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In January 2017, 114 active fires burned throughout Chile at the same time.

These fires spread quickly due to high temperatures, fast dry winds, and low

vegetation water content. The fire events burned more than 570,000 ha,

from which 20% of the area was endangered native forest. Timely and

accurate burned area mapping is crucial for the evaluation of damages and

management of the affected areas. As Chile is a diverse country with many

types of ecosystems and vegetation, the use of novel spectral indices may

improve the accuracy of satellite data-based burned area mapping algorithms.

In this study, we explored the contribution of band angle indices (BAnI)

to burned area mapping. The BAnI are based on trigonometric equations

that proved to be sensitive to moisture conditions. Then, we aimed to test

their sensitivity to the burned area spectral signature. We used Sentinel-2

data at 20 m resolution to calibrate and implement a random forest (RF)

classifier in Google Earth Engine (GEE) computing platform. We ran the

RF classifier with and without BAnI to evaluate their potential to identify

burned areas and performed two accuracy assessments comparing the

results with visually digitized fire perimeters from (1) WorldView 3 (WV3)

images, and (2) Sentinel at 10 m resolution. We determined that both BA

classifications were more accurate than the perimeters created by the Chilean

National Forest Corporation (CONAF), which overestimates the area burnt.

The overestimation of CONAF perimeters is produced by considering as

burned the inner unburned areas and omitting some small, burned areas.

The first assessment showed no significant differences between the two

RF classifications. However, the second validation showed lower omission

and commission errors for the RF classifier with the BAnI (5 and 17.8%,

respectively). On the other hand, comparing both BA classifications with and

without BAnI, we observed differences in the spatial distribution of the errors.

However, the RF classification with BAnI offered fewer commission errors

located in agricultural areas. The burned area algorithms developed in GEE
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showed their potential to map the fire-affected area quickly, efficiently, and

accurately, accounting for all the areas burned in the season, including the

small and agricultural fires the official perimeters did not consider.

KEYWORDS

random forest, Google Earth Engine, machine learning, satellite images, forest fires

Introduction

Forest fires can be produced naturally by electrical storms
or derived from human activity in the territory. Forest fires
produce enormous damage to ecosystems and human health,
great economic losses, and contribute to climate change through
gas emissions and changes in the albedo (van der Werf et al.,
2017; Bowman et al., 2020; Johnston et al., 2021). In recent
years, fire occurrence and intensity have increased worldwide
due to causes derived from global warming, mainly related to
prolonged periods of drought and high temperatures (Bowman
et al., 2019; Turco et al., 2019). The Australian 2019–2020, the
Siberian 2020, and the Canadian 2021 fire seasons are clear
examples of the effect of global warming. In addition, the
temporal cycles of fire occurrence are often influence by human
activity (Benali et al., 2017), as in most biomes fire is mainly
caused by humans (Chuvieco et al., 2021).

The detection of burned areas through satellite images
has been developed for more than 30 years and is currently
considered a fundamental source of information for monitoring
systems and contributes to the fulfillment of Sustainable
Development Objectives (Chuvieco et al., 2019). Numerous
algorithms and methodologies have been developed and applied
for burned area detection using all types of sensors, both
on a global, regional, and local scale (Dragozi et al., 2014;
Boschetti et al., 2015; Chuvieco et al., 2018; Garcia-Lazaro
et al., 2018; Giglio et al., 2018; Lasaponara and Tucci, 2019;
Lizundia-Loiola et al., 2020). Several studies have shown that
operationally produced and publicly available burned area
products on a global scale do not meet the needs for rapid access
to information or provide the spatial resolution required for
strategic post-fire planning at the local level (Tsela et al., 2014;
Chuvieco et al., 2019; Valencia et al., 2020; Ramo et al., 2021).
Medium spatial resolution satellites, such as Landsat-8 and the
Sentinel-2 constellation, allow generating products that provide
the required spatial resolution at the local scale (Vanderhoof
et al., 2017; Long et al., 2019; Roteta et al., 2019; Hawbaker
et al., 2020). However, the operational use of these products
in post-fire decision-making and planning is limited to a few
countries that invest enough resources to provide this service
in a consistent and organized manner immediately after the fire
season.

Burned area classification methodologies use all types
of spectral indices to identify burned pixels. From spectral
vegetation indices such as the Normalized Difference Vegetation
Index (NDVI) (Fraser et al., 2000) or the Soil Adjusted
Vegetation Index (SAVI), to spectral indices designed to detect
burned areas such as the Normalized Burn Ratio (NBR) and
its derived indices (Eidenshink et al., 2007; Hawbaker et al.,
2017), the Middle Infrared Burned Index (MIRBI) (Trigg and
Flasse, 2001) or the Burn Area Index (BAI) (Martín et al.,
2006). Each index has shown its ability to detect burned areas
in different ecosystems. There is a group of less-used spectral
indices, whose formulation is based on trigonometric equations,
which calculate the angle of the triangle formed by the spectral
response of three consecutive bands (Khanna et al., 2007). In
this study, we refer to them as band angle indices (BAnI)
(explained in detail in the section “Methodology”). These
indices have previously been used to estimate the moisture
content of vegetation (Palacios-Orueta et al., 2006; Khanna et al.,
2007), detect agricultural residues (Zhang et al., 2014), detect
forest pests (Fassnacht et al., 2012), or determine agricultural
practices (Tornos et al., 2015). In previous studies, BAnI
indices have shown high sensitivity to variations in vegetation
moisture content. Therefore, we expect that these indices
can provide essential information for the identification of
burned areas, since other spectral indices sensitive to vegetation
moisture content, such as NBR, have proven to be decisive in
identifying and analyzing burned areas (Hawbaker et al., 2017;
Giglio et al., 2018). The burned pixel detection capability of
some BAnI was studied theoretically by Oliva and Chuvieco
(2013) computing separability measures on spectral data from
the Medium Resolution Imaginf Spectrometer (MERIS). The
authors concluded that the ability to detect burned areas of the
BAnI was high when the temporal difference analysis between
pre- and post-fire dates was performed. Ramo et al. (2018)
consider two BAnI in the initial input set of variables for their
machine learning approach. However, the indices were not
selected for the algorithm application.

