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Severity of wildfires witnessed in different parts of the world in the recent

times has posed a significant challenge to fire control authorities. Even when

the different fire early warning systems have been developed to provide the

quickest warnings about the possible wildfire location, severity, and danger,

often it is difficult to deploy the resources quickly to contain the wildfire

at a short notice. Response time is further delayed when the terrain is

complex. Early warning systems based on physics-based models, such as

WRF-FIRE/SFIRE, are computationally intensive and require high performance

computing resources and significant data related to fuel properties and

climate to generate forecasts at short intervals of time (i.e., hourly basis).

It is therefore that when the objective is to develop monthly and yearly

forecasts, time series models seem to be useful as they require lesser

computation power and limited data (as compared to physics-based models).

Long duration forecasts are useful in preparing an efficient fire management

plan for optimal deployment of resources in the event of forest fire. The

present research is aimed at forecasting the number of fires in different

forest types of India on a monthly basis using “Autoregressive Integrated

Moving Average” time series models (both univariate and with regressors) at

25 km × 25 km spatial resolution (grid) and developing the fire susceptibility

maps using Geographical Information System. The performance of models

was validated based on the autocorrelation function (ACF), partial ACF,

cumulative periodogram, and Portmanteau (L-Jung Box) test. Both the

univariate- and regressor-based models performed equally well; however, the

univariate model was preferred due to parsimony. The R software package was

used to run and test the model. The forecasted active fire counts were tested

against the original 3 years monthly forecasts from 2015 to 2017. The variation

in coefficient of determination from 0.94 (for year 1 forecast) to 0.64 (when

all the 3-year forecasts were considered together) was observed for tropical

dry deciduous forests. These values varied from 0.98 to 0.89 for tropical moist
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deciduous forest and from 0.97 to 0.88 for the tropical evergreen forests.

The forecasted active fire counts were used to estimate the future forest

fire frequency ratio, which has been used as an indicator of forest

fire susceptibility.

KEYWORDS

forecasting, ARIMA, wildfire, time series, fire alert, forest, frequency ratio, satellite
remote sensing

Introduction

Numerous studies have revealed that forest fires have
become increasingly severe (Reilly et al., 2017; Singleton et al.,
2019). Several incidences of catastrophic wildfires have been
reported in the last 4–5 years for example in California, USA
(Du et al., 2019) and Australia (Bowman et al., 2020). In the
Indian context, an unprecedented wildfire occurred in the state
of Uttarakhand in 2016 (Sati and Juyal, 2016), which burnt 2,166
km2 within and outside the forest area (Jha et al., 2016). As the
forests are habitats for the tribal/natural forest dwellers and the
storehouse of floral and faunal biodiversity, it is important to
safeguard them from a devastating wildfire. It is difficult and
costly to contain the wildfire after it has spread significantly,
thus mid- to long-duration forecasts (monthly and yearly) of
the potential forest fires are important to develop well-informed
mitigation strategies.

Some of the previous studies were carried out to forecast
the number of forest fires using the ARIMA (Autoregressive
Integrated Moving Average) model (Slavia et al., 2019; Kadir
et al., 2020); estimate the probability of fire on a defined day
using Probit model (Albertson et al., 2009); model the number
of forest fires using longitudinal negative bionomial (NB)
and zero-inflated negative bionomial (ZNIB) mixed models
(Viedma et al., 2018); predict fire activity for 1–5 days in the
future using MODIS satellite data active fire count and ERA-
interim reanalysis-based weather data using Poisson’s regression
method (Graff et al., 2020); and map the fire risk using machine
learning and satellite vegetation index time series (Michael
et al., 2021) and an analytical hierarchical process (Sivrikaya and
Kucuk, 2021).

The impact of different drivers on the occurrence of forest
fires has also been studied in numerous studies (Westerling
et al., 2002; Rodrigues et al., 2014; Biswas et al., 2015; Kale
et al., 2017; Viedma et al., 2018). Extreme climate events, i.e.,
ENSO (El Niño Southern Oscillation), NAO (North Atlantic
Oscillation), and AMO (Atlantic Multi-decadal Oscillation) are
found to be associated with forest fires (Siegert and Hoffmann,
2000; Siegert et al., 2001; Patra et al., 2005; Kidzberger et al.,
2007; N’Datchoh et al., 2015; Devischer et al., 2016). Kale et al.
(2017) found an interrelation of NINO 3 index with a number

of forest fires in India. The drivers such as fuel type (Bond
and Keeley, 2005), population/human influence (Bowman et al.,
2011), topography (Rollins et al., 2002), distance to settlement
and roads (Laurance et al., 2009), aspect (Allexander et al., 2006),
rainfall, and temperature (McKenzie et al., 2004; Aldersley
et al., 2011) have been identified to be related to forest fires.
Urbieta et al. (2019) emphasized that, despite the increasing
fire risk factors, fire can be controlled and reduced provided
fire suppression resources (mainly aerial) are increased. This
emphasizes the need to develop integrated early warning and
response systems.

