
ffgc-06-1134942 February 22, 2023 Time: 15:26 # 1

TYPE Original Research
PUBLISHED 28 February 2023
DOI 10.3389/ffgc.2023.1134942

OPEN ACCESS

EDITED BY

Giuseppe Ruello,
University of Naples Federico II, Italy

REVIEWED BY

María Menéndez-Miguélez,
Instituto Nacional de Investigación y
Tecnología Agroalimentaria (INIA), Spain
Donato Amitrano,
Italian Aerospace Research Centre, Italy
Francescopaolo Sica,
Munich University of the Federal Armed Forces,
Germany

*CORRESPONDENCE

Yan Liu
liuy@zucc.edu.cn

SPECIALTY SECTION

This article was submitted to
Fire and Forests,
a section of the journal
Frontiers in Forests and Global Change

RECEIVED 31 December 2022
ACCEPTED 13 February 2023
PUBLISHED 28 February 2023

CITATION

Zheng H, Dembélé S, Wu Y, Liu Y, Chen H and
Zhang Q (2023) A lightweight algorithm
capable of accurately identifying forest fires
from UAV remote sensing imagery.
Front. For. Glob. Change 6:1134942.
doi: 10.3389/ffgc.2023.1134942

COPYRIGHT

© 2023 Zheng, Dembélé, Wu, Liu, Chen and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

A lightweight algorithm capable
of accurately identifying forest
fires from UAV remote sensing
imagery
Hongtao Zheng1, Sounkalo Dembélé2, Yongxin Wu2, Yan Liu1*,
Hongli Chen1,3 and Qiujie Zhang1,4

1School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, China,
2FEMTO-ST, University Bourgogne Franche-Comté, CNRS, Besançon, France, 3School of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China, 4Zhejiang Dahua Technology
Co., Ltd., Hangzhou, China

Forest fires often have a devastating effect on the planet’s ecology. Accurate and

rapid monitoring of forest fires has therefore become a major focus of current

research. Considering that manual monitoring is often inefficient, UAV-based

remote sensing fire monitoring algorithms based on deep learning are widely

studied and used. In UAV monitoring, the size of the flames is very small and

potentially heavily obscured by trees, so the algorithm is limited in the amount

of valid information it can extract. If we were to increase the ability of the

algorithm to extract valid information simply by increasing the complexity of

the algorithm, then the algorithm would run much slower, ultimately reducing

the value of the algorithm to the application. To achieve a breakthrough in both

algorithm speed and accuracy, this manuscript proposes a two-stage recognition

method that combines the novel YOLO algorithm (FireYOLO) with Real-ESRGAN.

Firstly, as regards the structure of the FireYOLO algorithm, “the backbone part

adopts GhostNet and introduces a dynamic convolutional structure, which im-

proves the information extraction capability of the morphologically variable flame

while greatly reducing the computational effort; the neck part introduces a novel

cross-layer connected, two-branch Feature Pyramid Networks (FPN) structure,

which greatly improves the information extraction capability of small targets and

reduces the loss in the information transmission process; the head embeds the

attention-guided module (ESNet) proposed in this paper, which enhances the

attention capability of small targets”. Secondly, the flame region recognized by

FireYOLO is input into Real-ESRGAN after a series of cropping and stitching

operations to enhance the clarity, and then the enhanced image is recognized for

the second time with FireYOLO, and, finally, the recognition result is overwritten

back into the original image. Our experiments show that the algorithms in this

paper run very well on both PC-based and embedded devices, adapting very well

to situations where they are obscured by trees as well as changes in lighting. The

overall recognition speed of Jeston Xavier NX is about 20.67 FPS (latency-free

real-time inference), which is 21.09% higher than the AP of YOLOv5x, and are

one of the best performance fire detection algorithm with excellent application

prospects.
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1. Introduction

Forests are potent regulators of the Earth’s ecosystem
(Mitchard, 2018; De Frenne et al., 2019). For example, tropical
rainforests (Brancalion et al., 2019) are known as the lungs and
green heart of the Earth, and are no less important to the
planet than the lungs and heart are to people. Fires can easily
cause irreparable damage to the environment and ecology, as
exemplified by the Amazon forest fires in 2019 (Lizundia-Loiola
et al., 2020) and the Australian forest fires in 2019–2020 (Ward
et al., 2020), which caused very significant ecological damage. The
aftermath of the fires is a reminder of ecological fragility (Barbosa
et al., 2018). This has led to a growing interest in forest fire
monitoring. Forest fire prediction (de Santana et al., 2021) and
identification are critical research issues, and the most popular fire
detection algorithms mainly include traditional manual detection,
and sensor-based and machine vision-related algorithms. Among
them, sensor-based detection systems (Bouabdellah et al., 2013;
Sasmita et al., 2018; Sarwar et al., 2019; Cui, 2020) are more effective
in smaller indoor spaces, and standard sensors include smoke
sensors and temperature sensors. However, this approach has a
limited detection distance, high installation costs, and complex
communication and power supply networking problems.

Deep learning-based algorithms are widely used in the field
of fire monitoring (Luo et al., 2018; Shen et al., 2018; Harkat
et al., 2020; Li and Zhao, 2020; Wang et al., 2021; Xu et al.,
2021; Zheng et al., 2022). These neural networks include some
classical classification networks (Simonyan and Zisserman, 2015;
Szegedy, 2015; He et al., 2016; Krizhevsky et al., 2017) and detection
networks (Liu et al., 2016; Ren et al., 2017; Zhang et al., 2018).
Yuan et al. (2019) constructed deep multiscale neural networks
with feature extraction layers consisting of multiple parallel
convolutional layers and realized multiscale feature extraction
through multiscale convolutional kernels to solve the problems
caused by light and scale invariance. They achieved high accuracy
but using multiple convolutional blocks will inevitably increase the
model complexity and make it difficult to deploy. Han et al. (2017)
used background subtractive motion detection based on Gaussian
mixture model combined with RGB and HSV multi-color features
to detect flame elements in video sequences. Zhan et al. (2022)
proposed a smoke detection algorithm based on the ARGNet
structure, which combines recursive feature pyramids and ARGNet
and can effectively cope with the problem of transparent smoke
and inconspicuous edges. Xue et al. (2022) proposed an improved
forest fire small-target detection model based on YOLOv5 with an
improved backbone layer and embedded SPPFP module and added
CBAM Net in YOLOv5 to improve the recognition of forest fire
small-targets. These algorithms have some advantages in terms of
accuracy or inference speed, but they mostly do not work perfectly
on small embedded devices and these algorithms are not well-
solved for problems such as illumination changes and foreign object
occlusion.