At present, the most widespread approach is to use a
combination of indices and spectral bands to obtain the
most accurate classification of burned areas and to avoid
noise from cloud shadows, the land-water interface, or dark
soils (Chuvieco et al., 2019). A set of indices and bands
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are introduced in classification algorithms of all kinds, from
supervised maximum probability classifications to learning-
based classification methods such as neural networks (NN) (Ba
et al., 2019), support vector machines (SVMs) (Dragozi et al.,
2014), or classification trees (Cabral et al., 2018). The Random
Forest (RF) is one of the algorithms based on classification
trees that has offered good results in different disciplines, such
as land cover classification (Rodriguez-Galiano et al., 2012),
biomass estimates (Mutanga et al., 2012; Silveira et al., 2019),
or fire severity classification (Collins et al., 2018; Gibson et al.,
2020). Regarding burned area mapping, the RF algorithm was
successfully applied onn MODIS images (Ramo and Chuvieco,
2017) and Landsat images (Roteta et al., 2021a).

In recent years, the use of the Google Earth Engine (GEE)
data processing platform has become widespread, because it
allows free access to the entire data archive provided by the
space agencies and has a great capacity for data processing,
eliminating the need to download the data and the installation
of powerful computers or physical servers (Wang et al., 2020).
These features have enabled researchers in countries with fewer
resources to process and produce official satellite mapping and
analyze products (Tsai et al., 2018; Li et al., 2020). In this study,
we have developed all the methodology in GEE to make the
algorithm easily applicable and transferable, and with the ability
to produce burned area maps as quickly as possible.

In Chile, the average annual area burned reported by the
country’s authorities between 1980 and 2016 was approximately
100,000 ha (CONAF, 2020). However, in January 2017 the area
affected by fires exceeded 500,000 ha, triggering a paradigm
shift in forest fires in Chile. What happened in 2017 was
related to the period of mega-drought occurring in the country
(Bowman et al., 2019). Since 2010, the annual rainfall showed
a decreasing trend with an average deficit of between 20 and
40% (Garreaud et al., 2020). These drought conditions were
expected to continue over time, causing the loss of vegetation
and soil moisture, which will favor the formation of large forest
fires by increasing the amount of fuel and its flammability
(Yebra et al., 2018). These conditions highlight the importance
of establishing a system that provides information on burned
areas quickly and efficiently in Chile, to be able to act and
make decisions as quickly as possible in the face of events of
the magnitude of the fires that occurred in 2017 (Jones et al.,
2020).

The CONAF (Corporación Nacional Forestal) is the
organization in charge of the assessment of the damage
produced by the fires. Since the catastrophic fire season
of 2017, the CONAF produces fire perimeters for every
fire larger than 200 ha by visual interpretation of Landsat
satellite images and field data. As that process may be time-
consuming, there is special interest in developing an automated
burned area product.

This work aims to analyze the contribution of BAn in
the classification of burned areas applying a RF algorithm

on Sentinel-2 data in order to select the best indices to
develop an automated burned area mapping algorithm for all
Chile. Even though, the BAnI had shown promise for burned
area discrimination in previous studies (Oliva and Chuvieco,
2013), they have not been used in the classification algorithms
before. We hypothesized that the information provided by
the BAnI would be useful in the discrimination of burned
areas as they provide new data and are sensitive to moisture
content. We focused on the fires occurred in the Maule
region of Chile in the 2017 fire season, as it was the Region
with the larger amount of area burned. To carry out this
analysis we have designed a two-phase methodology based
on the application of the RF algorithm, considering two sets
of input variables among which the only difference is the
presence or absence of BAnI. Our results were compared to
the official fire perimeters produced by CONAF to analyze
the performance of the burned area classifications, as well
as, with reference perimeters to assess their accuracy. The
land cover types classified as burned by the burned area
classifications were analyzed to evaluate the most affected
land covers and understand where the errors were more
common.

Study area

The study area corresponds to the Maule Region (Chile),
located approximately between 34.5 and 36.5◦ latitude
(Figure 1). This region has a Mediterranean climate of
winter rains with variations due to the orography of the area,
presenting part of the Andes Mountains to the east.

In 2017, the area affected by forest fires in Chile exceeded
all historical values, with damage reaching 570,197 hectares of
burnt area (CONAF, 2020). This event received the name Fire
Storm and was declared a sixth-generation fire due to its high
propagation speed with 114,000 hectares affected in 14 h and
intensity of over 30,000 kW/m (CONAF, 2017). The fires were
very intense and difficult to control due to the dryness of the
vegetation and the weather conditions. Since 2010, central Chile
has been affected by severe and prolonged drought conditions
(Garreaud et al., 2020), which intensifies the risk of fire and
fuel flammability (Yebra et al., 2018). The fire season in Chile
expands from November to March. In 2017 fire season the
largest fires burned at the same time and were concentrated in
January and February.

The Maule region concentrated half of the total burned area
in the 2017 fire season (256.000 ha). The most affected land use
at the national level was pine forest plantations, of which the
largest area is in the Maule region. The second most affected
forest type was the Oak–Hualo forest, a formation of native
species which concentrates 97% of its total affected area in the
Maule region (CONAF, 2020).
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FIGURE 1

Location of the study area: Región del Maule, Chile.