Efforts have been made world-over to develop fire danger
rating systems/alert systems/information systems to disseminate
timely information about potential fire danger to different
stakeholders. The national fire danger rating system (NFDRS)
of the United States of America uses fuel type, topography, and
weather as inputs to estimate fire danger for next 24 h (USDA,
2022). The Canadian Forest Fire Weather Index (FWI) system
provides maps of fire danger and fire weather indices on a daily
basis (Natural Resource Canada, 2022). The European Forest
Fire Information System (EFFIS) provides services related to
wildland fire in Europe. EFFIS provides “fire danger” forecast
upto 9 days in the European region (EFFIS, 2022). Forest
Survey of India uses satellite data [SNPP (Suomi-National Polar-
orbiting Partnership)-VIIRS] to identify and track large forest
fires on a near real-time basis in India (FSI, 2022). In addition,
the sophisticated numerical two-way coupled models such as
WRF-FIRE have been developed and tested for operational fire
spread simulation in different countries, i.e., Israel (Mandel
et al., 2014), Greece (Giannaros et al., 2020), and USA (UCAR,
2022) to quickly (hourly basis) predict the wildfire spread once
the ignition location is detected.

Even when the different fire early warning systems are
available to provide the quickest possible warnings about the
wildfire location, severity, and danger, often, it is difficult to
deploy the resources quickly to contain the wildfire at short
notice. Response time is further delayed when the terrain
is complex. It is therefore the mid- to long-term (monthly
and yearly) fire forecasts that are the key for pre-allocating
resources at potentially vulnerable locations during the fire
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FIGURE 1

Study area showing different forest types (25 km grid) overlaid on the Biogeographic zones of India (Rodgers and Panwar, 1988; Rodgers et al.,
2000).

season, hence shortening the response time of the forest fire
fighting authorities.

Time series analysis (TSA) of the forest fire is useful in
forecasting fire events at specified time intervals. Forecasts
may be based on multiple independent (causal) variables or
simply on the fire time series itself (univariate). Fire forecasts
considering independent variables are based on dynamic
interrelationships of wildfires and associated independent
variables with respect to time. Univariate and multivariate times
series models have been tested and compared previously in
numerous cross-disciplinary studies, for example, for estimating
tourist demand (Preez and Witt, 2003) and forecasting the
medical emergency department demand (Jones et al., 2009;
Sarfo et al., 2015). Some studies have found the multivariate
time series models superior to univariate models (Jones et al.,
2009; Sarfo et al., 2015), whereas, others have recommended
univariate models over the multivariate models, for example,

Iwok and Okpe (2016), recommended univariate model
while studying different time series variables from Nigeria’s
gross domestic products. Sethi and Mittal (2020) found the
univariate ARIMA model superior to the multivariate vector
autoregression model (VAR) for the prediction of air quality
index. TSA is a data-intensive process and requires several years
of data to derive meaningful interpretations. As compared to
multivariate model, the univariate model is less data demanding.

Modern remote sensing platforms (along with ground
sensor networks) have made it possible to obtain such datasets
at higher temporal and spatial resolutions. For example, NASA’S
Fire Information for Resource Management System distributes
fire point data on daily basis within 3 h of observations by
MODIS and VIIRS satellite sensors at 1 km and 375 m spatial
resolution, respectively (EARTHDATA, 2022). Similarly, the
network of different ground meteorological stations world over
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FIGURE 2

Methodology.

FIGURE 3

Training datasets—TDDF_temp, TDDF_fire, and TDDF_dryd depicts monthly average maximum temperature, monthly fire counts, and number
of dry days for Tropical Dry Deciduous Forests; TMDF_temp, TMDF_fire, and TMDF_dryd depicts monthly average maximum temperature,
monthly fire counts and number of dry days for Tropical Moist Deciduous Forests; TEGF_temp, TEGF_fire, and TEGF_dryd depicts monthly
average maximum temperature, monthly fire counts, and number of dry days for Tropical Evergreen Forests.
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has made it possible to obtain the high-frequency data, for
example, of rainfall and temperature.

There are different methods in vogue that use the
time series data for forecasting. For example, linear and
multiple regressions, exponential smoothing, autoregressive
Integrated moving average (ARIMA), logistic regression, and
Probit models have been frequently used in carrying out fire
predictions (Contreras et al., 2003; Preez and Witt, 2003; Preisler
and Westerling, 2007; Prestemon et al., 2012; Briët et al., 2013;
Huesca et al., 2014; Zhang et al., 2016; Lei, 2017; Ye et al., 2017;
Feng and Shi, 2018; Santana et al., 2018; Slavia et al., 2019).
The TSA involves analysis of data collected over a specified
time interval, i.e., day, month, week, or year and is useful in
near future forecasting. Among different time series forecasting
models, the ARIMA model has been used extensively in cross-
disciplinary domains (Mujumdar and Kumar, 1990; Wangdi
et al., 2010; Sarfo et al., 2015; Zhou et al., 2018; Jesus et al., 2022).

The forecasts obtained through TSA models depends upon
how the variables are defined. In the present research the “active
fire counts” has been used as a dependent variable, thus, the
forecast is “active fire count.” The active fire count data is useful
in estimating fire susceptibility using the frequency ratio method
(Lee and Pradhan, 2007; Pradhan, 2010; Biswas et al., 2015; Kale
et al., 2017).