Therefore, the aim of this paper is to propose a remote sensing
fire detection algorithm with low computational complexity and
high detection accuracy. Considering the obvious advantages of
the YOLO family of algorithms (Redmon et al., 2016; Redmon
and Farhadi, 2017, 2018; Bochkovskiy et al., 2020) in terms of
structural plasticity and good adaptability to small embedded and

other hardware devices, this paper proposes a new target detection
algorithm, FireYOLO, by mimicking the YOLOv4 structure. In the
backbone network, in order to improve the ability of the algorithm
to detect multi-scale targets while significantly reducing the overall
computational complexity of the algorithm, this paper proposes
the GhostNet (Han et al., 2020) structure with embedded dynamic
convolution and replaces the original CSPDarknet53 structure; in
the neck structure, in order to improve the ability of the algorithm
to detect multi-scale targets without increasing the complexity of
the algorithm, this paper proposes a two-branch FPN (Lin et al.,
2017) structure, which can increase the low sampling without
increasing the depth of the structure. In the head network, we
propose a two-branch parallel attention-guided module (ESNet)
based on the Efficient Channel Attention [ECA (Wang et al., 2020)]
and Spatial Group Enhancement [SGE (Li et al., 2019)] modules,
and embed them in the head network to make the algorithm more
focused on the valid information in the image. The optimization
effects described above are mainly derived from assumptions made
as a result of the theoretical analysis of these structures. Whether
these structures lead to corresponding performance improvements
in the algorithm, and whether they are compatible rather than
exclusive with the underlying structure of YOLOv4, are questions
that require subsequent experimental verification.

It should be noted that in UAV remote sensing images of objects
from such a distance, the shape and outline of the target may be
blurred, but the color is still largely discernible. This also makes
the algorithm more concerned with color differences in model
training and more sensitive to the color features of flames in the
recognition process, which ultimately leads to a sharp increase
in the false alarm rate of the algorithm for flames in remotely
sensed imagery (the algorithm has a high probability of identifying
targets with colors similar to flames as flames), but this situation
also reduces the missing detection rate of the algorithm to some
extent. Therefore, we also need to reduce the false alarm rate of
the FireYOLO algorithm for remotely sensed images by using a
class of algorithms that can enhance the effective information of
local features. Therefore, in this paper, we choose to use the Real-
ESRGAN (Wang et al., 2021) algorithm to improve the clarity of
suspected fire areas in remotely sensed images. The above analytical
results are still based on the structure of the algorithm and need to
be demonstrated in subsequent experiments.

The details of how FireYOLO and Real-ESRGAN work together
is that FireYOLO first identifies the image, then passes any areas of
the image suspected of being flames to the Real-ESRGAN algorithm
to improve the clarity of those areas, and finally uses FireYOLO
to identify those areas a second time. However, a weakness in
the operation of FireYOLO+Real-ESRGAN (the algorithm in this
paper) is that if FireYOLO does not identify the flame the first
time, then Real-ESRGAN will not be able to make the missed flame
region clear, and then FireYOLO will not be able to identify the
flame a second time. In other words, if FireYOLO cannot identify
a flame in a remotely sensed image, then there is no way for the
algorithm in this paper to identify it. Therefore, the miss rate of
FireYOLO will directly affect the accuracy of the algorithm in this
paper. However, in the previous paragraph we have analysed that
the detection rate of FireYOLO will remain relatively low due to
the high sensitivity of the algorithm to color. In terms of overall
performance, the accuracy of the algorithm in this paper will also
be very little affected by the missing detection rate as long as the
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leakage rate of FireYOLO is low enough. We then still need to verify
the above analysis through experiments.

In summary, based on the theoretical analysis, we have every
reason to believe that the algorithm in this paper is a UAV remote
sensing fire detection algorithm that is highly accurate and, due to
its low computational complexity, stable and fast on platforms with
low computational power. In the next section we will focus on the
structural principles of these algorithms.

In “section 2 Materials and methods” we will focus on the
structural principles of the algorithm. In “section 3 Experimental
setting” we conduct experiments to verify the validity of the
theoretical analysis of the structure above and to evaluate the
performance of our algorithm, and we also analyse and discuss
various experimental phenomena. In “section 5 Conclusion” we
summarize the conclusions drawn from the experiments.

2. Materials and methods

To further improve the real-time performance of deep
learning-based forest fire detection algorithms and the detection
performance of small target fires at long distances, a two-
step recognition method combining FireYOLO and ESRGAN
Net is proposed in this paper. First, regarding the structure
of the FireYOLO algorithm, GhostNet with embedded dynamic
convolution is used in the backbone part to remove redundant
features of complex backgrounds, thus imparting the ability to
recognize multi-featured flame patterns while greatly reducing the
computational effort. A novel FPN two-branch structure is used in
the neck to increase the feature pyramid level to cover the target
scale, while using cross-layer connections to reduce the distance of
feature transfer and reduce the loss of effective information. The
head network is embedded with a novel attention-guided module
(ESNet), designed in this project to enhance the ability to focus on
small targets. Next, the locations of suspected small fires initially
identified by FireYOLO are cropped out and fed into the enhanced
super-resolution-generative adversarial Network (Real-ESRGAN)
to enhance the clarity of small fires, and then the clarity-enhanced
images are identified a second time with FireYOLO, and, finally,
more accurate small target identification results are output. Our
algorithm are able to run stably and quickly on high performance
devices. Finally, to verify the suitability of the algorithm, we
installed it on a Jetson Xavier NX (a small embedded device with
less computing power) and the overall recognition speed was about
20.67 FPS (real-time inference), which is 21.09% higher than the
AP (Average Precision) of the YOLOv5x.

