Skip to main content

MINI REVIEW article

Front. For. Glob. Change, 25 July 2022
Sec. Forest Management
This article is part of the Research Topic Deforestation, Land Use and Climate Change: Interdisciplinary Approaches to Sustainability View all 5 articles

On the investigation of an economic value for forest ecosystem services in the past 30 years: Lessons learnt and future insights from a North–South perspective

  • Department of Economics, Management and Territory, University of Foggia, Foggia, Italy

Since the publication of the Millennium Ecosystem Assessment, the research of ecosystem services valuation has seen an exponential growth with a consequent development, improvement, and spread of different qualitative and quantitative methods. The interest is due to the benefits that ecosystem services provide for human wellbeing. A large part of ecosystem services is provided by the so-called forest ecosystem services (FES) in both protected and non-protected areas. The aim of the present study is to investigate key variables driving the FES value at the global level. These include, other than socio-economic information, the ecosystem services' quality condition and the location of the study. The research uses a meta-regression of 478 observations from 57 studies in the time span 1992–2021 retrieved from the online Ecosystem Service Valuation Database (ESVD). The main results show that both the ES quality condition and spatial aspect are relevant factors in determining the estimated value of FES, suggesting the existence of a difference in the forest value from a North-South perspective. The investigation of an economic assessment of FES is advised as a key research trend in the immediate future. This allows to close the gap between the global North and South and favors the implementation of adequate socio-economic and environmental governance for an efficient forest management.

Introduction

Ecosystem services (ES) provide different benefits to the human being (Costanza et al., 1997, 2014; Daily, 1997; Faith et al., 2010; Pascual et al., 2010). ES are defined by the Millennium Ecosystem Assessment (MA, 2005) as “the direct and indirect contributions of ecosystems to human wellbeing.” Based on the type of benefits provided, ES can be split into groups. At the international level, three different classifications are generally investigated: the Millennium Ecosystem Assessment (MA, 2005); the Economics of Ecosystems and Biodiversity (Kumar, 2010) and the Common International Classification of Ecosystem Services (CICES, 2021). According to the MA classification, ES are considered according to four categories: provisioning, regulating, cultural, and supporting. Provisioning services represent the benefits obtained from the natural environment (e.g., drinking water, timber, wood fuel, and natural gas), while regulating services refer to ecological processes that mitigate natural phenomena (e.g., erosion and flood control regulation, climate regulation, and pollination). Cultural services are considered as non-material benefits, contributing to the cultural, intellectual, and creative development of people and communities (e.g., cultural, spiritual, and recreation). Supporting services identify natural process services (e.g., nutrient and water cycling, primary production), which provide life on Earth. Without supporting services, ES would be unable to provide provisioning, regulating, and cultural services.

Based on its biophysical characteristics, each ecosystem provides part or all of the above-mentioned services. Three ecosystem categories are considered worthy of investigation by the international debate such as terrestrial, fresh water, and marine ecosystems (Maes et al., 2016). Among terrestrial ecosystems, forests cover about 31% of the global surface (FAO and UNEP., 2020). Approximately 20% of this amount is currently under some form of legal protection (World Resources Institute, 2021)1 such as protected natural areas (PA) (IUCN, 2008), such as natural reserves, wilderness areas, or national parks. Nowadays, PA fulfill the aim to reduce habitat loss and fragmentation (Rylands and Brandon, 2005; Lindenmayer et al., 2006; Ortiz-Lozano et al., 2009), other than ensuring the correct functioning and efficient use of resources for biodiversity protection (Costa et al., 2003; Lindenmayer et al., 2006; Galpern et al., 2011; Panday et al., 2015). Since 2015, while PA have increased at the global level (FAO., 2010), this trend has not been observed in areas with particularly high ecological values. The latter appears often under- or inadequately preserved (Joppa and Pfaff, 2009; Watson et al., 2014). In addition, although it is widely recognized the general importance of forests on human beings, not all forests share the same significance in terms of provision of ecological functions (Foley et al., 2007; Gibson et al., 2011). Primary forests are defined by the Global Forest Resource Assessment (FRA) (FAO., 2015) as: “naturally regenerated forest of native species where there are no clearly visible indications of human activities and the ecological processes are not significantly disturbed. Key characteristics include: they show natural forest dynamics, such as natural tree species composition, occurrence of dead wood, natural age structure, and natural regeneration processes; the area is large enough to maintain its natural characteristics; there has been no known significant human intervention or the last significant human intervention was long enough ago to have allowed the natural species composition and processes to have become re-established.” Primary forests cover 26% of the global forest area (FAO., 2015), although in the last 30 years this latter suffered a decrease by 2.5% (Keenan et al., 2015).

Forest ecosystem services (FES) can be defined as the benefits provided by forests to the society such as: carbon sequestration, water purification, timber production, soil conservation, flood regulation (Gibson et al., 2011; Molina et al., 2012; Brown et al., 2013; Yamazaki et al., 2013; Sorribas et al., 2016; Ellison et al., 2017). While it is acknowledged the importance of ecosystems for the global society, their economic value is central to the scientific debate since most benefits lack of a market price (Lant et al., 2008; Turner et al., 2010; Johnson et al., 2012; Ninan and Inoue, 2013a; Froger et al., 2015). A consequent mis-match between demand and supply of ES arises, thus supporting the case for an ES valuation. As for FES, these provide society with a multitude of values in the form of both private and public goods. As a result, their management should be optimized (i.e., assessed) to consider all positive and negative side effects and increase the overall contribution of forests to the collective wellbeing (Schroder et al., 2016). The ES assessment, which proceeds with the identification of externalities and the consequent computation of monetary costs and benefits, leads the policy maker to choose between relevant alternatives (i.e., ES valuation) for an efficient management of ecosystems. Pisani et al. (2021) argue that improving and spreading the monetary valuation of forest and protected areas may be a viable solution to guarantee an efficient management of ecosystems, ES, and biodiversity.

