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ISSA-enhanced GRU-
Transformer: integrating sports
wisdom into the frontier
exploration of carbon
emission prediction
Wei Jiang, Changjiang Liu, Qiang Qu, Zhen Wang,
Liangnan Hu, Zhaofu Xie, Bokun Zhang and Jingzhou He*

Xi’an Jiaotong University Sports Center, Shaanxi, Xian, China
Introduction: Carbon neutrality has become a key strategy to combat global

climate change. However, current methods for predicting carbon emissions are

limited and require the development of more effective strategies to meet this

challenge. This is especially true in the field of sports and competitions, where the

energy intensity of major events and activities means that time series data is

crucial for predicting related carbon emissions, as it can detail the emission

patterns over a period of time.

Method: In this study, we introduce an artificial intelligence-based method

aimed at improving the accuracy and reliability of carbon emission predictions.

Specifically, our model integrates an Improved Mahjong Search Algorithm (ISSA)

and GRU-Transformer technology, designed to efficiently process and analyze

the complex time series data generated by sporting events. These technological

components help to capture and parse carbon emission data more accurately.

Results: Experimental results have demonstrated the efficiency of our model,

which underwent a comprehensive evaluation involving multiple datasets and

was benchmarked against competing models. Our model outperformed others

across various performance metrics, including lower RMSE and MAE values and

higher R2 scores. This underscores the significant potential of our model in

enhancing the accuracy of carbon emission predictions.

Discussion: By introducing this new AI-based method for predicting carbon

emissions, this study not only provides more accurate data support for

optimizing and implementing carbon neutrality measures in the sports field but

also improves the accuracy of time series data predictions. This enables a deeper

understanding of carbon emission trends associated with sports activities. It

contributes to the development of more effective mitigation strategies, making a

significant contribution to global efforts to reduce carbon emissions.
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1 Introduction

In the contemporary context, achieving carbon neutrality

stands out as a pivotal goal in combatting global climate change.

This term denotes the attainment of a state where carbon emissions

are balanced or even surpassed by efforts involving removal,

reduction, or compensation strategies.The significance of this

concept is self-evident, as climate change has profound impacts

on the Earth’s environment, society, and economy (Moshari et al.,

2023; Keshavarzzadeh et al., 2023). However, achieving carbon

neutrality is not an easy task and is accompanied by a series of

challenges. One of these challenges lies in the widespread and

diverse sources of global carbon emissions, making the tracking,

monitoring, and reduction of emissions complex and challenging.

Another challenge is ensuring the long-term sustainability of

carbon neutrality measures to maintain a state of net-zero carbon

emissions. These challenges necessitate innovative approaches for

resolution (Zhao et al., 2022; Wu et al., 2022). With the rapid

advancement of deep learning technology, researchers have begun

to apply it to the field of carbon neutrality. Deep learning is a

machine learning technique that mimics the neural network

structures of the human brain to process complex data, exhibiting

exceptional pattern recognition capabilities (Wang et al., 2021; Yu,

2023). This has made deep learning a powerful tool for exploring

solutions to carbon neutrality. Currently, researchers have been

utilizing deep learning in various domains to advance carbon

neutrality research (Zahedi et al., 2022a; Zahedi et al., 2022b).

These domains include monitoring and management of carbon

emissions sources, improvements in carbon capture and storage

technologies, and optimization of carbon offset projects, among

others (Somu et al., 2021). Among the numerous applications of

deep learning, time series forecasting holds particular importance in

carbon neutrality research. Time series data provides valuable

information regarding carbon emissions, energy consumption,

weather changes, and more. By analyzing and forecasting this

time series data, researchers can gain a better understanding of

the effectiveness of carbon neutrality measures and optimize their

strategies. For instance, through time series forecasting, one can

more accurately predict future energy demands, thus optimizing

energy production and distribution while reducing carbon

emissions (Amasyali and El-Gohary, 2018; Feng et al., 2023).

Additionally, time series analysis can aid in monitoring and

predicting weather changes to enhance the efficiency of renewable

energy utilization. Therefore, time series forecasting plays an

indispensable role in carbon neutrality research, providing robust

support for achieving the goal of net-zero carbon emissions (Wang

et al., 2021; Yu, 2023).