Data

Sentinel-2 data

Data from Level 1C collection Sentinel-2 MultiSpectral
Instrument (MSI) belonging to the Copernicus program of
the European Space Agency (ESA) was used to develop the
burned area classification algorithm. The Sentinel-2 satellite
constellation consists of two identical satellites orbiting in
parallel (180◦ apart) at an altitude of 786 km, which allows a
global revisit periodicity of 5 days with an acquisition width
of 290 km. The images have a spatial resolution ranging from
10 to 60 m in 13 spectral bands (ESA, 2013). In this study,
the 20 m resolution bands and the 10 m bands resampled at
20 m were used to perform the classification of burned areas
(Supplementary Table 1). The level 1C images have radiometric
and geometric correction, including orthorectification and
spatial registration in a global reference system with sub-
pixel precision (ESA, 2013). Sentinel-2 Level 1C images were
selected, instead of the atmospherically corrected Level 2A

images because the Level 2A images were not available in
GEE for the 2016–2017 fire season in Chile at the time of the
algorithm development. The earlier date of Sentinel 2A available
on GEE at that moment was March 2017, right after the fire
season. So, they did not cover the timeframe required for the
algorithm.

WorldView 3 data

WorldView 3 (WV3) data was used to obtain the reference
perimeters to evaluate the accuracy of the products. WV3 has a
high spatial resolution with a pixel size of 1.2 m in the visible
and near infrared (NIR) bands and 3.7 m in the shortwave
infrared (SWIR) bands. WV3 has three bands in the visible
spectral region, one in the Red Edge, two in the NIR, and eight
SWIR bands. Being the only high spatial resolution satellite with
SWIR bands, WV3 allows the calculation of burned area indices,
such as the NBR. The WV3 images are captured by request.
They scheduled to capture images from a specific place as the
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satellite has the capacity to reposition slightly to capture the
required images. The acquired images are then available for
purchase on the archive. Due to budget constrains we could only
purchase small patches of 10 km × 10 km (100 km2) from the
images available in the archive. That condition posed important
limitations as only a portion of the fires were covered by the
WV3 acquisitions and none of the areas surrounded the fires
were acquired. Therefore, we couldn’t select a balanced set of
validation areas. Even though, four images covering three sites
were used to obtain reference fire perimeters.

Auxiliary data

Two geospatial data files coming from CONAF were used
as auxiliary: the vegetational cadaster of the Maule region made
in 2013 and the official perimeters of the 2017 fire season. The
official fire perimeters were produced by CONAF based on
visual interpretation of Landsat satellite images including fires
larger than 200 ha (CONAF, 2017). These perimeters were used
to generate the random sample of burn and non-burn points
needed for the training of the algorithm (more details in section
“Burned area classification”).

The vegetation cadaster includes detailed information on
land use cover with special emphasis on the description of
forest stands. The cadaster was used to analyze the land covers
affected by the fires. Given the high detail of the classification
of vegetation types contained in the cadaster, a reclassification
was made to simplify the classification to 7 classes: native forest,
shrubland, plantations, grasslands, agricultural, urban areas, and
non-burnable areas. The non-burnable category includes rivers,
lakes, rocky areas and areas without vegetation, and glaciers.

Methodology

This study performed the classification of the burned area
through the application of a RF algorithm. Figure 2 presents
a summary of the methodological workflow followed in this
study. First, the images were pre-processed and the spectral
indices were computed (see sections “Data pre-processing”
and “Spectral indices”). Second, we created multitemporal
composites to produce a clear pre-fire and post-fire image (see
section “Temporal composites”). Separately, a random sample
of burned and non-burned points was generated to train the
RF algorithm. Two sets of input variables were created to
test the ability of band angle spectral indices (see section
“Random forest”). Later, a two-phase classification was applied
to the RF-generated probability image to obtain the burned
area products (see section “Burned area classification”). Finally,
the results were evaluated by comparing them with CONAF
official perimeters and with reference data produced from high-
resolution images (see section “Accuracy assessment”).

Data pre-processing

The Sentinel-2 data was accessed on the cloud processing
platform GEE, which allows accessing, analyzing, and
processing the data without downloading it. The following
processing described was all performed on the GEE platform.

To prepare the images for the following processing water
and cloud pixels, which could introduce errors in the results,
were filtered out. The permanent water body mask was extracted
from the global forest change product generated by Hansen et al.
(2013) available in GEE to remove the water pixels, which can be
a source of error.

To reduce the effect of clouds and cloud shadows, only
images with cloud coverage lower than 20% were including in
the processing. In addition, to eliminate cloud pixels, a cloud
filter was implemented using the Sentinel-2 QA60 quality band
(Hagolle et al., 2010). Due to the generalized classification of
cloud types, the information contains some errors related to
the presence of low clouds (Nguyen et al., 2020). However,
the information on QA60 was useful to eliminate clouds that
interfered with the generation of image composites.

Spectral indices

Burned areas have a particular spectral signature which can
be identified and highlighted using various spectral indices.
Traditional vegetation indices and spectral indices designed
specifically for burned areas are widely used in the literature. In
this study, we calculated four commonly used indices and three
BAnI (Table 1).