Over time, different valuation techniques have attracted the attention of scholars and scientists. These techniques consider price and value estimation methods. The former is also known as market price methods; the latter as non-market valuation methods (Bateman et al., 2002, 2010; Pearce et al., 2006; Nelson and Kennedy, 2009; Christie et al., 2012; Baker and Ruting, 2014; Freeman et al., 2014). In price estimation methods, the economic value is an expression of the market price of the goods under study or similar goods (e.g., market price, restoration cost, damage cost avoided, shadow price, or mitigation cost) (Wilson and Carpenter, 1999; Hussain and Badola, 2010; Bellver-Domingo et al., 2018; Chen and Wu, 2018; Markandya et al., 2018). In contrast, value estimation methods refer to consumer preferences and the theory of value of Lancaster (1966). This theoretical approach, based on the principle that all goods have their own features or attributes, takes into account the utility (i.e., the level of satisfaction) provided by each attribute associated with the consumption of given quantities of the goods (Monica et al., 2008; Baker and Ruting, 2014). Generally, value estimation models make use of direct or stated preferences such as contingent valuation (Champ et al., 2005; Tao et al., 2012; Cook et al., 2020) and choice experiment approaches (Scarpa et al., 2007; Shen et al., 2015; Alcon et al., 2020; Andrews et al., 2021; Ureta et al., 2021) and indirect or revelated preferences such as hedonic price (Lansford and Jones, 1995; Sander and Haight, 2012; Catma, 2020; Moore et al., 2020), travel cost (Alberini and Longo, 2006; Bertram and Larondelle, 2017; Cetin et al., 2021; Mäntymaa et al., 2021), and defensive expenditure models (Costanza et al., 2008; Zhang and Mu, 2018; Akmal and Jamil, 2021).

In addition, the benefit transfer method, which does not belong to the above classification, considers the economic value as a proxy from the assessment result of similar studies (Robinson, 2002; Liu and Costanza, 2010; Johnston et al., 2015; Xu et al., 2020; Zhou et al., 2020).

Given the above, forests contribute to human health (Foley et al., 2005; Díaz et al., 2019), satisfaction of materials (e.g., food, water and timber) and psychological needs (Frumkin, 2001; Wilson, 2001). However, the increase of anthropological pressures threatens the ecosystem health and, consequently, the ecosystems' capacity to provide quality benefits to the society (Maller et al., 2008; Dakubo, 2011; Lemieux et al., 2012). Several studies have investigated the drivers that influence the economic value of ES (Costanza et al., 1997, 2014; Zhongxin and Xinshi, 2000; Sutton and Costanza, 2002; de Groot et al., 2012). Focusing on FES, different studies both at global (Ninan and Inoue, 2013a; Acharya et al., 2019) and national levels (Ninan and Inoue, 2013b; Grammatikopoulou and Vačkárová, 2021; Taye et al., 2021; Kang et al., 2022) suggest that bioma, ES type, and GDP have a significant influence on their economic value. But none of these studies consider an ES quality condition and the spatial factor (i.e., being in the North or South of the world) as key explanatory variables of the FES value.

The present paper aims to investigate potential drivers of the FES value at global level through a meta-regression analysis. It employs a panel of 57 studies and analyses a sample of 478 observations retrieved by the Ecosystem Service Valuation Database (Ecosystem Service Valuation Database, 2021)2 (de Groot et al., 2012). The latter is one of the most widely used database on ecosystem service valuation (ESV) and comprises data from 1992 to 20213.

The remainder of the work is structured as follows: straightforward, we describe the methodology; next, we offer a description of the obtained results; and finally, the last section discusses and concludes.

Methodology

The construction of the dataset and the consequent inferential analysis follows three steps: (i) creation of a database identifying relevant FES articles provided by the ESVD; (ii) addition of variables useful for the meta-regression analysis which are not present in primary studies; and (iii) estimation of the regression model.

Data collection

From the ESVD, all studies are selected according to the following categories: “Tropical Forest”, “Temperate Forest,” or “Woodland and Shrubland.” The initial dataset comprises 1,654 observations from 140 studies. After a screening process4, a sample of 569 observations from 58 articles is obtained.

Dataset compilation

While the ESVD provides adequate information about ES valuation, it does not contain socio-economic details of the country where the studies were conducted. To overcome this lack, data such as population density and GDP from the World Bank online resources5 are added. Also, to harmonize the latter information with the ESVD data, a dataset normalization process to the base year 2020 is performed. Finally, to include the spatial dimension, the sample follows the North–South division proposed by the International Monetary Fund (IMF, 2021) and the United Nations (UN)6 This is based on GDP and current prices and considers three types of economies: advanced, emerging and developing economies7 and emerging and developing economies8. Therefore, in the present study, the North is represented by advanced economies and the South consists of emerging and developing economies, respectively.

Meta-regression model

To identify and handle potential outliers the interquartile range criterion is useful for the purpose of the analysis (Schwertman et al., 2004). According to this criterion, exceptionally small outliers by Q1–1.5*IQR and exceptionally large outliers by Q3 + 1.5*IQR are identified, where IQR = Q3–Q1 and Q1 and Q3 are the first and third quartiles of the value distribution, respectively. This process drops further 91 observations. The final sample for the meta-regression analysis comprises 478 observations from 57 studies.

Table 1 shows the dependent (y) and explanatory (x) variables included in the meta-regression model. The dependent variable (y) is a vector of US$ per hectare per year expressed at the 2020 baseline price year. In terms of explanatory variables, the model considers socio-economic characteristics (xsec), study characteristics (xsc), and ES or bioma characteristics (xbc).

TABLE 1
www.frontiersin.org

Table 1. Variables included in the model.

Since the ES classification offered by the ESVD follows the TEEB classification, the ES or bioma characteristics (xbc) are grouped into six classes: provisioning services such as provisioning timber biomass (raw materials) and other provisioning (food, water, genetic resources, medicinal resources, and ornamental resources); regulation services such as atmospheric regulation (air quality regulation, climate regulation, and moderation of extreme events) and other regulation (regulation of water flows, waste treatment, erosion prevention, maintenance of soil fertility, pollination, and biological control); maintenance services (maintenance of life cycles and maintenance of genetic diversity); and cultural services (aesthetic information, opportunities for recreation and tourism, inspiration for culture, art and design, information for cognitive development, existence, and bequest values).

