positively correlated with tree mortality (p < 0.01; p < 0.05), and the 
greater BA, B and H2 were the higher tree mortality. H1 and SLsinASP 
significantly affected Birch, OS, and OC (p < 0.01), and they were 
negatively correlated with the mortality of OA. D had a significant 
positive correlation with the mortality of OS, OA and OC, i.e., the 
greater the D was, the higher tree mortality.

MAT significantly affected (p < 0.01) the mortality rates of all tree 
species (groups), and was negatively correlated with the mortality rate 
of OA and positively correlated with the mortality rate of the other 
three tree species (groups), i.e., the higher the MAT was, the higher 
tree mortality rates; MAP had a significant positive effect on the 

mortality rates of Birch and OA (p < 0.01), i.e., the higher the MAP 
was, the higher tree mortality rates. The W-index and U-index 
significantly affected (p < 0.01) the three species groups, Birch, OS, and 
OC. The U-index was positively correlated with the mortality rate of 
the three species, i.e., a greater U-index indicated a stronger 
competition among trees and higher tree mortality, while the W-index 
was positively correlated with the mortality rate of the three species.

The recruitment model in Tables 8, 9 shows that N significantly 
affected the recruitment and was negatively correlated with Birch, OA, 
and OC (p < 0.05). BA significantly affected the three tree species 
(groups), Birch, OA and OS, where BA was inversely correlated with 
the recruitment of Birch and OS (p < 0.01), indicating that the larger 
the basal area was, the smaller the recruitment, while BA was 
positively correlated with the recruitment of OA. Dg and ST 
significantly affected the recruitment of all species (groups) (p < 0.01), 
and they were negatively correlated with tree recruitment, i.e., the 
larger Dg and thicker soil thickness caused the lower number of 
recruits. H1 and H2 significantly affected recruitment in all species 
groups (p < 0.01), where H1 was positively correlated with recruitment 
of Birch only and negatively correlated with recruitment of the other 
three species; H2 was positively correlated with recruitment of Birch 
and OA and inversely correlated with recruitment of OS and 
OC. SLcosASP significantly affected the recruitment of all tree species 
groups (p < 0.01) and was negatively correlated with the recruitment 

FIGURE 3

Diameter distribution and species composition of CNFI plots numbers (A) 126, (B) 305, (C) 250 and (D) 297 by species group and diameter class.
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of Birch and positively correlated with the recruitment of the other 
three species.

MAT significantly affected the recruitment of Birch, OS and OC, 
and was negatively correlated with the recruitment of tree species 
groups, i.e., the higher the mean annual temperature, the lower 
number of recruits; MAP significantly affected all tree species groups 
and was inversely correlated with the recruitment of Birch and OA 
and positively correlated with the recruitment of OS and OC. In the 
SCM model, the M-index and W-index significantly affected Birch, 
OA, OS, and OC, and they were inversely proportional to the number 
of recruits, i.e., the greater the W-index and the more clustered the 
spatial distribution of trees, the lower number of recruits. The C-index 
was significantly negatively correlated with Birch recruitment; the 
U-index significantly affected Birch and OC recruitment, and was 

positively correlated with Birch recruitment and negatively correlated 
with OC.

3.2 Model validation and comparison

To investigate the effect of climate on predicted forest growth, 
we also produced FM. We used AIC and BIC to measure the fit of 
these two prediction models for CM and SCM (Table 10).

We found that SCM showed better performance than CM in 
predicting diameter increments, and SCM predicted slightly better 

TABLE 4 Increment model CM.

