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Controlled laboratory experiments are often performed on amphibians to

establish causality between stressor presence and an adverse outcome.

However, in the field, identification of lab-generated biomarkers from single

stressors and the interactions of multiple impacts are difficult to discern in an

ecological context. The ubiquity of some pesticides and anthropogenic

contaminants results in potentially cryptic sublethal effects or synergistic

effects among multiple stressors. Although biochemical pathways regulating

physiological responses to toxic stressors are often well-conserved among

vertebrates, different exposure regimes and life stage vulnerabilities can yield

variable ecological risk among species. Here we examine stress-related

biomarkers, highlight endpoints commonly linked to apical effects, and discuss

differences in ontogeny and ecology that could limit interpretation of biomarkers

across species. Further we identify promising field-based physiological measures

indicative of potential impacts to health and development of amphibians that

could be useful to anuran conservation. We outline the physiological responses

to common stressors in the context of altered functional pathways, presenting

useful stage-specific endpoints for anuran species, and discussing multi-stressor

vulnerability in the larger framework of amphibian life history and ecology. This

overview identifies points of physiological, ecological, and demographic

vulnerability to provide context in evaluating the multiple stressors impacting

amphibian populations worldwide for strategic conservation planning.
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1 Stressors

Multiple common sources of physiological stress contribute to

the ubiquitous threats to amphibian populations worldwide,

including disease, pollution, and habitat loss as well as

combinations of these stressors (Stuart et al., 2004; Wake and

Vredenburg, 2008; Foden et al., 2013; Grant et al., 2016; Green

et al., 2020). Stressor impacts can be detected at the organismal level

before long-term population decline is apparent. Habitat

constraints are frequently observed as higher density resource

competition inhibiting metamorphosis, recruitment, or

reproductive success in some species (Harper and Semlitsch,

2007; Rittenhouse and Semlitsch, 2007). Disease transmission

often presents as an immunological response prior to mass

mortality (Ohmer et al., 2021). Pollution, likewise, can result in

reduced reproductive success or growth in addition to mortality,

and the chronic effects of these stressors can often be detected as

systemic responses within the organism that precede impacts

apparent at the population level (Thambirajah et al., 2019;

Trudeau et al., 2020). Oxidative stress, compromised immunity,

endocrine disruption, and altered metabolic activity are some

physiological indications of perturbations in biological function

that can lead to phenotypical impacts on individual fitness, with

implications for population dynamics.
1.1 Habitat degradation

Habitat conversion, degradation, and fragmentation are the

primary global causes of terrestrial biodiversity loss (Haddad

et al., 2015; Newbold et al., 2015). Though global amphibian

declines are linked to multiple stressors and their interactions,

habitat loss typically plays an outsized role due to impacts on

survival, gene flow, and dispersal (Sodhi et al., 2008). Spatial range,

dispersal rates, or seasonal constraints influence population

connectivity, and the abiotic conditions limiting habitat

availability are projected to be less favorable in response to

climate change (Sodhi et al., 2008; Funk et al., 2021). Warmer

and drier conditions produced from changing climatic trends

provide a direct thermal stressor and are expected to accelerate

habitat loss of ephemeral wetlands (Blaustein et al., 2010; Lertzman-

Lepofsky et al., 2020). Thermal stressors can geographically

constrain or shift suitable aquatic (Duarte et al., 2012) and

terrestrial (Hoffmann et al., 2021) ranges, particularly for cold-

adapted species and microclimate-dependent life history stages with

limited acclimation capacity (Frishkoff et al., 2015).

Sources of anthropogenic modifications linked to amphibian

habitat loss are driven by deforestation and urbanization (Cordier

et al., 2021). Continued fragmentation of amphibian populations

based on their hydroregime dependency has demonstrated that

periods of drought effectively isolate numerous endangered species

(Zamberletti et al., 2018; Allen et al., 2020). Further, conservation of

breeding wetlands is insufficient to overcome the challenges

presented by anthropogenically or climatically modified habitats

(Allen et al., 2020), particularly the anticipated reduction in

temporary wetland inundation (Brice et al., 2022). Additionally,
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wetland protection depends on legal decisions that are subject to