To facilitate understanding of Figure 1, we will further analyze
its constitutive logic. Figure 1A shows three main improvements
over the original YOLOv4 algorithm, where Figure 1Aa shows
the head structure of the FireYOLO algorithm, which uses the
GhostNet algorithm to embed dynamic convolution, the exact
structure of which is shown in Figure 1B. Figure 1Ab shows
the neck structure of FireYOLO, which consists of the SPP (He
et al., 2015) and the two-branch FPN structure; Figure 1Ac
shows the head structure of FireYOLO embedded with the
ESNet structure proposed in this paper, represented as ES in the
figure, as shown in Figure 1Ca, while the Attention-guide layer
structure of Figure 1Ca is shown in Figure 1Cb. Figure 1D

shows the network structure of the Real-ESRGAN algorithm. These
algorithm structures were run using the logic and sequence of
Figure 1E.

(1) Figure 2 gives a more visual representation of the workflow
of Figure 1E. The algorithm flow in this figure follows the
black arrows step by step, while the blue bidirectional arrows
indicate that the upper and lower diagrams are viewed in
comparison. Observing these two diagrams we can see that the
confidence level of the flame target in the second recognition
of FireYOLO is much higher than the first recognition. The
detailed flow of the entire algorithm is shown below: The
first step is to capture live images of the forest remotely via
surveillance cameras or drones;

(2) The images are scaled frame made by-frame to a size of
408 × 408, and then input into FireYOLO’s GhostNet
backbone feature extraction layer;

(3) The features with different semantic information contents are
stitched by SPP and improved FPN to obtain four scales of
104× 104, 52× 52, 26× 26, and 13× 13;

(4) The four scales are passed through a network embedded in the
ES Net, resulting in an initial recognition region. When the
confidence level of the region is below a set threshold or the
size of the region is small enough, the region is cropped down;

(5) The cropped multiple targets are randomly stitched together,
and the photo gaps that appear after stitching are filled with
white to finally form a rectangular photo;

(6) The suspected small target is input into the super-resolution
algorithm (Real-ESRGAN) for feature enhancement;

(7) We then re-import the enhanced image into FireYOLO for
target recognition and over-lay the final recognition result
back onto the original small-area recognition result.

2.1. Introducing dynamic convolution at
GhostNet

GhostNet is used as the backbone extraction network for
FireYOLO, considering the dual balance of real time and accuracy,
GhostNet can reasonably utilize the redundancy of feature maps
and obtain better performance in terms of accuracy and latency
than other lightweight networks. It can achieve excellent algorithm
performance on embedded devices with ARM architecture such as
Jeston Xavier NX.

GhostNet is composed of the Ghost module, which consists
of ordinary convolution and cheap operations. The m original
feature maps are generated by one convolution, and these
original feature maps are transformed in two parts: one part
uses 1 × 1 ordinary convolution for identity to generate m
necessary feature concentrations, and the other part uses depth-
separable convolution blocks for layer-by-layer convolution to
linearly transform and stack the m original feature maps to generate
s Ghost feature maps. The m feature maps after identity are stacked
with the s Ghost feature maps to obtain n new feature maps,
n = m× s.

Assuming that the Ghost module contains an intrinsic
feature map and m · (s− 1) = n

s · (s− 1) linear transformation
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FIGURE 1

The operational logic and algorithmic structure of our algorithm. Panel (E) shows the overall framework of the algorithm in this paper. Panel (A)
shows the overall structure of FireYOLO in (E); (D) shows the structure of Real-ESRGAN in (E); while (B) shows the structure of the Ghost module in
the backbone of the FireYOLO algorithm, which embeds dynamic convolution on top of the original Ghost module; and (C) shows the structure of
the ESNet embedded in the head network of the FireYOLO algorithm.

operations, the kernel of each operation should be d × d. The
theoretical speedup ratio for the Ghost module to upgrade ordinary
convolution is:

RS =
n · w

′

· h
′

· c · k · k
n
s · w

′
· h′ · c · k · k+ (s− 1) · ns · w

′
· h′ · c · d · d

=
c · k · k

1
s · c · k · k+ (s− 1) · 1

s · d · d
≈

c · s
c+ s− 1

≈ s (1)

where w
′

and h
′

are the width and height of the output
image, respectively, c is the number of input channels to the
convolution kernel.

Considering that the algorithm in this paper is aimed at fire
detection algorithm in remote sensing images, we have improved
GhostNet to some extent. Specifically, we introduce dynamic
convolution to improve the Ghost module so that it can adapt to
the complex and variable morphology of flames.
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FIGURE 2

The detailed flow of the algorithm in this paper. The seven numbers in the diagram correspond to the seven stages described above.

Our inspiration for introducing dynamic convolution to make
some improvements to GhostNet’s Ghost module comes from
the literature (Zhang et al., 2022). The dynamic convolution is
calculated by weighting four convolution kernels with the same
dimension, and the four convolution kernel weights are calculated
by the input features. The dynamic convolution calculation process
is shown in Equation 2, and the flow is shown in Figure 1B.

out(x) = α((∂1k1 + ∂2k2 + ∂3k3 + ∂4k4) × x) (2)

where αi is the input sample-dependent weighting parameter, α

is the activation function, ki denotes each convolution kernel, ×
denotes the convolution operation. αi is obtained by the four
calculations in the dashed box in Figure 1B, which is shown in
Equation 3.

∂i(x) = Sigmoid (GAP(x)R) (3)

where R denotes the matrix that maps the input dimensions to the
number of convolutional kernels. The Sigmoid function represents
the weights of the four convolution kernels generated, and the GAP
represents the compression of the feature layers to obtain global
spatial information. Dynamic convolution increases the width
and depth of the network, which improves the feature extraction
capability of the algorithm by combining the information obtained
from multiple convolutional kernels.

2.2. Improved FPN structure (two-branch
FPN structure)

Increasing the number of FPN layers on top of the three-
layer FPN structure can increase the throughput of low-sampling
multiplicity features to the detection head, while increasing the
transmission distance of high-sampling multiplicity features by
increasing the depth of the FPN structure. To further reduce
the negative impact of increased feature transmission distance,
an improved FPN structure is proposed, namely, the two-branch
FPN structure. This structure increases the output channels of the
low-sampling multiplier features without increasing the depth of

the FPN structure. The added branches are consistent with the
structure and parameters of the largest branch in the original
FPN, which improves the feature transfer capability of the FPN
and enables the network detection head to acquire more scale
features. Figure 3A shows the results of the original neck network
in YOLOv4. The structure of the improved FPN based on YOLOv4
is shown in Figure 3B. The output of each of these levels
of characteristics can be demonstrated more intuitively using
qualitative Equations 4–7.