OA OS OC Birch

Intercept 1.27 × 100*** 1.50 × 10−1 −8.94 × 10–

1**

1.79 × 100***

DBH 8.26 × 10−3 2.72 × 10−3 3.09 × 10–2*** 1.74 × 10–

2***

DBH2 −2.50 × 10–

4***

−4.17 × 10–

4***

−7.01 × 10–

4***

−6.86 × 10–

4***

BA 2.25 × 10−3 7.24 × 10–3** 6.35 × 10–3** 7.82 × 10–

3***

H1 −2.91 × 10−2 1.37 × 10–1*** 6.72 × 10–2** 2.67 × 10–

1***

H2 −1.52 × 10–

1***

−4.70 × 10−2 3.09 × 10−2 9.52 × 10–

2***

Dg 1.10 × 10–2*** 4.19 × 10–2*** −3.01 × 10−3 1.72 × 10−3

B −2.51 × 10–

2***

−3.99 × 10–

2***

−2.83 × 10–

2***

−5.24 × 10–

2***

HT 3.04 × 10–3* 3.07 × 10–3*** 2.46 × 10–3** 1.99 × 10–

3***

D −1.60 × 10−1 −2.63 × 10−3 −8.32 × 10−2 2.11 × 10−2

ST 7.71 × 10−4 −3.14 × 10–

3***

−2.78 × 10–

3***

−1.68 × 10–

3***

MAP −3.83 × 10−4 8.79 × 10−4 3.10 × 10–3*** −1.21 × 10–

3***

MAT −2.67 × 10−2 −1.47 × 10–

1***

8.54 × 10–2*** −2.16 × 10–

1***

SLcosASP 1.90 × 10−3 −8.30 × 10–

3***

−1.08 × 10–

2***

−1.53 × 10–

2***

R2a 0.297 0.203 0.293 0.393

AIC 1152.66 3802.96 3779.23 4661.26

BIC 1232.56 3895.89 3870.67 4758.02

logLikb −561.33 −1886.48 −1874.62 −2315.63

Dfc 1,519 3,623 3,282 4,680

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
aR2 : Nagelkerke’s pseudo r-squared.
blogLik: log-likelihood value.
cDf: degrees of freedom in model fitting.

TABLE 5 Increment model SCM.

OA OS OC Birch

Intercept 1.30 × 100*** 3.32 × 10−1 −4.44 × 10−1 2.30 × 100***

DBH −1.55 × 10−3 −6.12 × 10−3 1.15 × 10–2* −1.32 × 10−3

DBH2 −1.27 × 10−4
−2.37 × 10–

4**

−4.16 × 10–

4***

−3.90 × 10–

4***

BA 2.53 × 10−3 5.91 × 10–3* 7.44 × 10–3*** 4.75 × 10–3**

H1 −2.32 × 10−2 1.39 × 10–1*** 6.63 × 10–2** 2.27 × 10–1***

H2

−1.51 × 10–

1***
−4.36 × 10−2 3.81 × 10−2 2.71 × 10−2

Dg 1.39 × 10–2*** 4.25 × 10–2*** 1.11 × 10−3 6.78 × 10–3**

B
−2.37 × 10–

2***

−3.67 × 10–

2***

−2.37 × 10–

2***

−4.61 × 10–

2***

HT 3.21 × 10–3* 2.94 × 10–3*** 2.09 × 10–3** 1.80 × 10–3***

D −1.32 × 10−1 4.93 × 10−3 −1.03 × 10−1 −4.98 × 10−2

ST 7.09 × 10−4
−2.85 × 10–

3***

−2.40 × 10–

3***

−1.24 × 10–

3***

MAP −3.34 × 10−4 7.31 × 10−4 2.71 × 10–3***
−1.67 × 10–

3***

MAT −4.05 × 10−2
−1.45 × 10–

1***
7.74 × 10–2**

−2.32 × 10–

1***

SLcosASP 1.41 × 10−3
−8.59 × 10–

3***

−1.05 × 10–

2***

−1.40 × 10–

2***

M-index −1.87 × 10−2
−9.11 × 10–

2***
−8.13 × 10−3 1.01 × 10–1***

U-index
−6.77 × 10–

2**

−8.85 × 10–

2***

−1.69 × 10–

1***

−2.50 × 10–

1***

C-index
−1.36 × 10–

2***

−4.49 × 10–

3***

−3.38 × 10–

2***

−1.49 × 10–

2***

W-index
−1.23 × 10–

1***

−8.85 × 10–

2***

−1.03 × 10–

1***

−1.93 × 10–

1***

R2a 0.321 0.211 0.332 0.449

AIC 1133.34 3784.94 3660.64 4388.02

BIC 1234.49 3902.63 3776.44 4510.59

logLikb −547.67 −1873.47 −1811.32 −2175.01

Dfc 1,515 3,619 3,278 4,676

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
aR2 : Nagelkerke’s pseudo r-squared.
blogLik: log-likelihood value.
cDf: degrees of freedom in model fitting.
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performance than CM in predicting recruitment except for OA; SCM 
showed better performance than CM in predicting mortality. The 
validation results of FM, CM and SCM models for four species of OA, 
OS, and OC and birch were finally obtained by 10-fold cross-test. 
Table 11 reports that the R2, RMSE, and MAE for the three models 
indicates slight variation among different species groups, the FM 
generally performs the best, yet the difference is very small (see 
Figure 4).