amendment or revision. Even with ample habitat available,

environmental stochasticity increases variance in juvenile

recruitment for species dependent on ephemeral wetlands

(Greenberg et al., 2017), particularly for species with high

dispersal rates and/or an energetically costly metamorphosis

(Funk et al., 2021; Brooks and Kindsvater, 2022). Hydroperiod

duration could have a greater impact on metapopulation

persistence than pathogen or contaminant exposure (Smalling

et al., 2019), specifically anomalous deluge events or multiple

years of drought (Walls et al., 2013; Awkerman and Greenberg,

2022; cf. Moss et al., 2021).
1.2 Pathogens

In addition to the limitations of habitat availability, amphibian

populations are also regulated by disease and predation. Many

species require fish-free breeding ponds for sufficient reproductive

success and are vulnerable to predation by aquatic insects (Ohba,

2011). Anuran species and life stages vary in inherent susceptibility

and ecological likelihood of exposure to waterborne pathogens such

as ranaviruses and Batrachochytrium dendrobatidis (Bd) (Haislip

et al., 2011; Hoverman et al., 2011). Bd, the fungus responsible for

chytridiomycosis, is found in cooler, lentic waterbodies (Spitzen-

van der Sluijs et al., 2017), and prevalence is often highest among

amphibian larvae, with later life stages more resistant to infection

(Li et al., 2021). Amphibian response to chytridiomycosis often

involves the complement system, in an immunological response to

the pathogen, and is frequently detected through bacteria-killing

assays (BKA; Rodriguez and Voyles, 2020). Ranavirus is often

detected in amphibian communities with greater species diversity

(Bienentreu et al., 2022). Pathogen effects can be exacerbated by

transmission via more resilient invasive species that spread disease

in addition to competing for the diminishing habitat of native

species. For example, the American bullfrog (Lithobates

catesbeianus) is a particularly invasive species that is less

susceptible to ranavirus and chytridiomycosis-induced lethality,

and therefore acts as an influential vector facilitating world-wide

transmission of ranavirus (Hossack et al., 2023). The global trade

and subsequent farming of this species for human consumption

have resulted in the detection of ranavirus in native populations

from previously uncontaminated regions such as those of Brazil and

Mexico (Ruggeri et al., 2019 and Saucedo et al., 2019, respectively).

International trade of the invasive Xenopus laevis has also

contributed to the spread of chytridiomycosis (Fisher and

Garner, 2020).

Amphibian species differ in their response to the fungal

pathogen Bd with some species showing downregulation of

cellular and metabolic functions and upregulation of adaptive

immune gene response; however, such responses are ultimately

insufficient to prevent high microbial infection loads (e.g., Eskew

et al., 2018). Other species with more diverse dermal antimicrobial

peptide communities showed minimal response to infection (Eskew

et al., 2018). Lower temperatures may increase inflammation-

related responses as opposed to warmer temperatures increasing
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adaptive immune responses (Ellison et al., 2020). More bacterial

reads, presumably from frog microbiomes, were found in

populations with a history of ranavirus (Campbell et al., 2018).

Differential impacts of changing climate on host and pathogen

further complicate strategies to prevent transmission (Blaustein

et al., 2012). It is likely that warming climates will impact viral

loads, as observed in juveniles at warmer temperatures with less

intense but persistent infections (Brunner et al., 2019), and bacteria-

killing ability is reduced at higher temperatures in some species

(Rodriguez and Voyles, 2020). Coinfection of ranavirus and chytrid

in several endemic tadpoles underscores the importance of

understanding the etiology and interactions of these pathogens

for effective conservation of amphibians and other aquatic

vertebrates (Warne et al., 2016).
1.3 Pesticides

Agricultural and residential pesticide use has also been

implicated as a contributing factor in declining amphibian

populations (Hayes et al., 2010; Brühl et al., 2011, 2013) with

agriculture identified as the most common cause of extinction

threats for amphibians and other terrestrial vertebrates

(Munstermann et al., 2022). A meta-analysis of pesticide effects

revealed moderate impacts on survival and decreased mass and

relatively greater impacts from deformities not associated with

phylogeny. Although contaminants of emerging concern were

underrepresented in pollutant studies, pesticide effects were

comparable with those of wastewater, less impactful compared to

deicer effects, and relatively greater than those of metals and

phosphorus compounds (Egea-Serrano et al., 2012). Additionally,

transgenerational impacts, lethal and sublethal, have been

demonstrated from exposure to environmentally relevant

pesticide concentrations (Karlsson et al., 2021; Usal et al., 2021).