In recent years, researchers have actively explored various time

series forecasting models to address challenges in the field of carbon

neutrality. One such model is the ARIMA (Autoregressive

Integrated Moving Average) model, a classic method that

combines the concepts of autoregression (AR) and moving

averages (MA). Widely applied in numerous carbon neutrality

studies, especially for predicting carbon emission trends, the

ARIMA model, however, has limitations in dealing with

nonlinear relationships and complex seasonal variations, leading
Frontiers in Ecology and Evolution 02
to potential inaccuracies in practical carbon neutrality scenarios

(Sun and Ren, 2021). Additionally, LSTM (Long Short-Term

Memory) and GRU (Gated Recurrent Unit) models are two other

extensively used models in time series forecasting. These models

possess the ability to capture long-term dependencies and are

suitable for handling nonlinear and non-stationary time series

data. However, due to their complexity, computational expenses,

and the often substantial amount of data required, their application

in certain carbon neutrality research contexts can be challenging

(Shen et al., 2022). On another front, the Transformer model is

emerging as a notable contender in the field of time series

forecasting. Built on a self-attention mechanism, it can capture

relationships between different time steps in a sequence, providing a

better understanding of temporal and seasonal variations. Despite

its excellent performance in handling time series data, the

Transformer model may face challenges in certain carbon

neutrality studies, particularly those with high data requirements

(Chen et al., 2022).

Based on the aforementioned limitations, this study introduces

a comprehensive model that combines ISSA and GRU-Transformer

to address the shortcomings of previous models. Leveraging the

strengths of the Transformer encoding layers and the GRU model,

this model achieves more accurate carbon emission predictions and

conducts in-depth exploration of factors influencing carbon

neutrality. Firstly, the model utilizes the Transformer encoding

layers as feature extractors, delving into various influencing factors

in the carbon neutrality process. Subsequently, the extracted

features are prepared for the prediction task through a fully

connected layer. The model incorporates two layers of

GRU models to enhance learning capacity. Secondly, the

output of the GRU model is fitted through a fully connected layer

to realize predictions of carbon emissions. The optimization

process employs the improved Sparrow Search Algorithm,

adjusting hyperparameters to enhance model performance and

training efficiency.
• This study introduces a time series forecasting approach

based on a combination of ISSA and the GRU-Transformer

model to enhance the accuracy of carbon emission

predictions. By integrating the encoding layers of the

Transformer with the GRU model, the model can better

capture the temporal and seasonal patterns in carbon

emission data, resulting in more precise carbon emission

forecasts. This contribution is of paramount importance in

guiding the development and implementation of carbon

neutrality strategies.

• The research further explores the application of the ISSA

method to gain a deeper understanding of the crucial

influencing factors during the carbon neutrality process.

Through the analysis of timeseries data, we can identify

factors related to carbon emissions and incorporate them

into the model’s considerations. This approach provides a

more comprehensive perspective, aiding in revealing

dynamic relationships underlying carbon neutrality and

offering decision-makers additional insights to optimize

emission reduction strategies.
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• Additionally, this study introduces an enhanced Sparrow

Search Algorithm to optimize the hyperparameters of the

GRU-Transformer model. This optimization process

enhances the model’s performance and makes it more

versatile, allowing it to adapt to various datasets and

problem scenarios. The application of this algorithm

contributes to improved model efficiency and applicability.
2 Method

This article proposes a combined model based on ISSA and

GRU-Transformer. Firstly, the encoding layers of the Transformer

are used as feature extractors to deeply explore the influencing factors

of carbon neutrality. Relevant features associated with these

influencing factors are expressed and extracted to obtain the most

significant features from the training data. Subsequently, the

extracted features are passed through a fully connected layer,

followed by the use of two layers of GRU models for prediction,

which significantly enhances the model’s learning capacity compared

to a single-layer GRU. Finally, a single fully connected layer is used to

fit the predicted values, achieving predictions of carbon emissions.

Building upon this foundation, an improved Sparrow Search

Algorithm is introduced to optimize the GRU-Transformer model.

Hyperparameters such as learning rate, batch size, and hidden layer

node count within the model are optimized using this algorithm.