3.3 Long-term prediction of major tree 
species to future climate change

Figure 5 shows that the fixed parameter transition matrix model 
(FM) did not depend on stand and climate conditions, and the 
prediction of N showed a linear growth pattern. According to the three 
different RCPs, the CM-predicted N showed an increasing trend. After 
2040, the increasing trend of RCP8.5 was obvious, and the RCP8.5-
predicted N was higher than those of RCP2.6 and RCP4.5 over time 
for all three different scenarios; RCP2.6 leveled off after 2070. 
We found that the difference between the CM and SCM was small in 
the short-term projections, but there was a significant difference 
between the CM and SCM in the long-term projections for the next 
85 years under three different climate change scenarios; the number 
of trees (N) predicted by the two models showed a significant change 
(Figure  5). The N predicted by SCM under three different RCPs 
indicated that RCP2.6 showed a significant decreasing trend, except 
for 126, where RCP4.5 and RCP8.5 showed an increasing trend, with 
RCP8.5 having the fastest increase. Plots 126, 305, 250, and 297 all 
showed lower SCM-predicted N than CM-predicted N. Figure 6 shows 

that the basal area (BA) predicted by FM had a linear increasing 
pattern. In contrast, the CM-predicted BA, in general, showed a 
growing pattern and a large increase under RCP8.5 conditions, while 
the BA predicted under RCP2.6 showed a small increasing pattern. 
We found that for SCM, BA showed a flat or decreasing trend under 
RCP2.6 and an increasing trend under RCP8.5 and RCP4.5, with a 
significant increase under RCP8.5. This may be because changes in the 
spatial structure of the stand impact the trees’ sensitivity to 
climate change.

Tree species diversity (H1) predicted by FM was relatively stable 
over time, and RCP8.5 initially showed an increasing trend for H1 
predicted by CM under the three different climate scenarios but then 
stabilized. In contrast, RCP4.5 and RCP2.6 showed a small increasing 
pattern over 85 years, with only small differences between RCP4.5 and 
RCP2.6, except for plot 126 (Figure 7). Under RCP2.6 and RCP4.5, the 
CM-predicted tree species diversity (H1) for plots 126 and 305 tended 
to increase then decrease, while the SCM-predicted H1 showed a 
pattern of first decreasing, then increasing and then leveling off. In the 
RCP8 scenario, the CM-predicted H1 for plot 297 showed first an 
increase and then leveled off, while the SCM-predicted H1 showed first 
a small decrease and then leveled off.

In general, FM-predicted tree size diversity (H2) showed an 
increasing trend over 85 years (Figure 8). In contrast, under the three 
different climate change scenarios, H2 predicted by CM initially 
showed an increasing pattern, with a generally flattening pattern 
observed after 2080. Furthermore, the highest H2 predictions were 
observed under RCP2.6 for plots 126, 305, and 297. But, the two 
models in the three different scenarios predicted little variability in H2, 
and the tree size diversity trend was the same, with a gradual upward 
trend generally observed, which tended to level off after 2080.

TABLE 6 Mortality model CM.