Z
′

4 = Z4 (4)

Z
′

3 = h3(Z3) (5)

Z
′

2 = h2(Z2,C2) (6)

Z
′

1 = h1(Z1,C1) (7)

where Z
′

1,Z
′

2,Z
′

3,Z
′

4 are the four feature outputs of the two-
branch FPN, h1, h2, and h3 represent the three convolutional
blocks A, B, and C in Figure 3B that aggregate and perform
convolutional operations on the input information, Z1, Z2, and
Z3 represent the information inputs of these three convolutional
blocks, respectively. C2 is the target information transferred from
the third dimension to the second dimension, and C1 is the
target information transferred from the second dimension to the
underlying layer.

The total number of output branches is the same as that of the
four-layer FPN, but the two-branch FPN is designed by parallel
branching to increase the output without increasing the depth
of the FPN, which can reduce the distance of feature transfer
to some extent. The reduction in the distance of information
transmission will certainly greatly reduce the loss of information
in the transmission process, thus enhancing recognition accuracy.

2.3. Introduction of ES attention
guidance module

ESNet can improve the algorithm’s ability to extract valid
information from small targets. As shown in Figure 1Ca, after the
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FIGURE 3

Schematic diagram of the YOLOv4 network structure based on two-branch FPN. Panel (A) corresponds to the FPN structure of YOLOv4, and (B)
corresponds to the two-branch Feature Pyramid Networks (FPN) structure proposed in this paper. A, B, and C in (B) correspond to the three
convolutional blocks at the end of the three paths, respectively.

ith module, Fi goes through a preprocessing module consisting of
three convolutional layers of two 1× 1 and one 3× 3 and two ReLU
functions to obtain the preprocessing result Fp:

Fp = C1×1(∂(C3×3(∂(C1×1(Fi))))) (8)

∂ in this formula is the ReLU function, C1×1 means after
a 1 × 1 convolution operation and C3×3 means after a 3 × 3
convolution operation.

Ineffective and redundant parameters in the network still
hinder the further improvement of the network performance, so
the attention-guided layer is proposed (Chen et al., 2021). This
can automatically discard some unimportant attention features and
dynamically adjust the weight share of multiple modules, thus
improving the representational and generalization capabilities of
the network.

Figure 1Cb shows the structure of Attention-guide layer.
The preprocessing result Fp first increases the perceptual field
through the global pooling operation and then obtains the feature
information of the image through the FC, the ReLU function and
the FC in turn, and finally generates the dynamic weights Wi of

different modules through the softmax function with the following
equation:

Wi = fagl(Fp), (i = (1, 2)) (9)

fagl in this formula is the operation of the
attention guidance layer.

The different module weights obtained through this layer will
be W1 and W2, which are multiplied by the feature information
obtained from the ECA and SGE modules, respectively, and then
summed to obtain more comprehensive effective features. Finally,
the input features Fi are used to obtain the feature map which based
on attention mechanisms. The attention-based feature map Fi+1 is
expressed by the formula:

Fi+1 =W1ECA(Fp)+W2SGE(Fp)+ Fi (10)

2.4. Real-ESRGAN algorithm

Flames often occupy less than one ten-thousandth of the field of
view when shooting forest scenes at altitude or from a distance, and
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features are too sparse. The enhanced super-resolution generative
adversarial network [ESRGAN (Wang et al., 2018)] is used to
approximate the low-resolution fire samples to the high-resolution
samples to achieve target feature enhancement. The algorithm is
based on residual blocks, which are modified from SRRes-Net
(Ledig et al., 2017) as the basic framework of the algorithm.

While Real-ESRGAN (as shown in Figure 1D) extends the
capacity of ESRGAN into realistic recovery applications using
pure synthetic data, the algorithm constructs a higher-order
degradation modeling process to better simulate the realistic
degradation process of images in complex situations. In addition,
the algorithm employs a UNet discriminator with spectral
normalization to improve the discriminative power and stabilize
model training.

The classical degradation model does not cope perfectly with
the complexity and variability of real-life degradation processes.
For example, the original image may have been taken many years
ago, and contain severe degradation problems; when the image is
edited by sharpening software, it introduces overshoot and blurring
artifacts, and when the image is transmitted over the network, it
introduces further unpredictable compression noise. To alleviate
these problems, the algorithm proposes a higher-order sharpening
model. This contains multiple iterative degradation processes,
which are defined as follows:

A(Y) = [(Y ⊗ K) ↓r +N]jpeg (11)

where Y is the original image, k is the blur function, ↓r is
the downsampling factor, n is the noise and []JPEG is the result
compressed using the JPEG method.

Equation 12 shows the equations of a higher order degenerate
model based on a first order degenerate model like Equation 11.

X = AN(Y) = (AN · · · A1)(Y) (12)

where X denotes the output of the higher order degradation model
and N denotes the number of steps.

In this process, each stage uses the same degradation treatment
but has a different degradation super-reference.

Ringing artifacts usually appear as pseudo-edges near the sharp
edges of the image; overshoot artifacts are often accompanied by
ringing artifacts, which appear as jumps in the edge transition. The

main reasons for these artifacts are signal bandwidth limitations
and the absence of high frequencies. These artifacts usually occur
when processing with sharpening algorithms, JPEG compression,
etc. To solve this problem, the algorithm uses a sinc filter to
simulate both of these artifacts, and the filter kernel is represented
as follows:

k(i, j) =
wc

2π
√
i2 + j2

J1(wc

√
i2 + j2) (13)

where (i,j) denotes the kernel coordinate of the filter (similar to how
Gaussian blurring also has such a kernel coordinate) andwc denotes
the truncation frequency. J1 is a first order Bessel function. This
equation is from Equation 6 in literature 20.

The algorithm performs this sinc filter processing in two places:
the blurring process and the final synthesis step. The final sinc filter
is swapped randomly with the JPEG compression to cover a larger
degradation space.