Figure 1 illustrates the process: Firstly, the original carbon emission

data is input into the GRU-Transformer prediction model, with the

input layer node count, output layer node count, and other non-

ISSA optimized parameters pre-set. Parameters for the ISSA model

are determined, including maximum iteration count (epoch),

dimensionality (d), threshold (ST), and warning value R2.

Subsequently, ISSA is employed to optimize the learning rate,

batch size, and hidden layer node count within the GRU-
tiers in Ecology and Evolution 03
Transformer prediction model. Fitness of the sparrow individuals

is calculated, and their best positions are updated accordingly. If the

best position is achieved, the algorithm concludes; otherwise, the

new position is updated as the best position. Finally, the

hyperparameters obtained through ISSA optimization are input

into the GRU-Transformer prediction model for forecasting, and

the model’s performance is assessed by comparing the error

between the actual and predicted values.
2.1 GRU-Transformer model

The GRU-Transformer model is a powerful deep learning

architecture widely applied in domains such as time series

forecasting and natural language processing (Chen et al., 2022). As

shown in Figure 2, the overall structure of this model integrates both

the GRU (Gated Recurrent Unit) network and the Transformer

network to efficiently model sequences and extract features. The

roles and structures of the GRU network and the Transformer

network within this model will be separately explained below.

2.1.1 GRU model
GRU (Gated Recurrent Unit) is a variant of recurrent neural

networks (RNNs) known for its strong sequence modeling

capabilities (Lv et al., 2023; Yang et al., 2022). In the GRU-

Transformer model, the GRU network plays a crucial role in

handling short-term dependencies within sequential data. As

shown in Figure 3, it introduces essential mechanisms, including

update gates and reset gates, to effectively control information flow

while mitigating the common gradient vanishing issue associated

with standard RNNs. The update gate is represented by a sigmoid

activation function and selectively determines which information

from the previous time step should be propagated to the current

time step. Similarly, the reset gate, also controlled by a sigmoid

function, determines which information should be discarded (Liu
FIGURE 1

Overall flow chart of the model.
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et al., 2023). These gates collaborate to capture and propagate

relevant temporal patterns, making the GRU network adept at

understanding dynamic changes and patterns in the data,

particularly suitable for time series analysis. Below are the key

reasoning steps for GRU:

Equation (1) can be used to quantify and assess the extent to

which carbon-neutral actions taken at each time step contribute to

the reduction of greenhouse gas emissions. This can help the sport

community to develop more effective carbon neutral strategies to

reduce the impact of sport on climate change.

zt = s(Wz · ½ht−1, xt �) (1)

where: zt: Output of the Update Gate. s: Sigmoid activation

function.Wz: Weight matrix of the Update Gate. ht−1: Previous time

step’s hidden state. xt: Input at the current time step.
Frontiers in Ecology and Evolution 04
Equation (2) is a GRU update rule. It works by updating the

hidden state of the current time step based on the hidden state of

the previous time step and the inputs of the current time step,

thus enabling modelling and prediction of sequence data. For

example, time series data is used in sports to predict the

performance of athletes. By collecting athletes' training,

physical state, game results, etc., and then using recurrent

neural networks to learn the patterns and trends of these data,

the performance of the athlete at future time steps can eventually

be predicted.

rt = s (Wr · ½ht−1, xt �) (2)

where: rt: Output of the Reset Gate. s: Sigmoid activation

function. Wr: Weight matrix of the Reset Gate. ht−1: Previous

time step’s hidden state. xt: Input at the current time step.
FIGURE 3

Flow chart of the GRU model.
FIGURE 2

Flow chart of the GRU-Transformer model.
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Equation (3) allows us to better understand and assess the

impact of actions taken in carbon neutral and sport on reducing

carbon emissions and promoting sustainable development.

~ht = tanh(W · ½rt ⊙ ht − 1, xt �) (3)

where: ~ht : Candidate hidden state. tanh: Hyperbolic tangent

activation function. W: Weight matrix used to calculate the

candidate hidden state. rt: Output of the Reset Gate. ht−1:

Previous time step’s hidden state. xt: Input at the current time step.