OA OS OC Birch

Intercept −1.15 × 101*** −3.55 × 100*** −4.98 × 100*** −7.01 × 100***

DBH 2.75 × 10−2 1.25 × 10–1*** 8.54 × 10−3 8.37 × 10–2***

DBH2 8.40 × 10−5 −1.36 × 10–3*** 9.70 × 10−5 −7.51 × 10–4**

BA 1.94 × 10–1*** 1.34 × 10–1*** 9.14 × 10–2*** 1.32 × 10–1***

H1 −3.17 × 10−1 −2.50 × 10–1** 6.95 × 10–1*** −2.54 × 10–1**

H2 1.24 × 100*** 4.87 × 10–1*** 7.93 × 10–1*** 2.97 × 10–1**

Dg −5.22 × 10–2*** −1.67 × 10–1*** −3.12 × 10–2** −2.42 × 10–2*

B 2.37 × 10–1*** 1.81 × 10–1*** 1.08 × 10–1*** 1.68 × 10–1***

HT −3.43 × 10−4 −8.87 × 10–3** −6.26 × 10−4 −6.48 × 10–3**

D 2.25 × 100*** 8.45 × 10–1*** 1.73 × 100*** 5.01 × 10−1

ST −1.05 × 10–2** 1.30 × 10–2*** −2.76 × 10−3 3.01 × 10−3

MAP 1.40 × 10–2*** 2.38 × 10−3 2.29 × 10−3 6.97 × 10–3***

MAT −5.18 × 10–1*** 5.05 × 10–1*** 5.10 × 10–1*** 2.58 × 10–1**

SLsinASP 4.62 × 10−3 −2.30 × 10–2** 2.98 × 10–2** −4.71 × 10–2***

R2 0.2079 0.157 0.1014 0.094

AIC 875.4 2713.796 1642.485 2445.5

BIC 953.1 2804.313 1730.643 2538.40

logLik −423.7 −1342.898 −807.2423 −1208.7

Df 1,880 4,734 3,998 5,632

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
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TABLE 7 Mortality model SCM.

OA OS OC Birch

Intercept −1.00 × 101*** −4.34 × 100*** −4.93 × 100*** −6.81 × 100***

DBH −1.18 × 10−2 9.69 × 10–2*** −1.17 × 10−2 1.05 × 10–1***

DBH2 5.78 × 10−4 −9.40 × 10–4* 2.45 × 10−4 −1.13 × 10–3***

BA 1.58 × 10–1*** 1.07 × 10–1*** 7.74 × 10–2*** 1.30 × 10–1***

H1 −2.75 × 10−1 −2.99 × 10–1*** 4.95 × 10–1*** −2.20 × 10–1*

H2 1.04 × 100*** 3.26 × 10–1** 8.37 × 10–1*** 3.14 × 10–1**

Dg −3.86 × 10–2* −1.54 × 10–1*** −1.93 × 10−2 −2.90 × 10–2**

B 1.98 × 10–1*** 1.36 × 10–1*** 7.95 × 10–2*** 1.66 × 10–1***

HT −8.83 × 10−3 −8.42 × 10–3** −2.10 × 10−3 −6.09 × 10–3*

D 2.12 × 100*** 5.21 × 10−1 1.92 × 100*** 6.04 × 10–1*

ST −1.04 × 10–2** 1.13 × 10–2*** −2.68 × 10−3 3.27 × 10–3*

MAP 1.15 × 10–2*** 3.56 × 10–3* 1.93 × 10−3 6.66 × 10–3***

MAT −2.60 × 10−1 5.53 × 10–1*** 4.93 × 10–1*** 2.55 × 10–1**

SLsinASP −4.29 × 10−3 −1.56 × 10−2 3.20 × 10–2** −4.86 × 10–2***

M-index 9.04 × 10–1*** 1.20 × 100*** 6.79 × 10–1*** 7.61 × 10−3

U-index −1.62 × 10−1 2.79 × 10–1*** 2.89 × 10–1** 2.39 × 10–1**

W-index −6.70 × 10−2 4.35 × 10–1*** 4.31 × 10–1*** 6.82 × 10–1***

C-index 2.81 × 10–2** −2.12 × 10−3 1.22 × 10−2 −1.82 × 10−3

R2 0.2550 0.248 0.138 0.1087

AIC 842.41 2495.519 1595.256 2422.4

BIC 942.24 2611.898 1708.603 2541.8

logLik −403.20 −1229.76 −779.628 −1193.1

Df 1,876 4,730 3,994 5,628

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.

TABLE 8 Recruitment model CM.