The BAnI are defined through the trigonometric equations
of angle calculation (Table 1 and Figure 3). To calculate them,
a triangle shape is drawn in the two-dimensional space that
relates the wavelength and the reflectance values of land covers
using as vertices the points of three consecutive bands (Figure 3;
Palacios-Orueta et al., 2006; Khanna et al., 2007). The Shortwave
Angle Normalized Index (SANI) and the Shortwave Angle Slope
Index (SASI) are based on the relationship between the angle
at SWIR 1 (1240 nm, MODIS band 5) and the difference
between the reflectances at NIR (865 nm, MODIS band 2) and
SWIR 2 (1640 nm, MODIS band 6). However, SANI uses the
normalized difference, and SASI the simple difference between
the bands. The concept of these indices was built using MODIS
bands to assess their ability to discriminate between green
vegetation, non-photosynthetic vegetation, and wet and dry
soils (Khanna et al., 2007). The βSWIR angle has a higher value
in dry soils which decreases in wet and non-photosynthetic
vegetation. The higher the moisture the lower the angle. The
slope of the line connecting the NIR and SWIR 2 points is
positive for dry soils, decreasing as moisture content increases,
being close to zero for non-photosynthetic vegetation, and
negative for green vegetation (Palacios-Orueta et al., 2006). So,
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FIGURE 2

Methodological workflow applied in this study to produce burned area classification.

TABLE 1 Equations of spectral indices that were calculated in this study.

Name Equation References

Normalized difference vegetation index (NDVI) NDVI = NIR − RED
NIR+RED Rouse et al., 1974

Normalized burn ratio (NBR) NBR = NIR − lSWIR
NIR + lSWIR Key and Benson, 2005

Mid InfraRed burn index (MIRBI) MIRBI = 10lSWIR− 9.8sSWIR+ 2 Trigg and Flasse, 2001

Soil adjusted vegetation index (SAVI) SAVI = (1+ L) NIR − RED
NIR + RED + L ; L = 0.5 Huete, 1988

Shortwave angle normalized index (SANI) SANI = βsSWIR ∗
ISWIR − NIR
lSWIR + NIR ;

βsSWIR = cos − 1 a2
+ b2

− c2

2 ∗ a ∗ b radians;
a = dE (NIR,sSWIR);

b = dE
(
sSWIR,lSWIR

)
;

c = dE
(
lSWIR,NIR

)

Palacios-Orueta et al., 2006

Shortwave angle slope index (SASI) SASI = βsSWIR ∗ Slope;
Slope = lSWIR− NIR

Palacios-Orueta et al., 2006

Angle at NIR (ANIR) ANIR (αNIR)

= cos − 1 a2
+ b2

− c2

2 ∗ a ∗ b radians
a = dE (RED,NIR)

b = dE (NIR,sSWIR)
c = dE (sSWIR,RED)

Khanna et al., 2007

dE = Euclidean distance by wavelength andreflectance value

The details on the Sentinel-2 bands used to calculate these indices are in above table. Reflectance values are used to calculate all indices.

by combining the angle and the slope values the indices show a
large range of values separating well different land covers, with
high positive values characterizing dry soils and high negative
values characterizing healthy vegetation.

However, when translating those indices to Sentinel-2 data
the bands used to define the triangle had to be modified because
there is no band at 1200 nm. Then, the βSWIR angle had to
be centered on band 11 at 1610 nm (short SWIR or sSWIR)
in Sentinel-2 data, and the triangle was formed by the NIR
band 8A (864 nm), the sSWIR band, and the long SWIR band
12 (2185 nm). The main difference we observed is that the

S-2 βSWIR angle did not have as much variation as shown in
MODIS βSWIR angle. But the variation of the slope described
in the original equation remained. Then, the slope has positive
values for dry soils and burned areas and negative values
for green vegetation. Consequently, burned areas show high
positive values of the SANI and SASI indices in the same range
of dry soils, while green vegetation shows negative values.

The angle at NIR (or ANIR index) is centered on the NIR
band (Figure 3). In its original design (Khanna et al., 2007),
the triangle was formed with bands located at Red (659 nm),
NIR (865 nm), and SWIR (1240 nm). To apply it to Sentinel-2
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FIGURE 3

Depiction of the equation variables of the band angle indices SANI, SASI, and ANIR. SANI and SASI indices locate in the triangle formed by
blue-filled lines (a–c) and centered at sSWIR (1610 nm). ANIR index (αNIR) is based on the triangle formed by black dashed lines (A–C) and
centered at NIR. (a–c) Correspond with the nomenclature used in equations in Table 1 for SANI and SASI indices.

images, we used the sSWIR at 1610 nm as the third vertex. That
change in the equation did not affect the results of the ANIR
index, since the angle varies from low values characterizing
green vegetation and high values characterizing burned areas.

Temporal composites

Temporal composites are created from the images within
a date range to eliminate pixels covered by clouds and cloud
shadows, which will introduce errors in the classification
process, and maximize the differences between non-burned
and burned vegetation. The temporal composites were built
by applying the criterion of minimizing the NBR value. Then,
those pixels with a clearer burned signal were included in the
composite, since the lowest NBR values represent the areas more
intensely affected by the fire (Roteta et al., 2021a). The values
of the bands and indices calculated for the date when the NBR
value is the lowest are stored in the composite.

Three date ranges are defined that characterize three
situations: pre-fire, active fire, and post-fire. We decided to
separate the period of greatest fire activity because the presence
of thick smoke remained in the composites and obstructed the
observation of the burned area. The periods were considered as
follows:

- Pre-fire: 01-October-2016 to 30-November-2016.

- Active fire: 01-December-2016 to 28-February-2017.
- Post-fire: 01-March-2017 to 01-May-2017.

To analyze the changes and classify the burned area that
occurred in the fire season, the temporal difference between the
pre-fire and post-fire temporal composites was computed.

Random forest

The RF algorithm is one of the most widely used algorithms
for the classification of satellite images. Its implementation has
been successful in various fields such as land cover classification
(Rodriguez-Galiano et al., 2012), biomass estimates (Mutanga
et al., 2012; Silveira et al., 2019), fire severity classification
(Collins et al., 2018; Gibson et al., 2020) and discrimination
of burned areas (Ramo and Chuvieco, 2017), among others.
This algorithm is based on decision trees, which divide the data
sample binary, by applying rules to the input variables until
each of the pixels is assigned to the established classes (Breiman,
2017).