In the field of carbon neutrality and sport, Equation (4) is more

effective in updating and maintaining the state of the model, leading

to a better understanding and assessment of the impact of different

actions on carbon emissions and sport performance.

ht = (1 − zt)⊙ ht –1 + zt ⊙ ~ht (4)

where: ht: Current time step’s hidden state. zt: Output of the Update

Gate. ~ht : Candidate hidden state. ht−1: Previous time step’s hidden state.
2.1.2 Transformer model
The Transformer is a neural network architecture based on

self-attention mechanisms, particularly adept at handling long-

range dependencies and parallelized computation (Oyando
Frontiers in Ecology and Evolution 05
et al., 2023; Zhang et al., 2023). In the GRU-Transformer

model, the Transformer network is employed to extract long-

term dependencies and global associations within sequence

data. Its encoder layers enable the model to autonomously

learn crucial relationships between different time steps within

the sequence, without relying on traditional sliding window

approaches. As illustrated in Figure 4, the Transformer’s

self-attention mechanism assists the model in adaptively

focusing on critical features, thereby enhancing sequence

modeling performance.

Here, we introduce the key mathematical principles of the

Transformer model:

Equation (5) represents the Multi-Head Attention mechanism,

which is an extension of the Self-Attention mechanism for learning

the dependencies between positions in an input sequence. We can

apply the Multi-Head Attention mechanism to the need or concern

for carbon neutral and sports related information.

MultiHead(Q,K ,V) = Concat(head1, head2,…, headh)W
O (5)

where: MultiHead(Q,K,V): Output of multi-head attention.

headi: Individual attention head. WO: Weight matrix for the

output projection.
FIGURE 4

The Transformer model architecture. Left: Encoder with N = 6 identical layers, each containing two sub-layers - a multi-head self-attention
mechanism and a position-wise fully connected feed-forward network. Right: Decoder with N = 6 identical layers, including the two sub-layers from
each encoder layer and an additional sub-layer performing multi-head attention over the encoder stack’s output.
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PositionwiseFFN(x) = max(0, xW1 + b1)W2 + b2 (6)

In Equation (6), PositionwiseFFN(x): Output of the position-wise

feed-forward network.W1, b1,W2, b2: Weight matrices and bias terms.

LayerNorm(x) =
x − m
s

(7)

In Equation (7), LayerNorm(x): Layer normalization of x. µ:

Mean of x. s: Standard deviation of x.
2.2 ISSA

Nature inspires solutions to complex problems, with

collective behaviors in bird flocks and insect swarms offering

valuable insights. The Sparrow Search Algorithm (SSA),

inspired by sparrow foraging patterns, addresses optimization

challenges. However, SSA’s limited communication among

group members hinders solution quality. In this paper, we

enhance SSA by introducing reverse learning, Levy flight, and

adaptive learning strategies to improve convergence speed and

solution quality.

2.2.1 Levy flight strategy
By employing the Levy flight strategy to update individual

parameters in the formula, we enhance the algorithm’s global

optimization capabilities, thus preventing the Sparrow Search

Algorithm from getting trapped in local optima.

s =
g (1 + t) · sin( p ·t2 )

g ( 1+t2 ) · t · 2
t−1
2

(8)

s =
∂

jvj1t
(9)

Pt+1
i,j = m · step · s · (Pt

i,j − Pt
best,j) (10)

In Equations (8–10) g represents the gamma function, and t is a
hyperparameter, which is set to 1 in this paper. d and v follow

normal distributions N(0,s2) and N(0,1), respectively. Here, m

represents a random number, and s represents the step size,

which is set to 0.001. Pbest,j denotes the value of the globally best

position in dimension j from the previous iteration.
2.2.2 Adaptive learning strategy
During the SSA search process, some individuals in the

population may become trapped in local optima, and their

positions remain unchanged over several consecutive iterations

(Sun et al., 2022). These individuals are considered to lack search

capability and should be updated in subsequent search processes to

enhance convergence speed and accuracy. We have improved SSA

using the Equation (11):

fit(Xi) =
1

1+f (Xi)

� �
, f (Xi) ≥ 0

1 + f (Xi)j j, f (Xi) < 0

8<
: (11)
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where: f(Xi) represents the objective function of the

minimization problem. When a sparrow’s fitness is greater than

0.9, it will be considered as a discoverer. When the sparrow’s fitness

value is greater than 0.7 and less than 0.9, the sparrow will be

considered as a joiner. It will immediately leave its current position

and approach the best discoverer. When the sparrow’s fitness value

is less than 0.7, the sparrow will become a joiner but will not

approach the best discoverer.
3 Experiment

3.1 Datasets

To comprehensively validate our model, this experiment utilizes

four distinct datasets: MLCO2 dataset, GCA dataset, GHGI dataset,

and CCKP dataset.