The present research is aimed at (i) forecasting active forest
fire counts using the ARIMA model (univariate ARIMA and
ARIMA model with regressors) in prominent forests of India
and (ii) deriving probabilistic fire susceptibility map in GIS
using fire frequency ratio (FFR) method.

Study area

The study has been carried out in Tropical Evergreen
forests (TEGF), Tropical Moist Deciduous forests (TMDF),
and Tropical Dry Deciduous forests (TDDF) located in
different biogeographic zones of India (Figure 1). The Indian
region can be divided into ten bio-geographic zones, i.e.,
Trans-Himalaya, Himalaya, Desert, Semi-Arid, Western Ghats,
Deccan Peninsula, Gangetic Plain, Coasts, North-East, and the
Islands (Rodgers and Panwar, 1988). High elevation regions of
the Himalayas receive significant snowfall. Parts of western and
central regions receive meager rainfall, whereas, eastern India is
one of the highest monsoon rainfall regions of the world. The
type of the forest is attributed mainly to climate, soil, and past
treatment (Champion and Seth, 2005). The TEGF, TDDF, and
TMDF are distributed in different proportions in the Western
Ghats, Deccan Peninsula, Gangetic Plain, Himalaya, and North-
East regions. The temperature and precipitation in these forests
vary between 8 and 38◦C and 400 and 7,000 mm, respectively
(Roy et al., 2015).

The fires in TMDF are generally sporadic and patchy
(Kodandpani et al., 2008). These forests become prone to fire

when disturbed. Once disturbed and fragmented, the grasses
become prevalent which makes these forests susceptible to
fire (Woods, 1989; Suresh et al., 1996; Freifelder et al., 1998;
Kodandpani et al., 2008). Fire leads to a further spread of grasses
which becomes heavy and continuous, particularly where there
is an open canopy (Champion and Seth, 2005). The TMDF
supports significant biodiversity as they are comparatively
denser and moister than TDDF. It is therefore extremely
important to understand the possible future trends of forest
fires in these critical forests so as to take mitigative measures.
TDDF are significantly burning forests of India. These forests
have associated grasses (particularly in central India) and exhibit
seasonality. Leaves are shed in specific seasons, which usually
start with the onset of summers. During extreme climate, due to
increased temperature and dryness, significant burning happens
in these forests. TEGF are comparatively lesser burnt forests
due to the availability of moisture even during the fire season.
These forests are confined to narrow strips in Western Ghats,
North-East India, and Andaman and Nicobar Islands (Roy et al.,
2015).

Forest fire generally follows a well-defined timeline in
India. The fire season in India is mostly from February to
June (Satendra and Kaushik, 2014; Kale et al., 2017). Every
year wildfire peaks in the month of March/April and then
decline at the start of the rainy season (June). Such seasonality
continues year after year. However, geographical differences in
the duration and peak of the season do exist, requiring in-depth
analyses such as the one presented here.

Materials and methods

Different datasets were used in this research for forecasting
the active forest fire counts [using univariate ARIMA model
and ARIMA model with regressors (NAU, 2020)] and estimating
FFR.

The dependent variable, i.e., active fire locations (2003–
2017) was sourced from MODIS level 6 active fire product
(MODIS, 2022). This depicted fires burning in 1 km pixel at the
time of satellite overpass. Independent variables, i.e., monthly
dry days (days without rainfall) and maximum average monthly
temperature were estimated based on the daily rainfall grid
(25 km × 25 km) and temperature grid (1◦ × 1◦) from 2003
to 2017 obtained from India Meteorological Department (IMD;
Srivastava et al., 2009; Pai et al., 2014).

Other datasets, i.e., the vegetation type map of India (scale
1:50,000) providing details of natural and semi-natural land-
use and land-cover systems and the natural vegetation (Roy
et al., 2015) were used to extract the TDDF, TMDF, and TEGF
of India; elevation (90 m resolution) was sourced from SRTM1

1 https://lpdaac.usgs.gov/
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FIGURE 4

Autocorrelation function and partial autocorrelation function (100 lags) and cumulative Periodogram for Tropical Dry Deciduous Forests (TDDF),
Tropical Moist Deciduous Forests (TMDF), and Tropical Evergreen Forests (TEGF).

TABLE 1 Comparison of model results obtained through univariate ARIMA model and ARIMA model with regressors.

Model type Forest type Best model (ARIMA) Significance p-value [Port
Manteau (L-Jung box test)]

p d Q P D Q

Univariate ARIMA model Tropical dry deciduous
forest (TDDF)

0 0 1 2 1 0 0.59

Tropical moist deciduous
forest (TMDF)

0 0 1 2 1 1 0.99

Tropical evergreen forest
(TEGF)

1 0 0 2 1 2 1

ARIMA model with regressors Tropical dry deciduous
forest (TDDF)

0 0 1 2 1 0 0.37

Tropical moist deciduous
forest (TMDF)

2 0 0 2 1 1 0.99

Tropical evergreen forest
(TEGF)

1 0 0 2 1 0 0.99

The Portmanteau test significance values are also depicted. P-values greater than 0.05 depict that residuals are no different from white noise.

and used to derive the slope map. These datasets were used as
inputs for FFR estimation in addition to temperature and dry
days. Biogeographic zones of India (Rodgers and Panwar, 1988;
Rodgers et al., 2000) were used for zone-wise segregation of
active fire and FFR.