Random forest generates a number of decision trees
indicated by the user, which are calibrated using a subset of
the training data randomly selected for each decision tree. The
algorithm then analyzes the results obtained from each of the
generated decision trees and assigns to each pixel a probability of
belonging to one of the established categories (Breiman, 2001).
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These probability values are the result of the application of the
RF algorithm.

The operation of the RF is defined by the number of decision
trees calculated, the number of leaves or levels to be calculated,
and the representativeness of the training sample. Studies have
shown that increasing the number of decision trees calculated
improves the final precision of the classification. But this value
reaches a saturation point from which the result does not
improve when a new decision tree is added, affecting negatively
the final performance of the classification (Rodriguez-Galiano
et al., 2012). Therefore, it is recommended to choose the number
of iterations that allow the best and most computationally
efficient result (Breiman, 2017).

To train the RF algorithm for burned area classification we
need a training sample containing burned and unburned pixels.
Two sets of 15,000 points were randomly generated, one in the
burned areas delimited by CONAF official perimeters, and the
other in the unburned areas of the entire Maule Region. The
random points classified as burned had to be visually checked
because the CONAF perimeters consider as burned areas some
unburned inner islands, and the rivers that cross the fires.
This issue was detected in early versions of the results and
was solved by removing the points that were not assigned to
the proper class.

In this study, two training samples were generated according
to the variables considered.

- In the first sample (referred to as M1), we included the
temporal difference of the 6 spectral bands and the dNDVI,
dSAVI, dNBR, and dMIRBI indices.

- In the second sample (referred to as M2), we included
the bands and indices of M1, also adding the temporal
difference of the BAnI, dSANI, dSASI, and dANIR.

Each training sample was used for the calibration of the
RF algorithm. We established a maximum of 40 decision tree
iterations and 10 leaves or nodes per decision tree.

Burned area classification

The final burned area classification is computed by applying
a two-phase methodology on the output probability image of
the RF algorithm, which is a widely used methodology for the
classification of burned area as it efficiently balances omission
and commission errors (Bastarrika et al., 2011; Chuvieco et al.,
2016). This methodology consists of a first phase where the
pixels with a higher probability of being burned (also called seed
pixels) are selected. The second phase, also called the growth
phase, uses a laxer threshold to establish the final delimitation
of the burned area. In this study, we selected as seed pixels
those that have a probability greater than 90% of being burned.
For the growth phase, the Otsu method was applied. The Otsu

method allows us to segment the image into two categories.
It is based on the statistical analysis of the histogram of the
image which determines the point where the separation valley
between the two peaks of the frequency distribution of pixels
belonging to burned and unburned classes occurs (Otsu, 1979).
This method offers as a result a value in which both distributions
can be separated, which was applied to the probability image to
determine the perimeter of the burned area. Finally, the patches
of pixels selected for the final burned area product are those
obtained from the application of the Otsu method that contains
at least one seed pixel and has an area greater than 10 ha.

Accuracy assessment

Reference perimeters
To determine the degree of error associated with the product

obtained from the RF algorithm using the two training samples,
we generated two sets of reference perimeters (Table 2). First,
the burned areas on three 10 km× 10 km WV3 post-fire images
were digitized. WV3 has a high spatial resolution satellite with a
pixel size of 1.2 m in the visible and NIR bands and 3.7 m in the
SWIR bands. Being the only high spatial resolution satellite with
SWIR bands, WV3 allows the calculation of burned area indices.
However, as our purpose was to obtain reference perimeters
with the highest spatial resolution, the digital delineation of the
burned area polygons was performed on the higher resolution
bands using color composites and the NDVI to discriminate
them.

Also, reference burned perimeters were obtained from
two 50 km × 50 km areas on Sentinel-2 images at 10 m
using the Roteta et al. (2021a) reference perimeter tool (RPT)
built on GEE. The RPT is a classification tool that allows
the semi-automatical classification of the burned area using
a pair of Sentinel-2 or Landsat images. The RPT applies an
RF model using as inputs manually digitized burned and
unburned polygons within the GEE map. The results are
exported in ESRI shapefile format, which complies with CEOS’
BA assessment protocol (Boschetti et al., 2009). One of the
sites was clipped to cover only the extent of the Maule Region,
even though the whole 50 km × 50 km validation site was
classified. Long temporal reference units (Franquesa et al.,
2022) considering the same post-fire date window established
for the temporal composites created (see section “Temporal
composites”) were used to ensure the reference perimeters
could be used for the validation of the BA classification (see
Table 2).

Confusion matrix and accuracy measures
To quantify the accuracy of our burn area classification,

errors of commission and omission were calculated, as well as
the overall accuracy of the classification (Padilla et al., 2015).
We used as reference perimeters the burned areas obtained from
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TABLE 2 Satellite data used to obtain the reference perimeters of burned area.

Validation area Date Image reference Size of the validation area Spatial resolution

Site 1 19-February-2017 WorldView 3 10 km× 10 km 1.2 m

Site 2 Pre-fire: 10-January-2017 WorldView 3 10 km× 10 km 1.2 m

Post-fire: 07-February-2017 WorldView 3 10 km× 10 km 1.2 m

Site 3 01-February-2017 WorldView 3 10 km× 10 km 1.2 m

Site 4 Pre-fire: 10-November-2016 Sentinel-2 50 km× 20 km 10 m

Post-fire: 20-December-2016 Sentinel-2 50 km× 20 km 10 m

Site 5 Pre-fire: 30-November-2016 Sentinel-2 50 km× 50 km 10 m

Post-fire: 20-December-2016 Sentinel-2 50 km× 50 km 10 m

FIGURE 4

Random forest importance index of each of the variables included in the algorithm calibration. (A) Importance index of M1, (B) importance index
of M2.

the WV3 and Sentinel-2 images. In that way, we have accuracy
measures at different scales covering variable scenarios within
the Maule region.