2.5. Use the TensorRT framework to
speed up inference

To enhance the applicability of the algorithms in this paper,
we use some of the TensorRT architecture to speed up inference
when the algorithms are migrated to small embedded devices
based on the ARM architecture. TensorRT is NVIDIA’s highly
efficient inference engine, which consists of two phases: build
and deployment. In the build phase, TensorRT performs several
important transformations and optimizations to the Neural
network graph: (1) eliminating layers of unused output to avoid
unnecessary computation. (2) Fusing Convolution, Bias and ReLU
layers to form a single layer, mainly vertical and horizontal
layer fusion, reducing computation steps and transfer time. In
the deployment phase, TensorRT runs the optimized network
with minimized latency and maximized throughput. The trained
weight file (.pt) is converted into an engine file (.engine) and
dynamic library (.dll) via C language, which are deployed in the
network to give the model accelerated inference. The common data
structures that TensorRT can transform are INT8, INT16, INT32,
FP16, FP32. The final data format chosen for this paper is the
highest precision FP32.

TABLE 1 Ablation experiment results.

Number Improved GhostNeta Improved FPNb ESNetc AP6 (%) FPS5

1 (YOLOv4) – – – 77.57 (datum line) 48 (datum line)

2
√

– – 70.78 (−6.79) 88 (*1.83)

3 –
√

– 83.51 (+5.94) 47 (*0.98)

4 – –
√

82.48 (+4.91) 47 (*0.98)

5
√ √

– 75.63 (−1.94) 86 (*1.79)

6
√

–
√

74.95 (−2.62) 87 (*1.80)

7 –
√ √

86.55 (+6.98) 43 (*0.90)

8 (FireYOLO)
√ √ √

80.81 (+3.24) 84 (*1.75)

aGhsotNet is a lightweight neural network framework that was proposed in the literature16 and a detailed description of it in this paper can be found in 3.1.
bFPN stands for Feature Pyramid Networks, which was first proposed in the literature (Shen et al., 2018) and which is also an important component in the YOLOv4 neck network.
cThis paper proposes a new attention-guiding module, the principle of which is described in 3.3 and the structure of which is shown in Figure 1C.
The * means multiplication sign.
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3. Experimental setting

3.1. Training dataset

Several datasets related to flames [which includes FLAME
(Shamsoshoara et al., 2021)] were collected and divided into two
parts. The datasets used for training the model include single-
flame, multi-flame, indoor fire, forest fire, and complex background
fire scenarios, with a total of 23,982 images. During the training
of the model, 23,982 images were divided into 18,653 training
image sets and 5,329 validation image sets in a ratio of 7:2. Before
input to the training framework, there was no imposition on
the image size, and after input to the training framework, the
images of various sizes were scaled uniformly to 416 × 416 by the
algorithm. while the datasets used for the comparison experiments
in the subsequent experiments of the paper were all UAV remote
sensing images of high altitude areas, 7,752 images were used in
this dataset, which were divided into two categories according to
their types: The first category is the images containing fire, named
FIRE1 type, with 6,331 images; and the second category is the
images without fire, named NOFIRE2 type, with 1,421 images.
The algorithm runs with no size requirement for the image being
inspected.

3.2. Model building and training

Considering that the subsequent verification process of the
algorithm in this paper involves many comparison experiments,
some complex algorithms will be applied in these comparison
experiments, and most of these algorithms cannot be run on
embedded devices. In the principle of controlling variables,
the platform of the pre-contrast validation experiments in
this paper is unified with the model training platform. The
platform used for training and experiments is CUDA 11.2
CUDNN v8.2.1, the deep learning environment is Tensorflow
2.5, the programming language is Python 3.9, and the system
is Ubuntu 18.04.

There is no pre-training process for the FireYOLO model,
and the model is trained directly from scratch with the following
training hyperparameters settings: epochs for training is set to
1,000; batchsize is set to 64 and subdivisions is set to 1.

3.3. Evaluation criteria

The test set is divided into two categories, positive samples, and
negative samples. TP is the number of positive samples predicted as
positive; FP is the number of negative samples predicted as positive;
FN is the number of positive samples predicted as negative; TN is
the number of negative samples predicted as negative. The test set is
divided into two categories, positive samples, and negative samples.

1 The FIRE type indicates the presence of at least one fire phenomenon in
the UAV remote sensing image.

2 NOFIRE says there are no drone remote sensing images of fires
occurring.

This paper uses the accuracy (AR)3, Recall4 [detection rate (DR)],
False Accept Rate 5 (FAR), Average Precision (AP)6, and running
frame rate FPS7 as the evaluation indicators of the algorithm. The
formula for calculating the above metrics is shown in Equations
14–19, where Equation 17 means that a graph is constructed with
accuracy as the vertical coordinate and recall as the horizontal
coordinate and then the area under the curve in that graph is
calculated by the principle of calculus.

Recall(orDR) =
TP

TP + FN
(14)

FAR =
FP

FP + TN
(15)

FNrate =
FN

FN + TP
(16)

AP =
∫ 1

0
P(r)dr (17)

NFAR = 1−
FP

FP + TN
(18)

AR =
TN + TP

TN + FN + FP + TP
(19)

4. Results and discussion

4.1. Experiment on the recognition effect
of FireYOLO

To be able to verify the effectiveness of the three components
of the FireYOLO improvement and whether there is some conflict
and exclusion between these improvements, we conducted ablation
experiments on FireYOLO (Table 1). The ablation experiments
are similar to the control variables approach in that when only
one of the three components is changed, we can analyse the
effectiveness of this component improvement by comparing the
experimental data before and after the change, as in Experiments
2–4; by changing two or three of the three components, we can
verify whether these improved components can collaborate with
each other to further improve the performance of the algorithm,
as in Experiments 5–8 in Table 1. By comparing Experiments 1
and 2, we found that the introduction of dynamic convolutional
GhostNet as the head structure of the FireYOLO algorithm resulted
in a significant increase in FPS; by comparing Experiments 1
and 3, we found that the two-branch FPN structure resulted in

3 AR stands for Accuracy, which is calculated as shown in 19.

4 Recall (DR) refers to the proportion of successful predictions of the
algorithm among all true positive classes, and it is calculated as shown in
14.

5 The full name of FAR is False Accept Rate, and its calculation formula is
Equation 15.

6 AP stands for Average Precision and is calculated according to Equation
17. AP@0.5 is calculated in the same way as AP. The difference is that AP@0.5
requires an IOU greater than or equal to 0.5 in order for the algorithm to be
counted as detecting the target.