R software package was used to run the ARIMA
model (primary modules used were Forecast

(Hyndman and Khandakar, 2008; Hyndman et al., 2022)
and TSPred (Salles and Ogasawara, 2022). Different online
resources in relation to TSA were also referred (Hyndman,
2022b; STACKOVERFLOW, 2022).

All the datasets were resampled to 25 km × 25 km grid
in GIS. The forest types, i.e., TMDF, TDDF, and TEGF were
extracted from the vegetation type map based on the majority
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FIGURE 5

Residual ACF (autocorrelation function); PACF (partial autocorrelation function; CP (cumulative periodogram for TDDF (Tropical Dry Deciduous
Forests, TMDF (Tropical Moist Deciduous Forest and TEGF (Tropical Evergreen Forests) for univariate ARIMA model.

class occurring in each grid. The active fire counts were extracted
for each forest type on monthly basis for all the grids and
all the years. The average number of dry days and maximum
average temperature were extracted for TDDF, TMDF, and
TEGF on a monthly basis for all the years at grid level. The
geographic coordinate system and WGS 84 datum were used in
the present research.

The daily rainfall and maximum average temperature data
had gaps, i.e., non-availability of data for particular days or
a particular month for a specified grid. These gaps were
filled either by taking the average of previous and next day
observations or by taking the average of two neighboring grids
belonging to the same forest type and terrain conditions. Such
gaps, however, were not significant and hence filling them did
not affect the overall trend.

The forest type-wise monthly active fire counts, the total
number of dry days, and the maximum average temperature
were used as inputs to forecast the active fire counts. We avoided
0 fire counts in the model and replaced all 0 values with 1. For
TDDF and TMDF and TEGF 2%, and 1% of all the observations
had “no fire” incidence (0 fire counts), respectively. Further, this
occurred only during the rainy season. For TEGF 3%, no fire

incidences occurred during the fire season, and this was because
these forests were comparatively wetter during the fire season
than other forest types.

Forecasting using ARIMA model is based on the premise
that the time series data is stationary, i.e., it has no trend
and seasonality. The ARIMA model has three components, i.e.,
“AR,” “I,” and “MA.”. The “AR” or autoregression component
provides information about regression of time series data with
itself in different time lags. It gives clues about how significantly
the data is auto-correlated, and thus the impact of past data on
future forecasting could be understood (Jones et al., 2009). The
“AR” analysis is also helpful in understanding whether the data
is seasonal. For seasonal time series, the “AR” exhibits sinusoidal
patterns. For non-stationary data, significant autocorrelation is
observed even for the larger time lags, whereas, for stationary
time series, autocorrelation dies down-within the initial few time
lags (Mujumdar, 2022).

The “I” or integrated term provide information about how
many “difference” terms are required to make the data stationary
in case the time series data is non-stationary. The “difference”
terms mean the difference between the current time and the past
time for all the time lags.
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The “MA” provides information about the number of
“moving average” terms to be used. The “MA” is the average of
the fixed set of previous time-period values when it is moved
throughout the data sets to obtain a new time series. The “MA”
can be carried out multiple times, i.e., the output of the first
“MA” can again be subjected to a second “MA” and so on, till
stationarity is achieved (Mujumdar, 2022).

The model belonging to ARMA family may be written as
follows (Mujumdar and Kumar, 1990).

Y (t) =
m1∑
j 1

∅jy (t − 1)+
m2∑
j 1

θjw (t − 1)+ C + w (t) (1)

where Y(t) (t = 1, 2,. . ..) is the time series used in the modeling;
m1 is the number of AR terms; φj is the jth AR parameter; m2

is the number of MA terms; θj is the jth MA parameter; C is a
constant; and w (t) (t = 1,2,. . ...) is the residual series.

Kashyap and Rao (1976) argued that time series differencing,
which is an essential component of ARIMA, causes the variance
to increase continuously, and hence such models cannot be used
for data simulation. They may, however, be used for one-step
ahead forecasting.

Identification of optimum “AR,” “I,” and “MA” terms
is important to achieve stationarity. This process is time-
consuming and at times may not converge for a higher
denomination of “AR,” “I,” and “MA” terms, thus we used
the Hyndman and Khandakar (2008) algorithm for automatic
identification of these terms and avoided manual iterations.
Further Hyndman and Khandakar (2008) believed that it was
better to make as few differences as possible to avoid widening
of the prediction intervals. Thus, they preferred the unit root
test for defining the difference terms over minimizing the AICc
(Corrected Akaike’s Information Criterion), which tends to lead
to over differencing. AIC has, however, been used to select the
orders of the AR and MA components in auto.arima model
(Hyndman, 2022a). In this context, the concerns of Kashyap and
Rao (1976) seem to have been addressed. The forecast module of
“R” open-source package developed by Hyndman et al. (2022)
was used to forecast the active fire counts.