Results

Burned area classification

As our main objective was to determine if the BAnI would
contribute to the discrimination of BA using an RF classifier, we
computed the importance index produced after the calibration
of the two RF algorithms (Figure 4). We observed that both
RF algorithms have the same four indices with the highest
importance values, although in a different order. It is in the
fifth position where the SANI index shows an importance index
value higher than the fifth variable of the RFM1 algorithm. ANIR
and SASI indices also appear to contribute to the classification
located in seventh and eighth place, respectively.

The application of the RF algorithm using the two sets
of variables offered different classifications of burned area
(Table 3). The burned area produced by the sample set M1
(referred to as RFM1) classified the largest amount of burned

area, with a total of 318,937 ha, while the classification produced
by the second set of variables (RFM2) obtained a total of
309,068.6 ha. When comparing the two results with CONAF
data, it can be seen the greatest differences are concentrated
in the coverage of agricultural land, forest plantation, and
shrubland (Table 3). The RFM1 result is the one that classifies
more native forest area and agricultural use as burned.

To highlight the different spatial distribution of the
three burned area classifications, we present in Figure 5 the
overlapped area of the three burned area maps. The two
classifications RFM1 and RFM2 detected the large fires identified
by CONAF, delimiting them in detail. In the larger burned
areas, we observed some unburned areas inside the burned
perimeters that were classified as burned by CONAF. The
RFM1 classifies a large area as burned in the central and
northern zone of the region situated on agricultural land use.
However, those areas were visually identified as a commission
error. On the other hand, the RFM2 classification presents a
concentration of burned area in agricultural land use located
in the south of the region. Through a visual inspection of
the results, we concluded that the areas correctly classified as
burned in agricultural use are those areas registered by both
classifications (represented in purple color in Figure 5). While
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TABLE 3 Distribution of burned area in hectares by type of land cover
in each of the classifications of the burned area obtained and in the
official delimitation the category “overlapped” includes the burned
area that coincides in the three classifications (RFM1, RFM2, and
CONAF).

Land
cover

CONAF RFM1 RFM2 Overlapped
area

Forest
plantation

186,396.84 174,556.91 178,670.96 165,267.21

Shrubland 57,111.60 63,646.09 63,466.37 49,786.58

Sclerophyll
native forest

23,393.23 26,823.96 24,598.52 20,250.46

Agricultural
areas

13,762.79 48,606.61 36,391.06 11,260.85

Grasslands 3,502.04 4,814.32 5,478.20 2,747.08

Unburnable 1,507.02 0 0 0.00

Urban areas 266.18 290.74 267.92 208.32

Not
classified

110.95 198.37 195.58 94.39

Total 286,050.6 318,937.00 309,068.6 249,614.8

the burned areas classified only by one product are in most cases
errors of commission (represented in blue and yellow color in
Figure 5).

The area where the three burned area maps overlapped
focused on the larger fires that occurred in the region. However,
we found it interesting to analyze the areas where only one of
the BA products classified them as burned and the areas where
two of the products overlapped. By analyzing those areas, we
observed which were the land covers with higher differences
and where the errors might be located (Figure 6). In the case
of the forest plantation cover, CONAF perimeters classified as
BA more than 12,000 ha that were not classified by any RF
classification, indicating that the area might be related to an
overestimation of the BA due to an oversimplification of the
fire perimeter. There are also areas classified as burned only
by one of the RF classifications and their paired combinations,
these types of differences are concentrated at the edges of the
burned areas. In shrubland, the overlap between RFM1 and RFM2

showed a higher value, indicating that both RF classifications
are mapping the smaller fires occurring mainly in shrubland and
grassland. On the other hand, the classification RFM1 classified
a larger area in sclerophyll forest. In the Supplementary
Figures 1, 2we can observe how RFM1 shows a higher number of
burned areas classified in the Eastern part of the Region (around
the 71◦ longitude line) corresponding to native forest. We
revised those areas visually and confirmed that they were areas
affected by the shadow of the relief, then they were commission
errors. That is a common error in burned area classification
(Garcıa and Chuvieco, 2004) and we expected to encounter this
type of error as the Andean Mountain range has a very irregular
and steep relief. Therefore, RFM1 presented more commission

error than RFM2 not only in agricultural areas but also in the
native forest located in the Andes.

The analysis of the agricultural areas highlights the
implications of leaving out agricultural fires from the BA
statistics. As CONAF does not include small (<200 ha) and
agricultural fires in the official fire perimeters reported, it was
expected that the BA classified by CONAF was less than the
RF classifications. We also noticed the differences in the area
classified as burned by both RFM1 and RFM2 and by only one of
them. Both classifications coincide on almost 16,000 ha burned
on agricultural land, while RFM1 and RFM2 added up 21,000 ha
more and 8,500 ha, respectively. As we presented in Figure 5,
the area classified as burned in both RF classifications showed
distinct spatial distribution, particularly in agricultural land. So,
each classification is sensitive to different spectral conditions.
However, if we consider as correct the burned area classified in
agricultural land by both RF classifications, RFM1 shows three
times more area wrongly classified than RFM2.

Accuracy analysis

The accuracy analysis showed the high accuracy of the BA
classifications produced with the RFM1 and RFM2 algorithms
(Table 4). The errors obtained at a local scale from the WV3
images were lower than 6 % in all cases. In that analysis, the
error balancing of both classifications was alternated, as RFM1

showed a lower commission error than RFM2 and RFM2 showed
a lower omission error than RFM1. In the case of the accuracy
analysis performed with Sentinel-2 images, the RFM2 offered
lower omission and commission errors than RFM1, which is
related to the lower BA classified in agricultural areas than RFM1.
In this case, we observed more clearly the improvement of the
BA classification as a consequence of including the BAnI in the
set of input variables.