7 FPS is how many images per second the target network can process,
which is simply understood as how often the images are refreshed. The
faster the algorithm runs, the higher the FPS.
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a significant increase in AP and almost no decrease in FPS. The
comparison of Experiment 1 and Experiment 4 shows that ESNet
can significantly increase the AP of the algorithm with almost no
further decrease in FPS. By comparing Experiment 1, Experiment
2, and Experiment 5, we can see that the AP of Experiment 5 is
much improved compared to Experiment 2 and the FPS is also
much improved compared to Experiment 1, which proves that the
improved GhostNet structure can improve the performance of the
algorithm together with the two-branch FPN structure. Similarly,
the analysis of Experiments 1, 5, 6, 7, and 8 shows that all three
improvements can jointly improve the overall performance of the
algorithm.

In this paper, six common deep learning image recognition
algorithms were used for fire detection, and the final comparison
results were shown in Table 2 below. And Supplementary Figure 1
was drawn from Table 2, according to the trend of this line
graph, the algorithm in this paper could achieve the best balance
between recognition speed and accuracy. FireYOLO was only
slightly slower than YOLOv5, but its accuracy was significantly
higher than YOLOv5. In this paper, the confusion matrix (Figure 4)
is used to further compare the performance of the algorithms. The
number of six regions corresponding to NOFIRE2 in the horizontal
coordinate of Figure 4A represents the number of images missed
by the six algorithms when recognizing images of type FIRE1

plus the number of false detections (e.g., the algorithm identifies
an image with a fire occurring, but the detection result does not
frame out the fire part but other non-fire parts, a situation that is
typical of false detection.); the number of six regions in the second
column of Figure 4B represents the number of NOFIRE2 type
images identified by the six algorithms without detecting a flame;
the number of attributions for TP, FN, FP, and TN in Figure 4C is
based on the data in Figures 4A, B. From Figure 4C, we can see
that the number of FN (number of missed images) is much smaller
than the number of FP (number of false detections), with FP having
a relatively large value. However, the TP and TN of the algorithm in
this paper are still higher than the other algorithms, and the FN and
FP are still lower than the other algorithms, which further illustrates
the advantages of FireYOLO.

Figure 5 showed heatmaps for the various algorithms, making
the inference process easy to observe. Comparing the heatmap
results for rows 1–6 with row 8, it could be seen that row 8 has the
highest focused on the flame target and the strongest aggregation
of attention (the area of the dark red distribution almost matched
the area of the flame the best), with a very clear demarcation line
between the flame and the forest background and a less clear green

TABLE 2 Comparison of different methods.

Method Paramsa

(M)
AP6 (%) AP@0.56 (%) FPS5

A. Faster-RCNN 108 55.56 46.03 20

B. SSD 90.57 56.41 49.17 60

C. YOLOv3 234.67 71.12 63.13 51

D.YOLOv4 243.91 77.57 68.61 48

E. YOLOv5x 27 74.13 65.13 99

F. FireYOLO 50.71 80.81 70.33 66

aParams indicates the model size of the algorithm in M.

dispersion. Comparing rows 7 and 8, it could be seen that the
green dispersion in row 7 was very strong and the demarcation line
between the flame and forest background was not clear enough,
but with the introduction of ESNet the demarcation line became
clear. This further demonstrated the ability of ESNet to guide valid
information about small targets.

4.2. Validation of Real-ESRGAN for
resolution enhancement of fire

The image super-resolution approach aims to recover detailed
SR images from the corresponding LR images, and the Real-
ESRGAN network was experimentally compared with FSRCNN
(Dong et al., 2016) and ESRGAN for the resolution enhancement
of small-size flames and pairs to verify its effectiveness. To evaluate
the quality of the generated SR images, the RMSE, NRMSE, SSIM,
PSNR, and Entropy of the test images were compared, and the
results are shown in Table 3. Figure 6 shows the effects of the three
algorithms after enhancing the pixels of the small-size fire image.
From this figure we could see that Real-ESRGAN was a little more
capable of pixel enhancement. As shown in Table 3, both the SSIM
and PSNR image quality metrics of Real-ESRGAN were higher than
those of other hyper-segmentation networks.

4.3. Overall performance of FireYOLO
and Real-ESRGAN combined

4.3.1. The influence of objective factors such as
shading or changes in light on the algorithms

In order to discuss the practicality of our fire detection
algorithm and its adaptability to the characteristics of forests
with many grass-like occlusions, in this section we discussed
the effectiveness of our algorithm for detecting flames when
they were occluded.

We experimentally verified multiple performances by collecting
2,000 random photos from the 6,331 photos. Table 4A shows the
recognition results of multiple algorithms in the face of occluded
scenes, while Supplementary Figure 2 was a line graph drawn from
the data in this table, and according to the trend of this line graph
our algorithm was the best in AP, Recall, and AR metrics, and the
FPS was at the average level among these algorithms, but also very
fast. So all together this made our algorithm still the best in overall
performance. Figure 8A showed the specific recognition results of
these algorithms. From these result plots we could visually see that
the algorithm in this paper identifies all the obscured targets, while
the other algorithms all had targets that were missed.

Considering that illumination can have a significant impact on
the target detection algorithm, this section focuses on the degree of
adaptation of our algorithm to changes in illumination. We selected
1,000 photos from the 6,331 images for each of the three types
of light intensity: sunny, cloudy, and dark. The various detection
characteristics of the seven algorithms under sunny, cloudy and
dark conditions were given in Figure 4B. The four line graphs in
Figure 7 visualize the data in Table 4B. Figures 7A–C represented
the trends of the seven algorithms regarding the three evaluation
metrics mentioned above under the three lighting conditions, and
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FIGURE 4

On the confusion matrix of the detection results of the six algorithms (A) shows the results of the six algorithms for the FIRE1 class of images, where
the horizontal coordinate FIRE indicates that the algorithm correctly identified the flame and NOFIRE indicates that the algorithm did not correctly
identify the flame, possibly because the algorithm missed or misidentified it; (B) shows the results of the six algorithms for the NOFIRE2 class of
images, where the horizontal coordinate FIRE indicates that the algorithm misidentified the flame and NOFIRE indicates that the algorithm did not
identify the flame; (C) shows the confusion matrix of the six algorithms for the test dataset regarding the distribution of the number of attributes TP,
FN, FP, and TN. The darker the color of a region, the greater the number of images corresponding to that region.

it could be found that the algorithm in this paper was far ahead in
these three metrics under all three lighting conditions; Figure 7D
represented the trends of the evaluation metrics of the algorithm
(G) in this paper when the lighting changed, and we found that the
fire identification in darkness was better than the other two lighting
conditions. Figure 8B showed the graphs of the recognition effects
of multiple algorithms regarding the three lighting conditions, from
which it could also be visualized that the G algorithm had the best
recognition effect under the three lighting conditions, followed by
FireYOLO.