The study characteristics (xsc) consider the following valuation methods: benefit transfer (value transfer); cost-based (damage cost avoided, defensive expenditure, opportunity cost, replacement cost, and restoration cost); price-based (market price); production-based (net factor income, production function, and public pricing); stated preference (choice experiment, contingent valuation, and group valuation); and revealed preference (hedonic price and travel cost) and other (other)9.

The functional form to estimate the meta-regression model is a semi-log function as specified in Equation 1:

log(yi)=α+βsecxseci+βscxsci+βbcxbci+εi    (1)

where α represents the constant term, β vectors are the coefficients of the independent variables to be estimated, ε is a vector of independently and identically distributed residuals, and i is the considered study.

Results

Table 2 shows the estimated results of the inferential model. Since the Breusch–Pagan test (109.52 p-value = 0.000) is statistically significant and rejects the null of a homoskedastic model10, the re-estimated model in Table 2 uses robust standard errors.

TABLE 2
www.frontiersin.org

Table 2. Estimated results of the model with robust standard errors.

In terms of socio-economic characteristics, different estimated coefficients show a statistically significant effect. First, the value of FES was between the North (–) and South (+) of the world. This increases if studies are carried out in the South and vice versa. Second, the scale (i.e., when studies are conducted at the national level) positively affects the economic value of FES. Opposite results appear for population density, as it negatively affects the FES value.

As for the study characteristics, the variable year presents an estimated negative impact on the economic value as suggested by the international literature (Chaikumbung et al., 2016; Taye et al., 2021). As a result, more recent studies value FES less than older studies. This may be due to some refinement of statistical software employed in the analyses. In addition, the use of production-based methods, cost-based methods, and the benefit transfer tends to have a positive impact on the estimated economic value of FES compared to reference methodologies (revelated methods and other methodologies).

In terms of biome, Temperate FES shows a positive effect on the estimated economic value compared to Woodland and Shrubland FES. A similar result is obtained by atmospheric regulation. Finally, the main results suggest that compared to a high (quality) condition, the magnitude of a low ES quality condition is higher than that provided by a medium (quality) condition on FES values.

Discussion and conclusion

The present study offers a meta-regression analysis of scientific articles published during the time period 1992–2021 dealing with the economic valuation of FES. Given the importance of ES for the sustainable growth of the actual society, the main aim of the present work provides an overview of the existing difference between the global North and South in terms of the economic value of FES.

Main findings show the existence of this difference in favor of Southern countries. Hence, emerging and developing economies as countries belonging to the South of the World seem to have a larger FES economic value than advanced economies. This may be due to a number of reasons mainly cultural or structural, but this goes beyond the scope of the present research.

The second novelty factor with respect to the existing literature, is to consider the quality condition of ES. Estimated results show as this aspect presents contrasting effects on the FES value. Generally, the presence of a high-quality condition, for example, provides a positive effect compared to a medium one. Several studies on marine ES (Andreopoulos et al., 2015; Dias and Belcher, 2015; Remoundou et al., 2015) or FES (Owuor et al., 2019), associate a high economic value to these ES when their quality is good/high. In contrast, estimated results show how the magnitude of low ES quality condition is higher than that provided by a high (quality) condition on FES values. An argument in support of this result is that people perceive FES as a valuable resource when it is scarce or when its quality is low. Also, a positive effect on the FES value is provided by the valuation of atmospheric regulation. This result may be due to the rising interest of the international community for climate change issues since the publication of the first report of the Intergovernmental Panel on Climate Change (IPCC) (Acharya et al., 2019; Taye et al., 2021). An exception to the above analysis is the GDP per capita which is not statistically significant (Taye et al., 2021; Kang et al., 2022). From a North–South perspective, the present study asserts the existence of a difference in the economic value between southern and northern FES. From an ecological point of view, this outcome is supported by the presence of primary forests (almost 80%) (FAO., 2015) which are predominant in the global South. Nonetheless, the global South performs the highest deforestation rate (Hansen et al., 2013; FAO., 2015). A viable solution to reduce deforestation rates in primary forests of the global South may be to increase PA, both in size and number, as these forests often appear under- or inadequately preserved (Joppa and Pfaff, 2009; Watson et al., 2014). It is worth noting that although the estimated coefficient of PA is not statistically significant, this explanatory variable has contrasting results also in the international literature (Getzner and Islam, 2020; Grammatikopoulou and Vačkárová, 2021; Taye et al., 2021). As a consequence, an increase in total forest areas is also desirable to allow the creation of PA which are worthy of ecological importance (Morales-Hidalgo et al., 2015). To achieve this, not only adequate economic incentives should be provided in support of an efficient management of FES, but also the recognition of multiple and plural values offered by PA to local communities through continuous learning and participatory practices (Martin et al., 2014). These activities would reconcile PA with equity and conservation goals by letting the members of local communities to create an authentic participatory decision-making approach through the assessment of their views, reduce ecological and economic vulnerabilities and increase distributional effects from biodiversity and conservation strategies. Governing PA as a socio-ecological system as a whole creates opportunities to overcome the traditional dichotomy between humans and nature, and promotes environmentally friendly justice prospects to help in creating a resilient framework in the global South (Loos, 2021).

Finally, this research is not without limitations. First, the choice to use certain variables could have limited the number of studies to consider in the dataset. For example, the quality of ES is retrieved as a normalized value from the ESVD database. The addition of other information about this variable would have been impossible to perform and/or adapt to the database. Second, the forest size (even if present in other studies) was omitted due to a high number of missing observations.

Nonetheless the above limitations, the present study suggests that the spatial dimension and ES quality are important drivers contributing to the current debate on the economic valuation of FES. This would help the policy maker to develop ad hoc policies (e.g., financial incentives such as payment for ecosystem services schemes) and tools based on the geographic location of the area under study and its territorial characteristics. As a result, further investigations of economic assessments of FES are advised as a key research trend in the immediate future.