Discussion

Contribution of band angle indices to
the classification of burned areas

We trained two RF algorithms using two sets of input
variables. RFM1 included the temporal differences of the six
spectral bands of Sentinel-2 at 20 m and the indices NDVI,
SAVI, NBR, and MIRBI. On the other hand, RFM2 added to
the input variables in M1 three BAnI. The results showed
the different classifications produced by both algorithms. The
importance index values showed the contribution of the SANI
to the classification algorithm was on the same level as
MIRBI (Figure 4), proving that SANI adds new information
to the algorithm. The SANI index was not designed for
burned area mapping. However, the range of values offered

Frontiers in Forests and Global Change 10 frontiersin.org

https://doi.org/10.3389/ffgc.2022.1052299
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-1052299 December 21, 2022 Time: 14:35 # 11

Oliva et al. 10.3389/ffgc.2022.1052299

FIGURE 5

Spatial distribution of the comparative analysis between the three burned area products: Official CONAF source, and RFM1 and RFM2

classifications.

by the SANI can help discriminate between green vegetation,
non-photosynthetic vegetation, and wet and dry soils, where
high positive values characterize dry soils and high negative
values describe healthy vegetation (Palacios-Orueta et al.,
2006). We identified as commission errors the burned areas
classified in agricultural land in the north of the Maule
region by the RFM1 BA classification, which translated into
an overestimation of 78% regarding agricultural burning. The
BAnI improved the BA classification as the RFM2 showed fewer
commission errors in agricultural areas and lower omission
errors related to the classification of BA at the edge of the fire
(Figure 5).

Numerous studies have explored the use of different spectral
indices to detect burned areas, from vegetation indices such
as the NDVI, the GEMI, or the EVI, to indices designed to
be sensitive to the post-fire signal like the BAI, the MIRBI, or
the NBR (Martín et al., 2006; Loboda et al., 2007; Veraverbeke
et al., 2011; Bastarrika et al., 2014; Lizundia-Loiola et al., 2020;
Smiraglia et al., 2020; Koutsias and Pleniou, 2021). Those
indices exploit the spectral change resulting from vegetation
removal, which involves decreasing the near-infrared (NIR)
reflectance and increasing the SWIR reflectance. Since the SANI

index uses the NIR and the SWIR bands, it is also sensible to
the post-fire spectral change. SANI combines the normalized
difference of the short SWIR (sSWIR) and NIR with the angle
centered at the sSWIR band. The normalized index is negative
for green vegetation and positive for burned areas, and the
angle βSWIR has a higher value in burned areas and dry soils.
Although the indices exploit the same spectral relationship,
their different formulation makes them unique, and each of
them offers information to discriminate burned areas. Because
of that, complex models and algorithms based on machine
learning, which work with a high number of input variables,
are spreading widely, such as the SVM, the NN, and the RF.
Ramo et al. (2018) evaluated those three algorithms for burned
area mapping on a global scale, obtaining the best results with
the RF classifier. Ramo et al. (2018) introduced the SASI and
ANIR indices into the initial set of input variables. The SASI
and ANIR were selected by the RF and regression methods for
variable selection, but they were not selected for the final set
of variables used. Our results support the findings of Ramo
et al. (2018), as the temporal difference of SASI and ANIR
indices did not show a high importance index value in the RFM2

algorithm.
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FIGURE 6

Comparative analysis of the classification of the burned area generated by the two results of the Random Forest algorithm, RFM1 and RFM2, the
official CONAF perimeters, and the areas where two of the burned area maps overlapped. Only the land covers with the greater differences are
represented.

TABLE 4 Accuracy analysis results obtained at 1.2 m spatial resolution
from the WV3 images and 10 m resolution from the Sentinel-2
reference perimeters.

WV3 ref.
perimeters

Sentinel-2 (10 m)
ref. perimeters

RFM1 RFM2 RFM1 RFM2

Omission error (%) 5.86 4.41 7.64 4.97

Commission error (%) 4.58 5.95 21.42 17.82

Overall accuracy (%) 92.03 91.97 95.66 96.62

Algorithm performance

We validated our classification results using reference
perimeters obtained from two datasets at different spatial
resolutions. First, we derived reference perimeters from three
high-resolution WV3 images covering 100 km2 each. The
images’ location and date were constrained by the availability

of images in the archive since they were acquired on demand.
The three validation areas were mainly centered on the big fires
present in the region. So, the validation results of these areas
offer a good estimation of the accuracy of the classifications
regarding the burned area delineation. We obtained similar
omission and commission errors for both classifications ranging
between 4 and 6%, meaning that both BA products produced
highly accurate BA mapping.

However, those validation sites covered a small proportion
of the region’s surface. To properly assess the performance of the
BA classifications in different land covers, we obtained reference
perimeters by applying the RPT (Roteta et al., 2021a) on two
sites of 50 km × 50 km using Sentinel-2 images at 10 m. In this
case, one of the validation sites covers part of the agricultural
area in the region, and the other extends over a large fire
situated in the north of the region. The omission errors (7.6%
for RFM1 and 5% for RFM2) were lower than the errors reported
in previous studies using Sentinel-2 images for BA mapping.
On the other hand, the commission errors (21.4% for RFM1
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and 17.8% for RFM2) were within the range of values found in
other studies (Ramo et al., 2018). Comparatively, Ramo et al.
(2018), who applied an optimized machine learning approach,
reported a range of omission and commission errors in the
Mediterranean and temperate forests of 21–59 and 11–27%,
respectively. Seydi et al. (2021) applied several classification
algorithms to Sentinel-2 data to classify BA, obtaining the best
results from an RF classifier with an optimal selection of input
variables, showing errors of omission and commission of 9.21
and 8.74%, respectively.