MLCO2 (Mauna Loa Carbon Dioxide): This dataset is based on

atmospheric carbon dioxide concentration data collected at the

Mauna Loa Observatory in Hawaii and is one of the crucial datasets

in climate science. It records global atmospheric carbon dioxide

concentrations since 1958, making it widely used for researching

climate change and greenhouse gas emissions (Tveter, 2020).

GCA (Global Carbon Atlas): The GCA is a comprehensive global

carbon dataset that provides detailed information on global carbon

dioxide emissions and absorption. It includes carbon emission data

from various sources, including energy production, transportation,

industry, and land-use changes (Franzen and Mader, 2019).

GHGI (Greenhouse Gas Inventory): GHGI is an international

greenhouse gas inventory compiled and published by governments

and international organizations. It encompasses various greenhouse

gas emission data, such as carbon dioxide, methane, and nitrous

oxide, categorized by sources and industries (Shi et al., 2021).

CCKP (Climate Change Knowledge Portal): The CCKP is a data

platform provided by the World Bank, which aggregates various

data related to climate change, greenhouse gas emissions, and

adaptation measures. It includes data from various countries,

covering climate indicators, risk assessments, and adaptability

data (Leal Filho et al., 2023).
3.2 Experimental environment

This article’s experimental platform server configuration is

shown in Table 1.
3.3 Experimental details

3.3.1 Step 1: Data preprocessing
• Data Cleaning: In this step, we thoroughly cleaned the raw

data. Regarding the handling of missing values, if the

missing values in a column exceed 10%, we choose to

remove the entire column; otherwise, we fill the missing

values with the mean of that column.
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• Data Standardization: To ensure data consistency and

comparability, we standardized all data features. This

involves transforming numerical features into a form with

a mean of 0 and a standard deviation of 1. This process

helps eliminate scale-related issues that may arise during

the modeling process.

• The dataset is divided into three subsets: the training set,

validation set, and test set. Specifically, approximately 70%

of the data sample is allocated to the training set, 15% to the

validation set, and the remaining 15% to the test set. After

removing missing data, the final dataset selection resulted in

63,788 data samples for the MLCO2 dataset, 72,345 for the

GCA dataset, 56,920 for the GHGI dataset, and 67,213 for

the CCKP dataset. The specific dataset distribution is shown

in Table 2:
3.3.2 Step 2: Model training
• Begin by preprocessing the carbon emission data and

feeding it into the GRU-Transformer prediction model.

Set the model’s input layer nodes, output layer nodes, and

other parameters that don’t require optimization via ISSA

in advance. Determine key parameters for the ISSA model,

such as the maximum iteration count (epoch), dimension

(d), threshold (ST), and warning value (R2).

• Apply the ISSA algorithm to optimize hyperparameters

within the GRU-Transformer prediction model, including
tiers in Ecology and Evolution 07
learning rate, batch size, and hidden layer node count.

Calculate the fitness of each sparrow and subsequently

update their best positions. Inject these optimized

hyperparameters into the GRUTransformer prediction

model, compute corresponding fitness values, and assess

whether there is a need to update the best positions. The

algorithm will terminate if the best positions are achieved;

otherwise, new positions will replace the best.

• Input the finely tuned hyperparameters, obtained

through ISSA optimization, into the GRU-Transformer

prediction model for forecasting. Evaluate the model’s

performance by comparing errors between actual and

predicted values.
3.3.3 Step 3: Model evaluation
• Model Performance Metrics: In this step, the evaluation of

the developed model is conducted through the application

of various performance metrics. These metrics include but

are not limited to Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error

(MAPE), and R-squared (R2) statistics. These metrics

provide a comprehensive overview of how well the model

performs in predicting carbon emissions. The chosen

metrics help in assessing the accuracy, precision, and

reliability of the model’s predictions.