Author contributions

CD and PP supervised this work. DP provided the writing, methodology, data handling, investigation, and visualization of the present work. All authors approved the submitted version.

Funding

Ph.D program in Economics, Culture, and Environmental, 36° cycle; funded by the Gargano National Park (protocol n.0017130—III/6 of 20.05.2020 and Rector's Decree n. 631/2020) and awarded to DP.

Acknowledgments

We kindly acknowledge all relevant insights and comments received by the reviewers who helped us improving the final version of the manuscript. Any remaining errors are the sole responsibility of the authors.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Footnotes

1. ^https://www.wri.org/

2. ^https://www.esvd.net/login/esvd

3. ^The use of the ESVD database facilitated the building of the final dataset. This is because it provides the economic value of ES normalized to the same value unit such as the US$ per hectare per year in 2020 price ($/ha/year).

4. ^Double counting (n = 24); publication year before 2000 (n = 26); global economic valuation (n = 5); lack of any economic valuation (n = 473); lack of protection status (n = 132); and lack of ES quality (n = 425).

5. ^https://data.worldbank.org/

6. ^https://www.imf.org/external/datamapper/NGDPD@WEO/WEOWORLD/ADVEC

7. ^Not present in the list of least developed countries (LDC) of the UN.

8. ^Present in the list of LDC of the UN.

9. ^This label is provided by default by the ESVD database.

10. ^We checked for multicollinearity by examining the coefficients of the variance inflation factor (VIF) as follows: North: 4.142; Temp: 4.274; Trop: 4.138; Provisioning_other: 2.701; Regulation_atmospheric: 2.449; Regulation_other: 4.063; Mantainence: 1.198; Cultural 2.718; Scale national: 2.612; Partially protected 2.772; Protected: 3.272; ES condition low: 1.972; ES condition medium: 3.253; Price Based: 6.442; Production Based: 2.124; Cost Based: 5.117; State Preference based: 3.060; Benefit Transfer: 1.979; Year: 2.110;Population density: 2.025; GDP: 2.146. In a subsequent step, we removed the variables with a VIF>5.0 (Menard, 2001; James et al., 2013).

References

Acharya, R. P., Maraseni, T., and Cockfield, G. (2019). Global trend of forest ecosystem services valuation – an analysis of publications. Ecosyst. Serv. 39, 1–11. doi: 10.1016/j.ecoser.2019.100979

CrossRef Full Text | Google Scholar

Akmal, T., and Jamil, F. (2021). Health impact of solid waste management practices on household: the case of metropolitans of Islamabad-Rawalpindi, Pakistan. Heliyon 7. doi: 10.1016/J.HELIYON.2021.E07327

PubMed Abstract | CrossRef Full Text | Google Scholar

Alberini, A., and Longo, A. (2006). Combining the travel cost and contingent behaviour methods to value cultural heritage sites: evidence from Armenia. J. Cult. Econ. 30, 287–304. doi: 10.1007/s10824-006-9020-9

CrossRef Full Text | Google Scholar

Alcon, F., Marín-Miñano, C., Zabala, J. A., de-Miguel, M., and Martínez-Paz, J. M. (2020). Valuing diversification benefits through intercropping in Mediterranean agroecosystems: a choice experiment approach. Ecol. Econ. 171:106593. doi: 10.1016/j.ecolecon.2020.106593

CrossRef Full Text | Google Scholar

Andreopoulos, D., Damigos, D., Comiti, F., and Fischer, C. (2015). Estimating the non-market benefits of climate change adaptation of river ecosystem services: a choice experiment application in the Aoos basin, Greece. Environ. Sci. Policy 45, 92–103. doi: 10.1016/j.envsci.2014.10.003

CrossRef Full Text | Google Scholar

Andrews, B., Ferrini, S., Muench, A., Brown, A., and Hyder, K. (2021). Assessing the impact of management on sea anglers in the UK using choice experiments. J. Environ. Manage. 293:112831. doi: 10.1016/j.jenvman.2021.112831

PubMed Abstract | CrossRef Full Text | Google Scholar

Baker, R., and Ruting, B. (2014). Environmental Policy Analysis: A Guide to Non-Market Valuation. Canberra (AU): Productivity Commission.

PubMed Abstract | Google Scholar

Bateman, I. J., Carson, R. T., Day, B., Hanemann, W. M., Hanley, N., Hett, T., et al. (2002). Economic Valuation with Stated Preference Techniques: A Manual. Cheltenham: Edward Elgar Publishing. doi: 10.4337/9781781009727

CrossRef Full Text | Google Scholar

Bateman, I. J., Fezzi, G. G. M., Atkinson, C., and Turner, G. K. (2010). Economic analysis for ecosystem service assessments. Environ. Resour. Econ. 48, 177–218. doi: 10.1007/s10640-010-9418-x

CrossRef Full Text | Google Scholar

Bellver-Domingo, Á., Fuentes, R., Hernández-Sancho, F., Carmona, E., Pic,ó, Y., and Hernández-Chover, V. (2018). Monetary valuation of salicylic acid, methylparaben and THCOOH in a Mediterranean coastal wetland through the shadow prices methodology. Sci. Total Environ. 627, 869–879. doi: 10.1016/j.scitotenv.2018.01.303

PubMed Abstract | CrossRef Full Text | Google Scholar

Bertram, C., and Larondelle, N. (2017). Going to the woods is going home: recreational benefits of a larger urban forest site — a travel cost analysis for Berlin, Germany. Ecol. Econ. 132, 255–263. doi: 10.1016/j.ecolecon.2016.10.017

CrossRef Full Text | Google Scholar

Brown, A. E., Western, A. W., McMahon, T. A., and Zhang, L. (2013). Impact of forest cover changes on annual streamflow and flow duration curves. J. Hydrol. 483, 39–50. doi: 10.1016/j.jhydrol.2012.12.031