Model calibration

The monthly forest type-wise time series data (2003–2017)
were divided into two parts, i.e., “train data” (2003–2014) and
“test data” (2015–2017). The “train data” was used for ARIMA
model building, whereas, the “test data” was used to test the
model performance (Walters, 2022).

The autocorrelation function (ACF) and partial
autocorrelation function (PACF) of “train data” were plotted
to investigate the “seasonality,” whereas, the cumulative
periodogram was plotted to investigate the “periodicity” present
in the time series. The ACF and PACF are the plots of time lags
against autocorrelation values, whereas, periodogram analysis

was carried out in the frequency domain and plotted between
frequency and periodicity.

The Hyndman and Khandakar (2008) algorithm helped
in automatically determining the number of “AR,” “I,” and
“MA” terms for non-seasonal, i.e., p (AR), d (I), and q (MA)
as well as seasonal components, i.e., P (AR), D (I), and Q
(MA) of the data. The number of difference terms (d, where
d is 0 ≤ d ≤ 2) were determined by repeated Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test to achieve the “stationarity.”
The algorithm does not search for every possible combination
of different ARIMA terms, rather it uses a step-wise search to
traverse through the model space. All the results were validated
to confirm that the model residuals were white noise (significant
autocorrelation was absent).

In the univariate model, only the monthly fire data
from 2003 to 2017 were considered, whereas, in model with
regressors, temperature and dry days (2003–2017) were also
considered for forecasting forest active fire counts [in the Indian
context dry days and temperature are important forest fire
drivers (Kale et al., 2017)].

We used “xreg” argument under auto-arima function in R
to consider regression errors for forecasting (Hyndman and
Athanasopoulos, 2018). The overall functioning of ARIMA
model with regressors is more or less same as the standard
regression process.

Model validation

The best ARIMA model obtained was subjected to
validation. This was achieved by observing the significant
level of residuals of ARIMA model through plotting ACF,
PACF, and cumulative periodogram, and by conducting the
Portmanteau test (L-Jung Box test) (Box and Pierce, 1970;
Ljung and Box, 1978; Harvey, 1993; Coghlan, 2018; Hyndman
and Athanasopoulos, 2018). The insignificant ACF, PACF, and
cumulative periodograms were desired for valid forecasts. The
Portmanteau test was conducted based on the number of lags as
suggested by Hyndman and Athanasopoulos (2018). Since data
had seasonal components, the number of lags was equal to 2 m,
where m is the period of seasonality [12 (monthly) in the present
research]. The hypothesis was tested by analyzing p-values. The
higher p-values (>0.05) depicted that the residuals were not
distinguishable from white noise series, i.e., there was no serial
correlation present (Hyndman and Athanasopoulos, 2018).

Post model validation, forest fires were forecasted for
the year 2015 onward. The original (test data) vs. forecasted
monthly fire were compared for the years 2015–2017 (36 values)
by plotting them within the confidence bands of 80 and 95%
level significance.

To estimate the forecasted fire at the grid level (to be used for
FFR estimation), the percent monthly contribution of each grid
of a particular forest type toward fire occurrence was averaged
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FIGURE 6

Forest fire forecasting based on ARIMA univariate model for Tropical Dry Deciduous Forests (TDDF) Tropical Moist Deciduous Forests (TMDF)
and Tropical Evergreen Forests (TEGF). Blue lines depict forecasted fires and shaded area depicts prediction interval (inner to outer 80 and 95%,
respectively).

for 15 years (2003–2017) and the forecasted fire (for the year
2017) were segregated in the grids in proportion to their average
percentage contribution of fire.

The FFR investigation for the year 2017 was carried out
by taking different gridded themes into consideration. These
included (maximum average monthly temperature, average
number of dry days, monthly average of 15 years, i.e., 2003–
2017), elevation, slope, and vegetation type (Figure 2).

The temperature, dry days, elevation, and slope grids were
classified into 5 classes, i.e., 1. Low 2. Moderate 3. High 4.

Higher, and 5. Highest based on the “Jenk’s natural breaks” in
GIS. The theme-wise frequency ratio was estimated by taking
the ratio of “fire ratio” and “grid ratio” (Lee and Pradhan, 2007;
Pradhan, 2010; Biswas et al., 2015). The “fire ratio” is the ratio of
fire that occurred in a particular class of a theme (for example,
fire occurred in low elevation class in “elevation” theme) and
the total number of fires that occurred in that particular theme
(for example total fire occurred in the elevation theme). The
“grid ratio” is the ratio of the total number of grids present in
a particular class of a theme to the total number of grids present
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FIGURE 7

Comparison of ARIMA univariate model forecast, with test data (2015–2017) for Tropical Dry Deciduous Forests (TDDF) Tropical Moist
Deciduous Forests (TMDF) and Tropical Evergreen Forests (TEGF). The dashed line depicts the original values, solid blue line depicts forecasted
values and shaded area depicts prediction interval (inner to outer 80 and 95%, respectively).

in that theme. The grid-wise FFR for each theme was integrated
to estimate the final grid-wise FFR (Supplementary material 1),
which depicted the fire susceptibility. The higher FFR depicts
higher susceptibility toward forest fire.

The forecasted FFR (2017) was compared with the original
FFR (2017) to understand the variations.