OA OS OC Birch

Intercept 1.42 × 102*** −1.10 × 102*** 1.24 × 102*** 7.63 × 102***

N −2.50 × 10–2*** −3.78 × 10−4 −1.24 × 10–3** −1.78 × 102**

BA 3.71 × 10–1*** −5.49 × 10–1*** 2.21 × 10−3 −1.77 × 101***

H1 −1.72 × 101*** −1.18 × 101*** −1.40 × 101*** 4.71 × 101***

H2 4.01 × 100*** −3.66 × 100*** −1.34 × 101*** 3.72 × 101***

Dg −4.25 × 100*** −3.60 × 10–1*** −1.38 × 100*** −1.53 × 101***

ST −9.97 × 10–2** −3.02 × 10–1*** −2.07 × 10–1*** −1.37 × 100***

HT −7.72 × 10–1*** 2.44 × 10–1*** 1.53 × 10–1*** 3.19 × 100***

MAP −5.71 × 10–2** 2.44 × 10–1*** −9.20 × 10–2*** −3.30 × 10–1*

MAT −1.08 × 100 −5.30 × 100*** −1.24 × 10–3*** −1.57 × 102***

SLcosASP 1.27 × 100*** 1.83 × 10–1*** 4.94 × 10–1*** −7.67 × 100***

logSigmaa 2.78 × 100*** 2.73 × 100*** 2.74 × 100*** 5.11 × 100***

R2 0.4857 0.325 0.4046 0.4335

AIC 12657.87 33638.53 25119.06 53873.42

BIC 12724.42 33716.11 25194.62 53953.08

logLik −6316.933 −16807.26 −12547.53 −26924.71

n 3,776 9,484 8,012 11,280

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.alogSigma: log of the standard deviation of residuals.
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4 Discussion

The mean annual temperature (MAT) had a significant negative 
effect on the Birch and OS diameter growth in this study, while it had 
a significant positive effect on OC. However, there is no uniform 
conclusion on whether tree growth responds positively or negatively 
to temperature. Related studies have shown that average temperatures 
have a significant positive effect on diameter growth (Foster et al., 

2016; Burkhart et  al., 2018). Some studies have also shown that 
elevated temperatures inhibit tree growth, and elevated temperatures 
are an important factor in sudden droughts if the increase in 
temperature is not accompanied by an increase in precipitation. 
Additionally, the temperature has an important effect on seedling 
growth, as increasing temperature intensifies water evaporation and 
reduces the soil water content, thus inhibiting tree growth (Pillet 
et  al., 2017; Davis et  al., 2019). Similar results were obtained in 
our study.

TABLE 9 Recruitment model SCM.

OA OS OC Birch

Intercept 1.30 × 102*** −9.88 × 101*** 1.04 × 102*** 8.23 × 102***

N −3.43 × 10–3*** 1.60 × 10–3*** 3.08 × 10–3*** 4.81 × 10–2***

BA −1.04 × 100*** −6.05 × 10 + *** −3.66 × 10–1*** −2.30 × 101***

H1 −1.60 × 101*** −1.18 × 101*** −1.13 × 101*** 4.74 × 101***

H2 −8.12 × 100*** −4.09 × 100*** −1.62 × 101*** 1.86 × 101*

ST −6.56 × 10–2* −2.88 × 10–1*** −1.87 × 101*** −1.39 × 100***

HT −5.74 × 10–1*** 2.37 × 10–1*** 1.57 × 10–1*** 3.11 × 100***

MAP −9.55 × 10–2*** 2.23 × 10–1*** −7.41 × 10−2*** −5.80 × 10–1***

MAT −3.00 × 100* −5.27 × 100*** −1.37 × 101*** −1.72 × 102***

SLcosASP 1.06 × 100*** 1.80 × 10–1*** 4.68 × 10–1*** −7.31 × 100***

M-index −1.14 × 101*** −4.21 × 100*** −1.42 × 100* −5.85 × 101***

U-index −2.68 × 10−1 −3.22 × 10−1 −2.22 × 100** 2.32 × 101***

W-index −8.86 × 100*** −4.12 × 100*** −1.47 × 101*** −9.81 × 101***

C-index −3.47 × 10–1** −5.90 × 10−3 1.29 × 10−1 −3.88 × 100***

logSigmaa 2.82 × 100*** 2.72 × 100*** 2.71 × 100*** 5.10 × 100***

R2 0.4669 0.34122 0.4335 0.44525

AIC 12731.76 33532.11 24925.53 53762.08

BIC 12814.96 33629.1 25019.98 53861.66

logLik −6350.88 −16751.06 −12447.76 −26866.04

n 3,773 9,481 8,009 11,277

Level of significance: *p < 0.10, **p < 0.05, and ***p < 0.01.
alogSigma: log of the standard deviation of residuals.

TABLE 10 Model fitting results comparing AIC and BIC.

Model OA OS OC Birch

AIC BIC AIC BIC AIC BIC AIC BIC

Diameter increment

CM 1152.66 1232.56 3802.96 3895.89 3779.23 3870.67 4661.26 4758.02

SCM 1133.34 1234.49 3784.94 3902.63 3660.64 3776.44 4388.02 4510.59

Recruitment

CM 12657.8 12724.4 33638.5 33716.1 25119.0 25194.6 53873.4 31563.9

SCM 12731.7 12814.9 33532.1 33629.1 24925.5 24703.5 53762.0 314472.5

Mortality

CM 875.4 953.1 2713.79 2804.31 1642.48 1730.64 2445.5 2538.4

SCM 842.4 942.2 2495.51 2611.89 1595.25 1708.60 2422.4 2541.8

The bold values provided the best values.
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FIGURE 4

Basal area of different diameter for each tree species group plots. Average predicted and observed basal area by diameter class of (A) OA, (B) OS, 
(C) OC, (D) Birch.