CrossRef Full Text | Google Scholar

Catma, S. (2020). Non-market valuation of beach quality: Using spatial hedonic price modeling in Hilton Head Island, SC. Marine Policy 115:103866. doi: 10.1016/j.marpol.2020.103866

CrossRef Full Text | Google Scholar

Cetin, N. I., Bourget, G., and Tezer, A. (2021). Travel-cost method for assessing the monetary value of recreational services in the Ömerli Catchment. Ecol. Econ. 190:107192. doi: 10.1016/j.ecolecon.2021.107192

CrossRef Full Text | Google Scholar

Chaikumbung, M., Doucouliagos, H., and Scarborough, H. (2016). The economic value of wetlands in developing countries: a meta-regression analysis. Ecol. Econ. 124, 164–174. doi: 10.1016/j.ecolecon.2016.01.022

CrossRef Full Text | Google Scholar

Champ, P. A., Alberini, A., and Correas, I. (2005). Using contingent valuation to value a noxious weeds control program: the effects of including an unsure response category. Ecol. Econ. 55, 47–60. doi: 10.1016/j.ecolecon.2004.10.011

CrossRef Full Text | Google Scholar

Chen, S., and Wu, D. (2018). A revealed damage cost method to evaluate environmental performance of production: evaluating treatment efficiency of emissions and scaling treatment cost bounds. J Clean Prod 194, 101–11. doi: 10.1016/j.jclepro.2018.04.220

CrossRef Full Text | Google Scholar

Christie, M., Fazey, I., Cooper, R., Hyde, T., and Kenter, J. O. (2012). An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ. 83:67–78. doi: 10.1016/j.ecolecon.2012.08.012

CrossRef Full Text | Google Scholar

Common International Classification of Ecosystem Services (CICES) (2021). Available online at: https://cices.eu/ (accessed July 10, 2021).

Google Scholar

Cook, D., Malinauskaite, L., Davíð*sdóttir, B., and Ögmundardóttir, H. (2020). A contingent valuation approach to estimating the recreational value of commercial whale watching – the case study of Faxaflói Bay, Iceland. Tour. Manag. Perspect. 36:100754. doi: 10.1016/j.tmp.2020.100754

PubMed Abstract | CrossRef Full Text | Google Scholar

Costa, M. H., Botta, A., and Cardille, J. A. (2003). Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia. J. Hydrol. 283, 206–217. doi: 10.1016/S0022-1694(03)00267-1

CrossRef Full Text | Google Scholar

Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world's ecosystem services and natural capital. Nature 387 253–260. doi: 10.1038/387253a0

CrossRef Full Text | Google Scholar

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., et al. (2014). Changes in the global value of ecosystem services. Global Environ. Change 26, 152–158. doi: 10.1016/j.gloenvcha.2014.04.002

CrossRef Full Text | Google Scholar

Costanza, R., Pérez-Maqueo, O., Martinez, M. L., Sutton, P., Anderson, S. J., and Mulder, K. (2008). The value of coastal wetlands for hurricane protection. Ambio 37, 241–248. doi: 10.1579/0044-7447(2008)37[241:TVOCWF]2.0.CO;2

PubMed Abstract | CrossRef Full Text | Google Scholar

Daily, G. C. (1997). Nature's Services: Societal Dependence on Natural Ecosystems. Washington, DC (USA): Island Press.

Google Scholar

Dakubo, C. Y. (2011). Ecosystems and Human Health. A Critical Approach to Eco Health Research and Practice. New York, NY: Springer. doi: 10.1007/978-1-4419-0206-1

CrossRef Full Text | Google Scholar

de Groot, R., Brander, L., van der Ploeg, S., Costanza, R., Bernard, F., Braat, L., and van Beukering, P. (2012). Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61. doi: 10.1016/j.ecoser.2012.07.005

CrossRef Full Text | Google Scholar

Dias, V., and Belcher, K. (2015). Value and provision of ecosystem services from prairie wetlands: a choice experiment approach. Ecosyst. Serv. 15, 35–44. doi: 10.1016/j.ecoser.2015.07.004

CrossRef Full Text | Google Scholar

Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., et al. (2019). Pervasive human-driven decline of Life on Earth points to the need for transformative change. Science 366, eaax3100. doi: 10.1126/science.aax3100

PubMed Abstract | CrossRef Full Text | Google Scholar

Ecosystem Service Valuation Database (ESVD) (2021). Available online: https://www.esvd.net/login/esvd (accessed January 10, 2022).

Google Scholar

Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., et al. (2017). Trees, forests and water: cool insights for a hot world. Glob. Environ. Chang. 43, 51–61. doi: 10.1016/j.gloenvcha.2017.01.002

CrossRef Full Text | Google Scholar

Faith, D. P., Magallon, S., Hendry, A. P., Conti, E., Yahara, T., and Donoghue, M. J. (2010). Evosystem services: evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sustain. 2, 66–74. doi: 10.1016/j.cosust.2010.04.002

CrossRef Full Text | Google Scholar

FAO and UNEP. (2020). The State of the World's Forests 2020. Forests, Biodiversity and People. Rome: FAO.

Google Scholar

Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R., Gibbs, H. K., et al. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32. doi: 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2

CrossRef Full Text | Google Scholar

Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science 309, 570–574. doi: 10.1126/science.1111772

PubMed Abstract | CrossRef Full Text | Google Scholar

Food and Agricultural Organization of the United Nations (FAO). (2015). Global Forest Resources Assessment 2015: How Are the World's Forests Changing? 2nd ed. Rome: FAO, p. 58.

Google Scholar

Food and Agricultural Organization of the United Nations (FAO). (2010). Global Forest Resources Assessment 2010. Main report. FAO Forestry Paper No. 163, Rome, Italy, p. 378.