Results

Forest fire incidences

The TDDF, TMDF, and TEGF depicted almost similar
patterns of fire occurrences during different months of the
year. Fire incidences reached the peak during summers and the
trough during rainy seasons. This pattern was repeated year
after year (Figure 3). The forests achieved peak fire during
March/April for all the studied years. No increasing fire trend
was, however, observed for any of the studied forest types. The
highest incidences of fire were observed in TMDF followed

by TDDF. TMDF are prominent in the North-East regions of
India, where shifting cultivation is prevalent in pockets, thus
the anthropogenic fire incidences are rampant. The TDDF are
prominent in the Deccan Peninsula and the semi-arid regions
of India which are warmer and thus the fire incidences are
high, particularly during extreme climate events. The TEGF had
comparatively lesser fire events as forest floors were not as dry
as TDDF and TMDF.

The maximum average temperature had significant
seasonality with not much variation in patterns for TDDF
and TMDF, whereas, fluctuations were observed in TEGF,
particularly in the year 2009, when the temperature reached
minimum among all the studied years (Figure 3). The number
of dry days was maximum in TDDF, whereas, the range of dry
days was smaller for TEGF as compared to TDDF and TMDF
(Figure 3).

The ACF of forest fires exhibited a gradual decay, which
indicated higher autocorrelation among the subsequent lags
rather than the lags at the distal end of the time series. The ACF
had a sinusoidal pattern which depicted seasonality. Significant

Frontiers in Forests and Global Change 10 frontiersin.org

https://doi.org/10.3389/ffgc.2022.882685
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-882685 October 19, 2022 Time: 15:25 # 11

Kale et al. 10.3389/ffgc.2022.882685

FIGURE 8

Residual Autocorrelation function (ACF), residual partial autocorrelation function (PACF) and cumulative periodogram (CP) of residual for ARIMA
model with regressors (i.e., temperature and dry days) for Tropical Dry Deciduous Forests (TDDF) Tropical Moist Deciduous Forests (TMDF) and
Tropical Evergreen Forests (TEGF).

TABLE 2 Correlation [coefficient of determination (R2)] between original and forecasted monthly fire values from 2015 to 2017.

ARIMA (univariate) First year (2015)
forecast

Second year (2016)
forecast

Third year (2017)
forecast

Overall (all 3
years) forecast

TDDF 0.94 0.76 0.88 0.64

TMDF 0.98 0.99 0.67 0.89

TEGF 0.97 0.95 0.89 0.89

ARIMA (with Regressors) First year forecast Second year
forecast

Third year forecast All 3 years

TDDF 0.95 0.73 0.86 0.65

TMDF 0.98 0.97 0.66 0.88

TEGF 0.98 0.96 0.91 0.89

autocorrelation (both positive and negative) was present even
upto the time lag of 100, which is suggestive of strong seasonality
(Figure 4). Clear PACF peaks were observed in TDDF, TMDF,
and TEGF (Figure 4). This is suggestive of the number of
AR terms that may be required in the ARIMA model. All the
forests had significant periodicities, which were reflected in the
cumulative periodogram plots (Figure 4). On many instances,
the periodicities crossed the limit of the significance range,
which was at 95% level. Periodicities in the data were subjected
to spectral analysis in the frequency domain rather than the time

domain. The “cumulative periodogram” depicted the presence
of significant periodicities in all the forest types.

Autoregressive integrated moving
average models and their
intercomparison

A univariate ARIMA model for TDDF, TMDF, and TEGF
was developed using auto.arima function. The best model
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FIGURE 9

Forest fire forecasting based on ARIMA with regressors (temperature and dry days) model for Tropical Dry Deciduous Forests (TDDF), Tropical
Moist Deciduous Forests (TMDF) and Tropical Evergreen Forests (TEGF). Blue lines depict forecasted fires and shaded area depicts prediction
interval (inner to outer 80 and 95%, respectively).

obtained using Hyndman-Khandakar algorithm had p,d,q, and
P,D,Q-values of 0,0,1, and 2,1,0 for TDDF; 0,0,1, and 2,1,1 for
TMDF and 1,0,0 and 2,1,2 for TEGF, respectively (Table 1
and Supplementary material 2). After applying the model,
the residuals had insignificant autocorrelation and partial
autocorrelation for most of the time lags for all the forest
types (Figure 5). The cumulative periodogram also depicted
insignificant periodicities (Figure 5).

The Portmanteau test (L-Jung box test) depicted that
the residuals were not distinguishable from white noise, i.e.,
there was no serial correlation present (P > 0.05) (Table 1).
Forecasting was carried out using “train” data (Figure 6). The
plot of the forecasted and original fire depicted good agreement
(Figure 7). There was, however, considerable variation between
the original and forecasted values for TDDF during the year
2015, and the peak original fires were not in either 80 or 95%
confidence bands. This was revived in 2016 and then in 2017.
The TMDF exhibited good agreement between original and
forecasted fires for the years 2015 and 2017; however, for 2017 a

shift was observed during the peak fire months. The TEGF had
a better agreement between original and forecasted fires in all
the studied years. During the year 2017, however, there was over
prediction of fire. The non-fire season active fire counts were in
good agreement with forecasted fire for all the years and all the
forest types.