MAT was significantly and positively correlated with Birch, OS, 
and OC mortality but negatively correlated with OA mortality. 
Temperature and precipitation lead to increased tree mortality, 
especially in semihumid and semiarid regions, where increased 
temperature increases tree mortality (Park et al., 2012; Dai, 2013).

In addition to temperature, precipitation is also a key factor 
affecting forest growth. The increase in precipitation contributed to 
the diameter growth of the stands during the growing season (Lie 
et al., 2018; Wise and Dannenberg, 2022), which is consistent with 
the significant positive correlation between MAP and OC, while 
MAP was significantly negatively correlated with birch, indicating 
that precipitation may not be a limiting factor for this species group. 
Additionally, the effect of precipitation on forest biomass is related to 
forest type, and tree species in different regions do not respond to 
climate change in the same way (Qiao et al., 2022). Mean annual 
precipitation (MAP) in this study was significantly positively 
correlated with Birch and OA mortality, and recruitment was 

significantly negatively correlated. As precipitation increased, stand 
diameter and density increased, leading to increased competitive 
pressure, which reduced tree seedling survival, resulting in 
higher mortality.

An increase in the M-index, a parameter reflecting the 
characteristics of species diversity at the scale of adjacent tree spatial 
units, promotes stand growth. The results of this paper corroborated 
this pattern (Steckel et al., 2020), where elevated M-index promotes 
birch diameter growth while inhibiting OS and OC diameter growth, 
resulting in increased OA, OS, and OC mortality and decreased 
recruitment. The U-index and C-index reflect the competition 
between trees, competitive relationships among trees affect the forests’ 
response to climate change and that the sensitivity of competition is 
influenced by temperature and precipitation. At the same competition 
level, increasing temperature and precipitation promote competition 
between trees (Ruiz-Benito et al., 2014; Reich et al., 2018). The overall 
decrease in tree diameter growth with increasing U-index and 
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C-index, stand mortality increases with increasing U-index and 
C-index (Lei et al., 2009; Xiang et al., 2016). The U-index and C-index 
were significantly negatively correlated with the diameter growth of 

all tree species (groups) and significantly positively correlated with 
tree mortality and recruitment. Increasing the U-index decreased the 
diameter growth of the trees to a much greater extent than decreasing 
the mixing degree. Generally, when the stand W-index is larger, it 
indicates a higher degree of aggregation among trees, a higher 
competitive pressure, which negatively affects the tree growth (Hisano 
et al., 2019).

Tree species diversity (H1) was positively correlated with Birch, 
OS, and OC diameter growth, indicating that higher species 
diversity promotes tree growth. Many studies have shown that 
increasing the number of tree species changes the structure of 
forests so that differences in access to light and spatial resources by 
multiple mixed species result in enhanced ecological niche 
differences, which in turn have a positive impact on species 
diversity (Loreau and Hector, 2001;Turnbull et al., 2016; Ingram 
et al., 2018; Vargas-Larreta et al., 2021). H1 was negatively correlated 
with the number of recruits and mortality in Birch and OA. Tree 
species diversity (H1) harms recruitment and mortality.

In this study, tree size diversity (H2) was positively correlated with 
diameter growth in Birch, indicating that increasing tree size diversity 
can promote tree growth and recruitment. H2 was positively correlated 
with the mortality of all tree species. Other studies have reached the 
same conclusion changes (Antonio et al., 2016; Fichtner et al., 2018). 
However, there are also relevant studies showing that tree size diversity 
leads to reduced diameter growth (Charles et al., 2004; Wright et al., 
2014), and a similar phenomenon was found in our study, where tree 

TABLE 11 Results of 10-fold cross-validation.