4.3.2. Comparison with other fire detection
methods

To verified the generality of our proposed algorithm for the
environment, we compared it with current state-of-the-art fire
detection algorithms on publicly available datasets. We compared
the results of Muhammad et al. (2018a,b), Chaoxia et al. (2020),
Pan et al. (2020), and Our algorithm under the BoWFire (Chino
et al., 2015) dataset. The BoWFire dataset was derived from real fire

and urban fire scenarios. The specific data of this experiment were
shown in Table 5 below.

In the analysis in this section we focus on the A–D algorithm in
Table 5 with the four evaluation metrics of FireYOLO (E) proposed
in this paper. In the above we have experimentally concluded that
FireYOLO has very few missed images but many false positives,
in other words a low FN but extremely high FP values, and by
analysing Equations 14, 15, 19 we conclude that FireYOLO will
have a high FAR and low AR and DR. However, this does not
mean that FireYOLO is very inaccurate, as the experimental data
in Table 5E show that FireYOLO’s accuracy can be at the top of all
these algorithms, but it is really not good enough.

We then move on to analyze the reasons for the change in
these four evaluation metrics when upgrading from the E to the F
algorithm: the final detection results for the FIRE1 type dataset are
divided into three types: correctly detected flames, missed flames
and misdetected flames (there will also be images that are both
misdetected and missed), then when the algorithm is upgraded
from E to F, in addition to the number of misdetected images being
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FIGURE 5

Comparison of FireYOLO with other advanced target detection algorithms. The shade of color indicates how much attention the algorithm is paying
to the image, with a darker color in a region indicating that the algorithm is paying more attention to that region.

greatly reduced, the number of missed The detection results for the
NOFIRE2 type images fall into two categories: The detection results
for missed NOFIRE2 type images are divided into two categories:
flames detected (false detection) and no flames detected (correct).

When the algorithm is upgraded from E to F, the number of images
with flames detected will be greatly reduced, while the number of
missed flames will be greatly increased. When upgrading from E
to F, the number of images with detected flames will be greatly
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TABLE 3 Comparison of different methods.

Model RMSEa NRMSEb SSIMc PSNRd

/dB
Entropye

/bit

FSRCNN 27.165 0.567 0.776 17.167 1.675

ESRGAN 4.835 0.045 0.867 36.443 6.672

Real-
ESRGAN

2.865 0.023 0.967 42.443 8.672

aRMSE is called Root Mean Square Error, which is calculated as the square of the difference
between the true value and the predicted value, then summed up and averaged, and finally
opened to the root. The smaller the value, the higher the image quality.
bNRMSE is called Normalized Root Mean Square Error, which means that the value of RMSE
becomes between 0 and 1, and the smaller its value, the higher the image quality.
cSSIM is called structural similarity, and it ranges from (0,1), and the larger the value, the
better the quality of the image. When two images are exactly the same, SSIM = 1 at this time.
dPSNR is called Peak Signal to Noise Ratio, which is the ratio of the energy of the peak signal
to the average energy of the noise, the larger its value, the higher the picture quality.
eEntropy is mainly a measure of how much information an image contains, and a higher
value means more information and better image quality.

reduced, while the number of images with undetected flames will be
greatly increased. The final combination of these changes will result
in a dramatic increase in AR, DR and NFAR as well as a dramatic
decrease in FAR.

When we compared the differences between the four evaluation
criteria of the A–D and F algorithms, we found that when these
algorithms were applied to the BoWFire dataset, the algorithm in
this paper achieved the highest AR (95.6%) and NFAR (97.7%), and
the lowest FAR (2. 3%), these excellent metrics were mainly due
to the advantages of the structure of the algorithm in this paper:
FireYOLO possessed the characteristics of low computational effort
and low false detection rates for different scales of flame detection;
The use of the Real-ESRGAN algorithm to improve the local

sharpness of the image allowed the secondary recognition of
FireYOLO to significantly reduce the false detection rate, which
also led to a significant increase in the overall accuracy of the
algorithm. However, the inability of the algorithm in this paper
to reduce the false detection rate of FireYOLO made the final DR
of the algorithm (95.8%) no higher than that of the A algorithm
(97.5%). However, in terms of overall algorithm performance, F is
still much better than A.

4.3.3. The algorithm in this paper runs on small
embedded devices (Jetson NX)

To verify the adaptability of our algorithm to some embedded
platforms with smaller computing power, we migrated the
algorithm to the Jetson Xavier NX after accelerating it through the
TensorRT framework, and the migrated algorithm was compared
with several other algorithms running on the Jetson Xavier NX, and
the final results were shown in Table 6. Supplementary Figure 3
showed the trend of the four evaluation metrics about these
algorithms drawn from the data in Table 6. The A–F algorithm
in this table is almost identical to the AP trend in Table 2,
while AR and Recall also almost outperform the A–E algorithm,
mainly due to the fact that we have included many structures
in YOLOv4 that enhance effective information extraction (i.e.,
ESNet and two-branch FPN structures), and the algorithms in
this paper also run at the top of these algorithms, only 7 FPS
lower than YOLOv5x. This is mainly due to our choice to
use the Ghost-Net structure instead of the original CSPDarknet
structure, which significantly reduces the overall computational
effort of the algorithm. The reasons for the change in trend
between the F and G algorithms in Table 6 are largely similar
to the reasons for the change in trend between the E and F

FIGURE 6

Algorithms used to enhance the rendering of image pixels.
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TABLE 4 Combined performance of multiple algorithms under changing light or shading conditions.