Google Scholar

Freeman, A. M., Herriges, J. A., and Kling, C. L. (2014). The Measurement of Environmental and Resource Values: Theory and Methods. New York (USA): Routledge. doi: 10.4324/9781315780917

CrossRef Full Text | Google Scholar

Froger, G., Boisvert, V., M'eral, P., Le Coq, J. F., Caron, A., and Aznar, O. (2015). Market-based instruments for ecosystem services Between discourse and reality: an economic and narrative analysis. Sustainability 7, 11595–11611. doi: 10.3390/su70911595

CrossRef Full Text | Google Scholar

Frumkin, H. (2001). Beyond toxicity human health and the natural environment. Am. J. Prev. Med. 20, 234–240. doi: 10.1016/S0749-3797(00)00317-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Galpern, P., Manseau, M., and Fall, A. (2011). Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55. doi: 10.1016/j.biocon.2010.09.002

CrossRef Full Text | Google Scholar

Getzner, M., and Islam, M. S. (2020). Ecosystem services of mangrove forests: results of a meta-analysis of economic values. Int. J. Environ. Res. Public Health 17, 5830. doi: 10.3390/ijerph17165830

PubMed Abstract | CrossRef Full Text | Google Scholar

Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., et al. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381. doi: 10.1038/nature10425

PubMed Abstract | CrossRef Full Text | Google Scholar

Grammatikopoulou, I., and Vačkárová, D. (2021). The value of forest ecosystem services: a meta-analysis at the European scale and application to national ecosystem accounting. Ecosyst. Serv. 48, 101262. doi: 10.1016/j.ecoser.2021.101262

CrossRef Full Text | Google Scholar

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. doi: 10.1126/science.1244693

PubMed Abstract | CrossRef Full Text | Google Scholar

Hussain, S. A., and Badola, R. (2010). Valuing mangrove benefits: contribution of mangrove forests to local livelihoods in Bhitarkanika Conservation Area, East Coast of India. Wetl Ecol Manag 18, 321–331. doi: 10.1007/s11273-009-9173-3

CrossRef Full Text | Google Scholar

International Monetary Fund (IMF) (2021). Available online: http://www.imf.org/en/Home (accessed July 10, 2021).

Google Scholar

International Union for Conservation of Nature Natural Resources IUCN. (2008). Protected areas. Available online at: https://www.iucn.org/theme/protected-areas/about (accessed July 15, 2021).

Google Scholar

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. 1st ed. Berlin: Springer. doi: 10.1007/978-1-4614-7138-7_1

PubMed Abstract | CrossRef Full Text | Google Scholar

Johnson, K. A., Polasky, S., Nelson, E., and Pennington, D. (2012). Uncertainty in ecosystem services valuation and implications for assessing land use trade-offs: an agricultural case study in the Minnesota River Basin. Ecol. Econ. 79, 71–79. doi: 10.1016/j.ecolecon.2012.04.020

CrossRef Full Text | Google Scholar

Johnston, R. J., Rolfe, J., Rosenberger, R. S., and Brouwer, R. (2015). “Benefit transfer of environmental and resource values,” in: The Economics of Non-Market Goods and Resources. Dordrecht, the Netherlands: Springer, p. 14. doi: 10.1007/978-94-017-9930-0

CrossRef Full Text | Google Scholar

Joppa, L. N., and Pfaff, A. (2009). High and far: biases in the location of protected areas. PloS ONE 4, e8273. doi: 10.1371/journal.pone.0008273

PubMed Abstract | CrossRef Full Text | Google Scholar

Kang, N., Hou, L., Huang, J., and Liu, H. (2022). Ecosystem services valuation in China: a meta-analysis. Sci. Total Environ. 809, 151122. doi: 10.1016/j.scitotenv.2021.151122

PubMed Abstract | CrossRef Full Text | Google Scholar

Keenan, R., Reams, G., Freitas, J., Lindquist, E., Achard, F., and Grainger, A. (2015). Dynamics of global forest area: results from the 2015 global forest resources assessment. Forest Ecol. Manag. 352, 9–20. doi: 10.1016/j.foreco.2015.06.014

CrossRef Full Text | Google Scholar

Kumar, P. (2010). The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations. pp.456. Routledge, Taylor & Francis.

Google Scholar

Lancaster, K. J. (1966). A new approach to consumer theory. J. Pol. Econ. 74, 132–157. doi: 10.1086/259131

CrossRef Full Text | Google Scholar

Lansford, N. H., and Jones, L. L. (1995). Recreational and aesthetic value of water using hedonic price analysis. J. Agric. Resour. Econ. 20, 341–555.

Google Scholar

Lant, C. L., Ruhl, J. B., and Kraft, S. E. (2008). The tragedy of ecosystem services. BioScience 58, 969–974. doi: 10.1641/B581010

CrossRef Full Text | Google Scholar

Lemieux, C. J., Eagles, P. F. J., Slocombe, D. S., Doherty, S. T., Elliot, S. J., and Mock, S. E. (2012). Human health and wellbeing motivations and benefits associated with protected area experiences: an opportunity for transforming policy and management in Canada. Parks 18, 71–85.

Google Scholar

Lindenmayer, D. B., Franklin, J. F., and Fischer, F. (2006). General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445. doi: 10.1016/j.biocon.2006.02.019

CrossRef Full Text | Google Scholar

Liu, S., and Costanza, R. (2010). Ecosystem services valuation in China. Ecol. Econ. 69, 1387–1388. doi: 10.1016/j.ecolecon.2010.03.010

CrossRef Full Text | Google Scholar

Loos, J. (2021). Reconciling conservation and development in protected areas of the Global South. Basic Appl. Ecol. 54, 108–118. doi: 10.1016/j.baae.2021.04.005

CrossRef Full Text | Google Scholar

Maes, J., Liquete, C., Teller, A., Erhard, M., Paracchini, M. L., Barredo, J. I., et al. (2016). An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23. doi: 10.1016/j.ecoser.2015.10.023

CrossRef Full Text | Google Scholar

Maller, C., Henderson-Wilson, C. A., Pryor, L., Prosser, L., and Moore, M. (2008). The Health Benefits of Contact with Nature in a Park Context – A Review of Relevant Literature, 2nd ed. Melbourne: Deakin University – School of Health and Social Development, Faculty of Health, Medicine, Nursing and Behavioural Sciences.