Species Model R2 RMSE MAE

OA

CM 0.797 0.2509 0.1259

SCM 0.776 0.2465 0.1214

FM 0.798 0.2276 0.1102

OS

CM 0.817 0.2862 0.1640

SCM 0.825 0.2753 0.1527

FM 0.817 0.2647 0.1419

OC

CM 0.857 0.2294 0.1045

SCM 0.858 0.2275 0.1027

FM 0.883 0.2063 0.0889

Birch

CM 0.789 0.2376 0.1122

SCM 0.814 0.2366 0.1224

FM 0.894 0.2177 0.1062

All

CM 0.830 0.2286 0.830

SCM 0.846 0.2167 0.846

FM 0.876 0.2039 0.876

the bold values provided the best values.

FIGURE 5

Plot numbers (A) 126, (B) 305, (C) 250 and (D) 297 tree numbers change under three different RCPs (2010–2100).
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size diversity (H2) was negatively correlated with the diameter growth 
of OS and with the number of OS and OC recruits. This indicates that 
tree size diversity harms tree growth and recruitment, that tree size 
diversity influences tree distribution patterns and thus affects tree 
growth and recruitment (Wang et al., 2016).

The predicted N under the three different RCPs showed a slight 
decreasing or increasing trend, indicating that drought stress caused 
by temperature increase could be mitigated by increasing precipitation 
under future climate change. The increase under RCP8.5 was greater 
than that under RCP4.5 and RCP2.6 under the three RCPs, following 
the same trend as the future temperature increase. While the predicted 
stand densities under RCP2.6 tended to decrease significantly under 
the competition-climate interaction, the stand densities increased with 
increasing emissions. The increase in emissions will lead to a 
significant increase in stand density and basal area, and a high stand 
density will reduce the economic value of the forest (Liang and Picard, 
2013; Zhang et al., 2022). Basal area, on the other hand, tended to 
increase slightly between all three RCPs and did not vary significantly 
between the three RCPs, with RCP8.5 being slightly larger than 
RCP4.5 and RCP2.6. Due to the interaction between competition and 
climate, the predicted basal area under RCP2.6 is stable or slightly 
decreasing. This suggests that the sensitivity of trees to climate is 
influenced by changes in the spatial structure of stands.

The atmospheric CO2 concentration was positively correlated with 
MAT and MAP. Predicted species diversity under these three climate 
scenarios first trended upward and then downward, suggesting that 
species diversity may be negatively affected by climate change (Yang 
et al., 2006). The long-term predicted size diversity under the three 
RCPs had the same trend as the predicted species diversity trends, 
suggesting that climate change (increased CO2) can reduce tree size 
diversity and that the reduction trend depends on emissions (Du et al., 
2020; Zhang et  al., 2022). Competition among trees (C-index and 
U-index) affects the forests’ response to climate change, and the 
competition-tree climate sensitivity relationship, which gradually 
increases with increasing stand density and decreasing temperature and 
precipitation, shows that climate and competition together affect tree 
growth, basal area, etc. (Liang et al., 2017). The M-index and U-index, 
however, have the most significant effects on species diversity, while the 
spatial distribution pattern of trees also directly affects diameter growth, 
seedling growth, and survival (Wang et al., 2016).

5 Conclusion

We introduced the stand spatial structure parameters and climate 
variables developed a climate-spatial transition matrix growth model 

FIGURE 6

Plot numbers (A) 126, (B) 305, (C) 250, and (D) 297 Basal area change under three different RCPs (2010–2100).
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(SCM) to forecast the dynamics major tree species in Lesser Khingan 
Mountains under the three simulated future climate scenarios. In 
order to compare and analyze the prediction effects of the model, 
we  conducted a comparative analysis with a fixed probability 
transition matrix model (FM) and a climate-sensitive transition 
matrix growth model (CM).

The results show that the 10-fold cross validation indicated 
minimal differences among the three predictive models. However, for 
long-term projections, the climate-spatial model outperformed the 
fixed probability and climate models, providing more reliable forecasts 
under the three different representative concentration pathways 
(RCPs). Therefore, the FM model we established is only suitable for 
short-term predictions (5 years) when climate and site conditions 
remain stable; it is not suitable for long-term projections. But the 
climate-sensitive transition matrix growth model will make a 
substantial contribution to long-term projections of major tree species 
in Lesser Khingan forests, which provide a theoretical basis for forest 
management in response to climate change and stand spatial structure 
adjustment under climate change. Meanwhile, the introduction of the 
interaction between stand spatial structure and climate can improve 
the model estimation accuracy, but the interaction effect of different 
stand spatial structure indicators and climate factor composition is not 
consistent and can be explored in future studies.
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