ARIMA model with regressors considered temperature and
dry days as independent variables. The p,d,q and P,D,Q-values
for these forests types were,0,0,1 and 2,1,0 for TDDF; 2,0,0 and
2,1,1 for TMDF and 1,0,0 and 2,1, 0 for TEGF, respectively
(Table 1 and Supplementary material 2). The residuals had
insignificant autocorrelation and partial autocorrelation for
all the forest types and the cumulative periodogram depicted
insignificant periodicities (Figure 8). Portmanteau test also
depicted that residual series was not distinguishable from white
noise (Table 1).

Not much variation in R2 between original and forecasted
forest fires was observed for the univariate ARIMA model and
ARIMA model with regressors for all the forest types (Table 2).
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FIGURE 10

Comparison of ARIMA with regressors (temperature and dry days) model with test data (2015–2017) for Tropical Dry Deciduous Forests (TDDF),
Tropical Moist Deciduous Forests (TMDF), Tropical Evergreen Forests (TEGF). The dotted line depict the original values, solid blue line depicts
forecasted values and shaded area depicts prediction interval (inner to outer 80 and 95%, respectively).

ARIMA model with regressors, however, had fluctuating
minimum active fire counts during the non-fire season, which
were smooth in the univariate model. This resulted in negative
forecasted values (Figure 9). The overall trend of forecasted fire
was more or less similar in both models (Figure 10).

On comparing the performance of the univariate ARIMA
model and ARIMA model with regressors, no major difference
was observed when overall model performance was concerned.
A better agreement between forecasted and original active fire
counts was observed for the year 1 for TDDF and TEGF
when ARIMA model with regressors was used. For TMDF
equal performance for year 1 was observed with both the
models. Except for TDDF, the performance of both the models

deteriorated from years 1 to 3. The agreement (R2) between
the original and forecasted fires for the third year (2017) for
TDDF and TMDF was superior in the univariate ARIMA model,
whereas, for TEGF it was superior in the ARIMA model with
regressors (Table 2). Among all the studied forests the third
year (2017), forecast for TMDF was superior with the univariate
model (Table 2).

Forest FFR provided information about fire susceptibility.
For most of the forests, FFR ranged between 0 and 10. Higher
FFR was depicted in the month of January, October, and
December. North-East and Deccan Peninsula regions frequently
depicted higher FFR in different months of the year. March
and April were the prominent fire months; however, FFR did
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FIGURE 11

Original and forecasted forest fire frequency ratio (FFR) for January, February, March, April, May, June, October, November and December 2017
Biogeographic zone-wise (Rodgers and Panwar, 1988; Rodgers et al., 2000).

not increase significantly as the fire was well spread rather
than clumped in specified regions. In May, FFR reduced in the
central Deccan Peninsula and parts of North-East, which again
increased in June in the central Deccan Peninsula. In October,
high FFR was reported in the same region.

The original and forecasted FFRs were in good agreement
for different months of the year 2017 (Figure 10). In March and
May, there was underestimation of FFR in the central region
of the Deccan peninsula, whereas, overestimation was observed
in North-East in May. Some parts of the Deccan Peninsula
had higher FFRs in October, which were also depicted in the
forecasted FFR. In November, overestimation and in December
underestimation were observed in the North-East region. For
high and very high categories, original and forecasted FFRs were
in good agreement (Figure 11). The FFRs were not forecasted
for rainy season, i.e., July to September.

Discussion

The time series forecasting provides the flexibility to
investigate the univariate as well as multivariate time series
where the dynamic relationship of different variables are
investigated. We investigated the univariate ARIMA model
and ARIMA model with regressors. The univariate ARIMA

is a single equation model which relates the future and past
observations of a given time series, whereas, the ARIMA
model with regressors is also a single equation model but also
takes into consideration explanatory variables. It is based on
the assumption that explanatory variables affect the response
variables but not vice versa.

A multivariate ARIMA model is an n equation n variable
linear model that relates to past values of different variables;
thus, the variables relate dynamically in a closed loop system
(Jones et al., 2009). As dry days and temperature used in the
present study are causal variables of forest fire and vice versa
is not true, i.e., forest fires do not cause variations in seasonal
temperature and number of dry days (at least at regional scales),
we found a single equation model with exogenous variable more
appropriate for our research.

Even when multivariate time series models provide greater
flexibility to investigate the dynamic relationships in different
variables time series, on many occasions, it is practically difficult
to find seamless data for multiple variables for a significant
amount of time. This is where the univariate models are found
useful as the data requirement is limited just to the single
variable in question. As we had seamless time series available
for dry days, temperature, and active fire, we experimented
both with the univariate model and the model with regressors.
We obtained near similar results with both the models and
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finally preferred the univariate model for forecasting forest fires
considering the computational gains and parsimony. It would,
however, be important to investigate the twofold modeling
approach across different geographical set-ups to validate the
findings of the present research.