Comparing our results with the BA products derived from
Landsat data at 30 m spatial resolution, our classifications
were highly accurate for BA delimitation at the local level,
improving previous studies’ results (Mallinis and Koutsias, 2012;
Hawbaker et al., 2020). At larger scales, our results also showed
lower omission and commission errors (Vanderhoof et al., 2017;
Hawbaker et al., 2020; Roteta et al., 2021b). Roteta et al. (2021a)
offered a conservative classification method as they showed
lower commission than omission errors, so they missed burned
areas in their classification. On the contrary, we obtained a
higher commission than omission errors. Therefore, our BA
classification delineates the BA precisely at the expense of
producing false detections (Padilla et al., 2015).

We analyzed in detail which land covers presented
higher omission and commission errors. Figure 7 shows the
correspondence between the validation analysis and the land
covers affected in one of the validation areas, although we
performed the analysis in both validation sites. In general, in
both RF classifications, the omission errors were concentrated
in small patches of shrubland and on the edge of the large fires,
where shrubland or native forest was present. On the other hand,
the commission errors are mainly related to agricultural areas
where the spectral signal of harvested areas was confused with
the spectral signal of burned areas.

Comparing both RF classifications, we observed clear
differences in the spatial distribution of the errors, and
lower omission and commission errors in RFM2 (as presented
in Table 4). RFM2 presented lower commission errors in
agricultural areas and classified a higher number of small
patches of shrubland as BA. Therefore, the RFM2 classifier, which
included the BAnI, showed improved performance over the
RFM1.

The importance of agricultural and
small burned areas

Observing the comparison of the three BA maps (Figure 5),
we found important differences between the area officially
reported by the National Agency CONAF and the two BA
classifications. The reasons were related to the characteristics of
the product itself. First, the official reports include only forest
fires larger than 200 ha, hence the omission of small fires.

Consequently, that condition generates an underestimation of
7.6% of the actual area burned between January and March 2017.
However, CONAF’s fire perimeters also overestimate the extent
of the burned area because they classified as BA some unburned
areas inside the fire perimeters (7% of CONAF BA). In this case,
the under and overestimation balanced out, and the total BA
offered by CONAF did not differ much from the values obtained
from the satellite image classification. Even though in this study
case the contribution of smaller fires is minimal due to the large
fires in the Region, it is important to consider BA smaller than
200 ha since they have an important impact on the estimation
of emissions released by the fires (Randerson et al., 2012; Roteta
et al., 2019; Ramo et al., 2021).

Second, the official perimeters only consider fires affecting
forested areas. Then, the agricultural fires are never going to
be included in their reports. We considered agricultural burns
the croplands classified as BA by both RF algorithms, which
means 5% of the burned areas will be underreported (Figure 6).
These numbers are in line with previous studies that highlighted
the importance of reporting the area burned in agricultural
land (Hall et al., 2021) and of considering the implications of
cropland expansion through burning (Noojipady et al., 2017).

The use of Google Earth Engine to
produce cost-efficient BA products

Google Earth Engine proved to be a valuable tool for BA
detection at the regional scale. The study area of the Maule
region contained 200 Sentinel-2 scenes for the 7 analyzed
months, which would have meant downloading and processing
around 130 GB of data if this was done in a local system. Instead,
the whole process was carried out virtually in the GEE platform,
taking advantage of its available datasets, which allowed fast
BA detection and no need for the authors to manage heavy
data. Along with its satellite imagery datasets, the platform also
contains a wide variety of methods and algorithms for data
processing, including the RF classifier used in this study, which
enabled an accurate BA detection based on several spectral
bands and indices. Since this classification algorithm was applied
in a small area and the RF training samples could be obtained
beforehand, the GEE processing consisted mainly in classifying
S2 images, allowing a faster BA detection since the whole area
was processed in just 15 min. This contrasts with several other
studies in GEE that first require obtaining burned and unburned
samples locally adapted to the processed area in each case, either
by supervised training or by a series of thresholds and conditions
(Daldegan et al., 2019; Roteta et al., 2021a,b; Seydi et al., 2021),
making the process much slower. Even so, RF training samples
have already been collected beforehand in some studies, even
at the continental or global scale (Long et al., 2019; Sulova and
Jokar Arsanjani, 2020).
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FIGURE 7

On the top, evaluation of the omission and commission errors produced by the two burned area classification algorithms. On the bottom, land
covers classified as burned areas by the two burned area classification algorithms are shown.

Conclusion

In this study, we developed two RF algorithms for burned
area mapping on GEE using two different sets of input variables
in the Maule Region (Chile). We used two different sets of
input variables because we wanted to test the capabilities of
BAnI for detecting burned areas. From the three BAnI used,
the SANI index proved to provide significant information
for the discrimination of BA, since it was selected as a
variable of high importance in the RF model. Our results
showed improved BA classification accuracy from the RFM2

classification, which included as input the three BAnI. RFM2

offered very low omission errors (5%) and commission errors
in the range of previous studies (17%). The commission
errors were mainly related to the erroneous classification of
agricultural land as BA, due to the similar spectral signal
generated after harvesting. The BA classifications performed
in this study were computed using GEE, which allowed the

processing of hundreds of satellite images without downloading
the data and provided the processing capability to calibrate
and apply the classification algorithms. The generation of
these burned area products is much less time-consuming
than manually digitizing the burned area perimeters in
each satellite image. In addition, the results offered by the
BA classifications included fires smaller than 200 ha and
agricultural fires, which are not considered in the official
statistics.
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