Google Scholar

Mäntymaa, E., Jokinen, M., Juutinen, A., Lankia, T., and Louhi, P. (2021). Providing ecological, cultural and commercial services in an urban park: a travel cost–contingent behavior application in Finland. Landsc. Urban Plan. 209. doi: 10.1016/j.landurbplan.2021.104042

CrossRef Full Text | Google Scholar

Markandya, A., Sampedro, J., Smith, S. J., Van Dingenen, R., Pizarro-Irizar, C., Arto, I., et al. (2018). Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet. Health 2, 126–133. doi: 10.1016/S2542-5196(18)30029-9

PubMed Abstract | CrossRef Full Text | Google Scholar

Martin, A., Gross-Camp, N., Kebede, B., McGuire, S., and Munyarukaza, J. (2014). Whose environmental justice? Exploring local and global perspectives in a payments for ecosystem services scheme in Rwanda. Geoforum 54, 167–177. doi: 10.1016/j.geoforum.2013.02.006

CrossRef Full Text | Google Scholar

Menard, S. (2001). Applied Logistic Regression Analysis, 2nd ed. Los Angeles, CA: SAGE Publications, Inc. doi: 10.4135/9781412983433

CrossRef Full Text | Google Scholar

Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-Being. Health Synthesis. Geneva: World Health Organization.

Google Scholar

Molina, A., Vanacker, V., Govers, G., Balthazar, V., and Mora, D. (2012). Complex land cover change, water and sediment yield in a degraded Andean environment. J. Hydrol. 472–473, 25–35. doi: 10.1016/j.jhydrol.2012.09.012

CrossRef Full Text | Google Scholar

Monica, I. O., Alex, S. M., and Barry, D. S. (2008). Economic valuation of environmental services sustained by water flows in the Yaqui River Delta. Ecol. Econ. 65:155–166. doi: 10.1016/j.ecolecon.2007.06.006

CrossRef Full Text | Google Scholar

Moore, M. R., Doubek, J. P., Xu, H., and Cardinale, B. J. (2020). Hedonic price estimates of lake water quality: valued attribute, instrumental variables, and ecological-economic benefits. Ecol. Econ. 176:106692. doi: 10.1016/j.ecolecon.2020.106692

CrossRef Full Text | Google Scholar

Morales-Hidalgo, D., Oswalt, S. N., and Somanathan, E. (2015). Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77. doi: 10.1016/j.foreco.2015.06.011

CrossRef Full Text | Google Scholar

Nelson, J. P., and Kennedy, P. E. (2009). The use (and abuse) of meta-analysis in environmental and natural resource economics: an assessment. Environ. Resour. Econ. 42, 345–377. doi: 10.1007/s10640-008-9253-5

CrossRef Full Text | Google Scholar

Ninan, K. N., and Inoue, M. (2013a). Valuing forest ecosystem services: what we know and what we don't. Ecol. Econ. 93, 137–149. doi: 10.1016/j.ecolecon.2013.05.005

CrossRef Full Text | Google Scholar

Ninan, K. N., and Inoue, M. (2013b). Valuing forest ecosystem services: case study of a forest reserve in Japan. Ecosyste. Serv. 5, 78–87. doi: 10.1016/j.ecoser.2013.02.006

CrossRef Full Text | Google Scholar

Ortiz-Lozano, L., Gutiérrez-Velázquez, A. L., and Granados-Barba, A. (2009). Marine and terrestrial protected areas in Mexico: importance of their functional connectivity in conservation management. Ocean Coast. Manag. 52, 620–627. doi: 10.1016/j.ocecoaman.2009.10.005

CrossRef Full Text | Google Scholar

Owuor, M. A., Mulwa, R., Otieno, P., Icely, J., and Newton, A. (2019). Valuing mangrove biodiversity and ecosystem services: a deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040. doi: 10.1016/j.ecoser.2019.101040

CrossRef Full Text | Google Scholar

Panday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P., and de Almeida Castanho, A. D. (2015). Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 523. 822–829. doi: 10.1016/j.jhydrol.2015.02.018

CrossRef Full Text | Google Scholar

Pascual, U., Muradian, R., Brander, L., Gómez-Baggetun, E., Martín-López, B., Verman, M., et al. (2010). “The economics of valuing ecosystem services and biodiversity, chapter 5,” in The Economics of Ecosystems and Biodiversity (TEEB) Ecological and Economic Foundations, ed P. Kumar (London: Earthscan) 183–256.

Google Scholar

Pearce, D., Atkinson, G., and Mourato, S. (2006). Cost-Benefit Analysis and the Environment: Recent Developments. Paris: OECD Publishing.

PubMed Abstract | Google Scholar

Pisani, D., Pazienza, P., Perrino, E. V., Caporale, D., and De Lucia, C. (2021). The economic valuation of ecosystem services of biodiversity components in protected areas: a review for a framework of analysis for the Gargano National Park. Sustainability 13, 11726. doi: 10.3390/su132111726

CrossRef Full Text | Google Scholar

Remoundou, K., Diaz-Simal, P., Koundouri, P., and Rulleau, B. (2015). Valuing climate change mitigation: a choice experiment on a coastal and marine ecosystem. Ecosyst. Serv. 11, 87–94. doi: 10.1016/j.ecoser.2014.11.003

CrossRef Full Text | Google Scholar

Robinson, J. J. (2002). Environmental value transfer: an application for the South East Queensland waterways. Water Sci. Technol. 45, 91–100. doi: 10.2166/wst.2002.0384

PubMed Abstract | CrossRef Full Text | Google Scholar

Rylands, A. B., and Brandon, K. (2005). Brazilian protected areas. Conserv. Biol. 19, 612–618. doi: 10.1111/j.1523-1739.2005.00711.x

CrossRef Full Text | Google Scholar

Sander, H. A., and Haight, R. G. (2012). Estimating the economic value of cultural ecosystem services in an urbanizing area using hedonic pricing. J. Environ. Manag. 113, 194–205. doi: 10.1016/j.jenvman.2012.08.031