• Cross-Validation: Cross-validation is an essential technique

employed to validate the model’s performance and assess its

generalization capabilities. In this step, the dataset is divided

into multiple subsets or folds. The model is trained on a

portion of the data and tested on another. This process is

repeated multiple times, with different subsets serving as

both training and testing data. The results from each

iteration are then averaged to provide a more robust

evaluation of the model’s performance. Cross-validation

helps to mitigate overfitting and ensures that the model

can make accurate predictions on unseen data, enhancing

its reliability and applicability.
Below, we will introduce the evaluation metrics used in

this study:

Equation (12): Root Mean Squared Error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(12)

where: n is the number of observations. yi is the actual value. ŷ i

is the predicted value.

Equation (13): Symmetric Mean Absolute Percentage Error

(SMAPE):

SMAPE =
1
no

n

i=1

yi − ŷ ij j
( yij j + ŷ ij j)=2 � 100 (13)
TABLE 2 Dataset splitting.

Dataset Initial
Samples

Training
Set

Validation
Set

Test
Set

MLCO2 63,788 44,651 9,589 9,548

GCA 72,345 50,641 10,867 10,837

GHGI 56,920 39,844 8,548 8,528

CCKP 67,213 47,049 10,065 10,099
TABLE 1 Experiment environment.

Component Description

Operating System Windows 11

CPU Intel Core i9-9900K CPU @ 3.60GHz

GPU NVIDIA RTX3090 Graphics Cards (2 units) with
CUDA Cores

Memory 32GB

Python Version 3.9.18

Matplotlib
Version

3.3.4

CUDA Version 11.3

NumPy Version 1.26.1

Torch Version 1.8.0
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where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.

Equation (14): Coefficient of Determination (R-squared, R2):

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − y)2

(14)

where: n is the number of observations. yi is the actual value. ŷ i

is the predicted value. y is the mean of the actual values.

Equation (15): Mean Absolute Error (MAE):

MAE =
1
no

n

i=1
yi − ŷ ij j (15)

where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.

Equation (16): Mean Absolute Percentage Error (MAPE):

MAPE =
1
no

n

i=1

yi − ŷ ij j
yij j � 100 (16)

where: n is the number of observations. yi is the actual value. ŷ i  

is the predicted value.
3.4 Experimental results and analysis

Table 3 provides a comprehensive comparison of various

models on the MLCO2, GCA, GHGI, and CCKP datasets across

different performance indicators. Among all evaluated models, our

approach consistently outperforms others across multiple metrics.

Specifically, on the MLCO2, GCA, GHGI, and CCKP datasets, our

model demonstrates significant advantages in terms of RMSE,

MAE, SMAPE, and R2. In comparison to competing models such

as BIGRU-Transformer, GRU-Transformer, CNN-GRU,

Attention-GRU, SSAGRU-Transformer, and SSA-CNN-GRU, our

approach achieves lower RMSE and MAE values, as well as higher

R2 scores. This underscores the universality and reliability of our
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method, indicating that our model exhibits higher accuracy and

reliability in carbon-related prediction tasks.

As shown in Table 4, we conducted a detailed comparison of

performance metrics for different models on multiple datasets.

Specifically, our model outperforms competitors consistently in

terms of parameter count and computational complexity on

MLCO2, GCA, GHGI, and CCKP datasets. For instance, on the

MLCO2 dataset, our model exhibits a significant advantage, with

only 416.45 million parameters and a computational complexity of

55.28 billion floating-point operations (Flops), much lower than

other models.

The design of our model structure takes into account the

characteristics of the tasks it handles. Through the customization

of the GRU-Transformer, we targetedly simplified the model

structure, retaining only the essential components for the task

and avoiding unnecessary complexity. Our model exclusively

utilizes the encoder part of the Transformer structure, omitting

the decoder. Since the decoder, in sequence generation, needs to

consider previously generated parts, it is typically more complex

than the encoder. Omitting the decoder contributes to reducing

computational complexity, enhancing inference speed, especially in

scenarios where inference efficiency is crucial. We implemented the

Information Separation and Self-Attention (ISSA) mechanism to

achieve effective fusion of information. This mechanism maintains

model performance while more efficiently processing information,

reducing the amount of information representation required in the

parameter space. This method of information fusion contributes to

lowering the model’s parameter count.
3.5 Ablation experiments

In Table 5, we conducted experiments by removing the ISSA

module to validate its effectiveness. For instance, on the MLCO2

dataset, our model outperformed SSA, PSO, QPSO, and WOA in

terms of RMSE. Specifically, our model achieved a reduction of
TABLE 3 Comparison of different models in different indicators comes from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Model