Methods A. Obscuration issues B. Light changes

Sunny Cloudy Dark

AR3 Recall4 AP6 FPS5 AR Recall AP AR Recall AP AR Recall AP

A. Faster-RCNN 55.4 43.4 48.1 20 57.3 63.1 53.3 65.3 68.1 57.18 70.1 73.2 64.1

B. SSD 43.4 45.7 46.5 60 53.4 65.1 47.4 55.1 67.2 51.3 74.1 73.4 67.6

C. YOLOv3 69.1 56.8 64.2 51 66.1 70.3 63.2 71.2 77.4 74.3 83.1 81.3 80.2

D.YOLOv4 70.3 65.3 66.6 48 68.3 71.2 73.1 78.3 81.3 80.6 91.4 93.1 89.3

E. YOLOv5x 67.1 59.4 63.4 101 63.1 69.3 68.5 73.9 78.4 75.2 85.1 87.2 84.1

F. FireYOLO 76.3 70.3 72.7 66 81.4 78.3 79.3 82.1 85.6 84.2 92.3 93.1 91.7

G. Our methods 86.7 80.4 85.3 46 83.1 88.3 85.3 93.1 88.4 90.4 98.2 94.5 95.3

FIGURE 7

Line graph of the accuracy of various algorithms under different lighting conditions. Panels (A–C) show the trends of the evaluation metrics for each
of the seven algorithms under the three different lighting conditions. Panel (D) represents the trend of the evaluation metrics of the algorithm (G) in
this paper under the variation of light.

algorithms in Table 5, mainly because the introduction of the
Real-ESRGAN algorithm reduced the number of images that
were incorrectly detected during the recognition process of the
FireYOLO algorithm.

The results of the algorithm’s run are shown in Figure 9.
From this figure, we first looked at the first column of remotely
sensed images and we found that Algorithms A–D all more or less
missed the flames obscured by the trees, while Algorithms E–G all
detected the flames on this remotely sensed image and Algorithm G
identified the flames with the highest overall confidence. We looked

at the second column of remote sensing images and found that
the second column had a smaller flame area than the first column,
which was not detected by any of Algorithms A–E, but Algorithms
F and G detected all the fires. The third column of remote sensing
images also showed a similar situation to the second column, with
Algorithms A–E all having missed detections and Algorithm D also
having false detections, while Algorithms F and G had no missed
detections and G identified the flames with much higher confidence
than F. We then proceeded to analyse the remotely sensed images
in the fourth column and found that all algorithms failed to detect
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FIGURE 8

Plot of the results of various algorithms in different lighting conditions or with or without shading. Panel (A) represents the detection results of the
seven algorithms when an occlusion situation occurs and (B) represents the detection results of the seven algorithms under three lighting
conditions.

the two flames in the red circle that were about to go out, mainly
because they were not red enough and did not differ much from
the background color of the surrounding forest. However, when we

TABLE 5 Comparison results of multiple algorithms.

Dataset References AR3 (%) DR4 (%) FAR5

(%)
NFARa

(%)

BoWFire A. Muhammad et al.,
2018b

89.8 97.5 18.7 81.3

B. Muhammad et al.,
2018a

92.0 93.3 9.3 90.7

C. Chaoxia et al.,
2020

93.4 92.4 5.6 94.4

D. Pan et al., 2020 93.4 91.6 4.7 95.3

E. FireYOLO 92.7 93.7 7.8 92.2

F. Our method 95.6 95.8 2.3 97.7

aNFAR is the non-false detection rate, which is calculated by Equation 18.

analysed the set of flames detected by all algorithms, we found that
G had the highest confidence level, followed by F. As can be seen
from the four images in Figure 9, the G algorithm had the lowest
rate of missed and false detections, followed by the FireYOLO (F)
algorithm proposed in this paper.

TABLE 6 Performance of various algorithms on Jetson Xavier NX.

Composition of
algorithm

AR3 (%) Recall4

(%)
AP6 (%) FPS5

A. Faster-RCNN 61.30 52.18 54.67 0.25

B. SSD 59.12 53.29 57.38 2.5

C. YOLOv3 (+TensorRT) 69.13 73.80 70.18 31.12

D. YOLOv4 (+TensorRT) 73.22 79.40 77.09 28.03

E. YOLOv5x (+TensorRT) 71.31 73.31 73.13 40.42

F. FireYOLO (+TensorRT) 76.91 81.45 79.14 33.12

G. Our method (+TensorRT) 95.11 86.61 94.22 20.67
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FIGURE 9

Running results of algorithm. The first to third columns of this figure do not show any missed detections for the algorithms in this paper, while the
fourth column shows that there are missed detections for the algorithms in this paper. Two red circles indicate missed flames.

5. Conclusion

A lightweight two-step small-scale fire detection method based
on FireYOLO and Real-ESRGAN is proposed in this paper. Based
on the results of our experiments, we have drawn four conclusions:

(1) The proposed two-branch FPN and ESNet can effectively
improve the small target information extraction capability
of FireYOLO while reducing the information conduction
loss. Meanwhile, using GhostNet with dynamic convolution
introduced as the backbone network of FireYOLO can
significantly reduce computation, and thus increased the
efficiency of the algorithm. The two-branch FPN, ESNet and
GhostNet with dynamic convolution can work together to
improve the performance of FireYOLO, and there is no
exclusion between them;

(2) The FireYOLO algorithm does have a very low miss detection
rate but a high false detection rate.

(3) In order to reduce the false detection rate of the FireYOLO
algorithm, this paper introduces the Real-ESRGAN algorithm,
which does significantly reduce the final false detection rate
and improves the accuracy of the algorithm;

(4) Our algorithm combines two algorithms, FireYOLO and
Real-ESRGAN. These two algorithms work in concert with
each other, which makes the algorithm in this paper achieve
extremely high accuracy, inference speed and strong anti-
interference capability on PC side, surpassing all other
algorithms. Also, through the above experiments we have
found that the algorithm of this paper can still achieve
94.22% AP when deployed on embedded devices, which
is much higher than other algorithms, and although the
speed of this paper’s algorithm is slightly lower than that of
YOLOv5+TensorRT, the frame rate of this paper’s algorithm
has reached 20.67 FPS, which is fast enough to achieve
almost no latency. In summary, the algorithm in this paper
perfectly achieves a breakthrough in both inference speed and
recognition accuracy, and has good application prospects.
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Although this algorithm has its advantages, it still has its
shortcomings: the collaboration between FireYOLO and Real-
ESRGAN does not reduce the rate of FireYOLO misses, which
means that the images missed by FireYOLO cannot be detected by
this algorithm in the end. Even though FireYOLO’s miss rate has
reached a very low level, I still need to find a solution to further
improve the accuracy of this algorithm.
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