PubMed Abstract | CrossRef Full Text | Google Scholar

Scarpa, R., Campbell, D., and Hutchinson, W. G. (2007). Benefit estimates for landscape improvements: sequential Bayesian design and respondents' rationality in a choice experiment. Land Econ. 83, 617–634. doi: 10.3368/le.83.4.617

CrossRef Full Text | Google Scholar

Schroder, S. A. K., Tóth, S. F., Deal, R. L., and Ettl, G. J. (2016). Multi-objective optimization to evaluate tradeoffs among forest ecosystem services following fire hazard reduction in the Deschutes National Forest, USA. Ecosyst. Serv. 22, 328-347. doi: 10.1016/j.ecoser.2016.08.006

CrossRef Full Text | Google Scholar

Schwertman, N. C., Owens, M. A., and Adnan, R. (2004). A simple more general boxplot method for identifying outliers. Comput. Stat. Data Anal. 47, 165–174. doi: 10.1016/j.csda.2003.10.012

CrossRef Full Text | Google Scholar

Shen, Z., Wakita, K., Oishi, T., Yagi, N., Kurokura, H., Blasiak, R., et al. (2015). Willingness to pay for ecosystem services of open oceans by choice-based conjoint analysis: a case study of Japanese residents. Ocean Coast. Manag. 103, 1–8. doi: 10.1016/j.ocecoaman.2014.10.016

CrossRef Full Text | Google Scholar

Sorribas, M. V., Paiva, R. C. D., Melack, J. M., Bravo, J. M., Jones, C., Carvalho, L., et al. (2016). Projections of climate change effects on discharge and inundation in the Amazon basin. Clim. Change 136, 555–570. doi: 10.1007/s10584-016-1640-2

CrossRef Full Text | Google Scholar

Sutton, P. C., and Costanza, R. (2002). Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 41, 509–527. doi: 10.1016/S0921-8009(02)00097-6

CrossRef Full Text | Google Scholar

Tao, Z., Yan, H., and Zhan, J. (2012). Economic valuation of forest ecosystem services in heshui watershed using contingent valuation method. Procedia Environ. Sci. 13, 2445–2450. doi: 10.1016/j.proenv.2012.01.233

CrossRef Full Text | Google Scholar

Taye, F. A., Folkersen, M. V., Fleming, C. M., Buckwell, A., Mackey, B., Diwakar, K. C., et al. (2021). The economic values of global forest ecosystem services: a meta-analysis. Ecol. Econ. 189, 107145. doi: 10.1016/j.ecolecon.2021.107145

PubMed Abstract | CrossRef Full Text | Google Scholar

Turner, R. K., Morse-Jones, S., and Fisher, B. (2010). Ecosystem valuation, a sequential decision support system and quality assessment issues. Ann. N. Y. Acad. Sci. 1185, 79–101. doi: 10.1111/j.1749-6632.2009.05280.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Ureta, J., Motallebi, M., Vassalos, M., Alhassan, M., and Ureta, J. C. (2021). Valuing stakeholder preferences for environmental benefits of stormwater ponds: evidence from choice experiment. J. Environ. Manag. 293:112828. doi: 10.1016/j.jenvman.2021.112828

PubMed Abstract | CrossRef Full Text | Google Scholar

Watson, J. E., Dudley, N., Segan, D. B., and Hockings, M. (2014). The performance and potential of protected areas. Nature 515, 67–73. doi: 10.1038/nature13947

PubMed Abstract | CrossRef Full Text | Google Scholar

Wilson, E. O. (2001). The ecological footprint. Vital Speeches 67, 274–281.

Google Scholar

Wilson, M. A., and Carpenter, S. R. (1999). Economic valuation of freshwater ecosystem services in the United States: 1971-1997. Ecol. Appl. 9, 772–783. doi: 10.1890/1051-0761(1999)009[0772:EVOFES]2.0.CO;2

CrossRef Full Text | Google Scholar

World Resources Institute (WRI) (2021). Available online: http://www.wri.org/ (accessed July 10, 2021).

Google Scholar

Xu, J., Xiao, Y., Xie, G., Wang, Y., Zhen, L., Zhang, C., et al. (2020). Interregional ecosystem services benefits transfer from wind erosion control measures in Inner Mongolia. Environ. Dev. 34. doi: 10.1016/j.envdev.2020.100496

CrossRef Full Text | Google Scholar

Yamazaki, D., De Almeida, G. A. M., and Bates, P. D. (2013). Improving computational efficiency in global river models by implementing the local inertial flow equation and a vector-based river network map. Water Resour. Res. 49, 7221–7235. doi: 10.1002/wrcr.20552

CrossRef Full Text | Google Scholar

Zhang, J., and Mu, Q. (2018). Air pollution and defensive expenditures: evidence from particulate-filtering facemasks. J. Environ. Econ. Manage. 92, 517–536. doi: 10.1016/j.jeem.2017.07.006

CrossRef Full Text | Google Scholar

Zhongxin, C., and Xinshi, Z. (2000). Value of ecosystem services in China. Chin. Sci. Bull. 45, 870–876. doi: 10.1007/BF02886190

CrossRef Full Text | Google Scholar

Zhou, J., Wu, J., and Gong, Y. (2020). Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland studies. J. Clean. Prod. 276:122988. doi: 10.1016/j.jclepro.2020.122988

CrossRef Full Text | Google Scholar

Keywords: economic value, forest ecosystem services, systematic review, North–South, monetary estimation method, meta regression

Citation: Pisani D, De Lucia C and Pazienza P (2022) On the investigation of an economic value for forest ecosystem services in the past 30 years: Lessons learnt and future insights from a North–South perspective. Front. For. Glob. Change 5:798976. doi: 10.3389/ffgc.2022.798976

Received: 20 October 2021; Accepted: 27 June 2022;
Published: 25 July 2022.

Edited by:

Silvia Ferrini, University of East Anglia, United Kingdom

Reviewed by:

Barnaby Andrews, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), United Kingdom

Copyright © 2022 Pisani, De Lucia and Pazienza. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Caterina De Lucia, Y2F0ZXJpbmEuZGVsdWNpYSYjeDAwMDQwO3VuaWZnLml0

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.