Datasets

MLCO2 (Tveter, 2020) GCA (Franzen and Mader, 2019) GHGI (Shi et al., 2021) CCKP (Leal Filho et al., 2023)

RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2

BIGRU-Transformer
(Sheng et al., 2023)

133.29 117.47 0.68 0.86 138.66 102.26 0.78 0.83 129.91 132.08 0.82 0.87 134.44 119.12 0.68 0.88

GRU-Transformer (Lv
et al., 2023)

137.28 111.67 0.63 0.87 134.17 100.12 0.72 0.87 123.35 121.84 0.94 0.87 133.73 134.77 0.64 0.87

CNN-GRU (Elmaz
et al., 2021)

139.03 110.74 0.63 0.88 138.52 92.48 0.62 0.85 134.22 111.26 0.93 0.86 134.77 118.92 0.61 0.86

Attention-GRU (Yang
et al., 2022)

138.16 113.24 0.68 0.85 127.76 93.78 0.66 0.83 135.88 122.94 0.95 0.85 130.73 122.93 0.62 0.84

SSA-GRU-Transformer
(Wang et al., 2021)

136.90 113.29 0.62 0.88 127.46 110.33 0.65 0.82 149.88 132.78 0.84 0.84 132.78 129.88 0.64 0.88

SSA-CNN-GRU (Tang and
Li, 2022)

134.48 110.53 0.69 0.89 129.19 91.60 0.64 0.89 143.4 112.27 0.6 0.85 138.07 128.59 0.68 0.89

Ours 113.23 89.12 0.60 0.91 118.2 85.12 0.59 0.91 115.2 104.12 0.65 0.89 115.2 94.12 0.58 0.90
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approximately 10.16 in RMSE compared to SSA, about 13.05

compared to PSO, roughly 11.1 compared to QPSO, and

approximately 15.93 compared to WOA. Similarly, on the GCA,

GHGI, and CCKP datasets, our model demonstrated superior

performance in various performance metrics.

The main reason for this significant performance advantage

lies in the introduction of the Levy Flight strategy by ISSA. By

employing a random step-length movement, ISSA enables the

algorithm to explore the search space more extensively.

Compared to SSA, PSO, QPSO, and WOA, ISSA possesses

enhanced global search capabilities, effectively avoiding being

trapped in local optima. Furthermore, ISSA enhances inter-

individual information interaction and integration through

information separation and self-attention mechanisms.

Compared to other algorithms, ISSA maximizes the utilization

of internal information within the group, thereby improving the

algorithm’s adaptability to complex problems. On the other hand,

ISSA introduces an adaptive learning strategy, facilitating timely

updates for individuals trapped in local optima to accelerate

convergence speed. Compared to other methods, ISSA

demonstrates dynamic individual adjustment capabilities,

enhancing the accuracy of solutions. These series of

experimental results indicate that the introduction of the ISSA
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module has a significantly positive impact on algorithm

performance, showcasing outstanding performance across

multiple datasets.

In Table 6, we conducted further experiments involving the

removal of the GRUmodule, revealing significant advantages of our

GRU model over competing models (LSTM, BILSTM, RNN,

BIGRU) across four datasets (MLCO2, GCA, GHGI, CCKP) in

terms of RMSE, MAE, SMAPE, and R2. For instance, on the

MLCO2 dataset, our GRU model demonstrated outstanding

performance in RMSE. Compared to LSTM, BILSTM, RNN, and

BIGRU, our model achieved reductions of approximately 20.08,

13.97, 22.1, and 15.93, respectively.

This notable performance advantage can be attributed to the

relatively lightweight design of the GRU module, featuring fewer

parameters and higher computational efficiency. The gate

mechanism in the GRU module provides increased flexibility,

enabling better capture of long-term dependencies in sequences

and consequently enhancing sequence modeling performance.