It is worthwhile to argue for not using the “count” time series
model even when the fire data was a “count” data. “Count” time
series models are generally used for rare events. Typically, such
models assume that the events are independent of time and thus
they are memory-less.2 Wildfire has a well-defined seasonality
in India. Further, the fire events are not “independent,” for
example, during an extreme climate event, fire incidences are
significant, but in the immediate next year fires are diminished
mostly due to less availability of fuel (as it was consumed by
fire in the previous year and could not be replenished through
regeneration). It is therefore we preferred the regular ARIMA
model to “count” time series models.

Some studies, for example by Albertson et al. (2009), used
the probit model to consider the chance of wildfire breaking
out on a given day. Such models are useful in predicting
the presence or absence of fire on a given day. The authors
could correctly predict five out of seven fires in a typical year.
Our study was based on the monthly time series data, and
hence such a model was of limited use; however, we believe
that the model may be useful in estimating the probability
of occurrence of fire on a particular day, i.e., on a holiday
(as studied by the authors), particularly, in the set-up where
forests have significant anthropogenic pressure. Kadir et al.
(2020) used the ARIMA model to predict the hotspots in the
Riau province of Indonesia. They could accurately forecast the
hotspots for upto 5 months using the ARMA model. They have
not used any explanatory variables for the occurrence of fire.
We also believe that the univariate model may be extremely
useful when monthly forest fire forecasting is the objective
as the computation cost of regressors can be avoided. In the
present research, the performance of univariate and model with
regressors was near similar; however, for 1 year ahead, the
forecast model with regressors was found slightly superior. The
model with regressors may further be useful in studying the
time series at weekly or daily time steps as the effect of climate
variables on early or late occurrence of fire season can be studied
objectively.

Viedma et al. (2018) used the longitudinal negative
bionomial and the ZINB mixed models to model the number
of fires. The main purpose of using these models was to handle
the overdispersion (variance greater than the mean) or excess
of 0 values present in the data. They experimented both with
univariate as well as models involving explanatory variables. In
the present research, no overdispersion or excess of 0 values was
observed, and hence the ZINB model was not of much use.

2 http://utdallas.edu/$\sim$pxb054000/code/count-examples/
ECTS-I-2010.pdf

Different studies have used auto.arima algorithm for
the identification of the best ARIMA model for forecasting
(Choudhary et al., 2022; Sharmin et al., 2022). Our study as
well as the auto.arima algorithm worked well, and the p,d,q, and
P,D,Q parameters obtained could provide a comparable active
fire forecast with that of original active fire counts.

The fire forecast in the present research was based on 15
years of available active fire data from MODIS. During this
time, forests owing to climate extremities encountered many
fluctuations in fires, particularly in the years 2004, 2009, and
2012, thus the fire incidences considered in the present research
were a mix of normal and extreme years, and no separate
scenario was formed for normal and extreme years. This is
justifiable because 1. Extreme events have become so frequent
that they need to be included in TSA for meaningful forecasting
and 2. It is important to consider all available data to have
continuity in time series.

Biswas et al. (2015) found the fire susceptibility in Myanmar
in the protected and non-protected areas and suggested
that human activity explained most of the variance in burn
probability. They suggested that fuel composition is one of
the most important factors in determining fire susceptibility.
Our study is in partial agreement with theirs. The forest
fires in India are mainly anthropogenic. In some pockets of
North-East India, shifting cultivation is a major driver of
forest fires in the fire season. This has resulted in higher fire
susceptibilities in these regions. We believe that climatic factors,
i.e., temperature and dry days form conducive conditions for
the fire to occur. It was observed that for lower FFRs, percent
average contribution of vegetation type was maximum (25%),
whereas, other causal drivers, i.e., elevation, slope, temperature,
and dry days contributed 20, 22, 17, and 16%, respectively. As
against this for higher FFRs, the temperature and dry days were
the main causal drivers. In the month of January, the dry days
and temperature together contributed around average 70% of
the total FFR in the highest (15–20) FFR region. A similar trend
was observed for all the months from February to April, which
are the prominent fire months in India. This clearly indicates
that the dry days and temperature are important fire drivers
in India, and the forests remain less susceptible (despite the
availability of fuel) to fire when these drivers are not significant
contributors.

Among all the drivers studied, the average FFR from January
to April (prominent fire months) was maximum for dry days
followed by the slope. Except for elevation, all the drivers
depicted decreasing trend from January to April and clumped
around the value of 1 in the month of April. This indicates that
during the start of the fire season, different drivers contribute
maximum in defining the fire susceptibility, whereas, during the
late fire season they have a minimum contribution.

In this research, we have explored the possibility of using
FFR as an indicator by taking forecasted forest fires as the input.
The forecasted active fire counts obtained were at the level of
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forest types and not at the level of 25 km × 25 km grid. This is
because there may be instances when there are no incidences of
fire at the grid level, thus the continuous data are not available,
and the forecasting may not be meaningful.

We found both univariate ARIMA model and ARIMA
model with regressors as potential tools to forecast forest fires.
We preferred the univariate model due to parsimony. There is,
however, a need to further investigate the model performance
using high temporal and spatial resolution datasets.

The TSA is a data-intensive science, and better results are
expected when fire data for a significant number of years is
available. This also helps in validating the model with a larger
test dataset. The correct MODIS active fire data is available
since 2003 and there is a need to compile the forest fire
data prior to 2003 from different available sources to further
improve the forecasts.
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