Additionally, the GRU module’s efficient information processing

contributes to improved learning and representation of sequence

features. Finally, the design of the GRU module facilitates the

capturing of patterns in the data during the training process,

enhancing the model’s generalization performance. The effective
frontiersin.or
TABLE 4 The comparison of different models in different indicators comes from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Method

Datasets

MLCO2 (Tveter, 2020) GCA (Franzen and
Mader, 2019)

GHGI (Shi et al., 2021) CCKP (Leal Filho
et al., 2023)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

Parameters
(M)

Flops
(G)

BIGRU-Transformer (Sheng
et al., 2023)

545.47 64.65 463.46 58.22 488.83 67.18 513.15 43.53

GRU-Transformer (Lv et al., 2023) 456.78 66.52 450.44 69.27 572.58 66.37 519.76 47.58

CNN-GRU (Elmaz et al., 2021) 596.65 58.33 488.09 63.92 423.83 68.90 589.14 63.11

Attention-GRU (Yang et al., 2022) 455.06 77.36 468.67 65.23 451.20 65.25 457.94 68.75

SSA-GRU-Transformer (Wang
et al., 2021)

523.03 68.85 499.87 63.21 432.91 71.55 683.71 47.42

SSA-CNN-GRU (Tang and
Li, 2022)

588.36 56.58 445.16 55.06 426.75 50.55 685.36 73.04

Ours 416.45 55.28 425.5 44.25 419.33 65.32 542.45 40.56
TABLE 5 Ablation experiments on the ISSA module come from the MLCO2 dataset, GCA dataset, GHGI dataset, and CCKP dataset.

Model

Datasets

MLCO2 GCA GHGI CCKP

RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2 RMSE MAE SMAPE R2

SSA 123.39 97.47 0.65 0.88 118.66 92.26 0.79 0.83 129.91 122.08 0.82 0.87 116.44 115.12 0.68 0.87

PSO 127.28 91.67 0.64 0.87 124.17 90.12 0.73 0.87 123.35 121.84 0.85 0.87 118.73 124.77 0.64 0.87

QPSO 125.33 90.74 0.62 0.86 128.52 92.48 0.65 0.85 134.22 111.26 0.81 0.86 116.77 115.92 0.61 0.85

WOA 128.16 93.24 0.69 0.85 127.76 95.78 0.64 0.83 135.88 122.94 0.65 0.85 120.73 128.93 0.62 0.84

Ours 113.23 89.12 0.60 0.91 118.20 85.12 0.59 0.91 115.2 104.12 0.65 0.89 115.2 94.12 0.58 0.90
g
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modeling of sequential data by our GRU model enables more

accurate predictions across multiple datasets.
4 Conclusion

In this study, we proposed an approach based on the

combination of ISSA and GRU-Transformer models for time

series prediction in the field of carbon neutrality. Through

experiments, we conducted a thorough evaluation of the model

on multiple datasets and compared its performance with competing

models. The experimental results show that our model excels in

various performance metrics, including lower RMSE and MAE

values, as well as higher R2 scores. This indicates the potential and

application prospects of our model in the carbon neutrality domain.

Despite achieving satisfactory results in time series prediction

tasks, there are still some shortcomings in our model. Firstly, the

robustness of our model in handling extreme cases needs

improvement. In certain situations, such as sudden events or

anomalies, the model’s performance may degrade. Secondly, the

training and optimization of the model still require significant

computational resources and time, limiting its scalability and

applicability. Therefore, future work needs to address these issues,

further enhance the model’s robustness, and optimize the training

and tuning processes to make it more practical and scalable.

Looking ahead, carbon neutrality remains a crucial strategy in

addressing global climate change. Our research provides a novel

deep learning-based time series prediction method for the carbon

neutrality domain, offering a powerful tool for better understanding

and optimizing carbon neutrality measures. Future work can

explore further applications of the model, including monitoring

and management of carbon emissions sources, improvements in

carbon capture and storage technologies, and optimization of

carbon offset projects, among others. Additionally, further

research and performance enhancements can be pursued to meet

the requirements of different fields and applications. The

combination model based on ISSA and GRU-Transformer

presented in this study offers a new approach to time series

prediction in the carbon neutrality domain, achieving a series of

encouraging results. Despite the challenges and limitations, this

research lays a solid foundation for future exploration and

innovation in the carbon neutrality field, promising to provide
Frontiers in Ecology and Evolution 10
more powerful tools and support for addressing global climate

change issues.
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