The amphibian life cycle allows complex exposure dynamics in both

aquatic and terrestrial environments, and recommended

application rates of many pesticides result in high mortality from

terrestrial exposure (Brühl et al., 2013), although terrestrial effects

are less frequently documented. Indirect effects of pesticide use at

lower concentrations than those toxic to amphibians potentially

impact the full lifecycle of amphibians through reduction of

resources, although aquatic food web effects are more frequently

reported than terrestrial food web effects (Relyea and Diecks, 2008;

Relyea, 2009). Overall, aquatic pesticide exposure can alter various

endocrine functions important to development and reproduction

and result in a variety of systemic impacts in amphibians

(Thambirajah et al., 2019). A recent review of endocrine

disruption by agrochemicals summarized changes in lipid and

energy metabolism among fungicides; effects on metabolism,

metamorphic success, and gonadal development for some

herbicides; and reduced metamorphosis from fertilizer and other

pesticide exposures (Trudeau et al., 2020). Evaluating the non-lethal

effects of pesticides is complicated by timing of exposure and

sample collection as well as tissue type, such that measured effects

vary depending on species, mechanism of action, route of exposure,

and the concentration of the compound (Rohr and McCoy, 2010;
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Glinski et al., 2021; Seim et al., 2022). Even with the abundance of

scientific support correlating pesticide exposure to declining

amphibian populations, it is unrealistic that impacts of pesticide

exposure will be reversed, given the moderate generation times of

most amphibians, the complexity of potential exposure based on

their life cycle, and the substantial proportion of croplands in

protected areas associated with continuing tradeoffs between food

security and conservation (Vijay and Armsworth, 2021).
1.4 Stressor interactions

Uncertainty surrounding individual response, species vulnerability,

and exposure regime complicates risk assessment determinations of

multiple stressor impacts at the landscape level (Relyea and Hoverman,

2006). For instance, co-stressors such as heat, pesticides, and parasites

impact amphibian immune responses and can have synergistic effects

on fecundity and post-recruitment survival (Kiesecker, 2002,

Thompson et al., 2022). When anthropogenic stressors and abiotic

factors synergize, the immune system is challenged (Kiesecker, 2011),

and early stress experienced during development can affect resilience in

later life stages (Kohli et al., 2019; Le Sage et al., 2022). Disease

susceptibility can increase following herbicide exposure (Rohr et al.,

2013), and lower microbiota diversity, a common result of pesticide

exposure, is associated with reduced parasite resistance (Knutie et al.,

2017). Anticipating potential long-term effects in response to various

stressors and their interactions, which can promulgate into subsequent

life stages, challenges both establishing in situ causality from single

stressors needed for tighter regulations and effective conservation

management. Ultimately, ecological risk assessment is complicated

not only by a deficit of toxicological data, but also a lack of ecological

data to document changes in land use, species abundance and

distribution, and disease transmission that are necessary for adaptive

management approaches (Womack et al., 2022). Extrinsic stressors are

presented in Table 1 along with physiological measurements of these

effects, endogenous processes affecting the same biochemical pathways,

and life stages in which departures from typical functions are detectable

and/or problematic (Figure 2).
2 Lifestage-specific physiology

Effective adaptive conservation management strategies target

vulnerable life stages and critical threats to wildlife populations.

The biphasic life cycle of anuran amphibians makes them

particularly vulnerable to extrinsic stressors because of their

dependence on variable aquatic habitat resources as well as

terrestrial environmental quality (Nolan et al., 2023). Their

complex life history strategy and multiple potential drivers of

population decline require a more nuanced approach to targeting

spatial and temporal variability in stressors relative to life stage (Walls

and Gabor, 2019; Awkerman et al., 2020). Distinguishing stage-

specific endogenous variation in physiological processes enables

anticipation of compromised physical condition in response to

common stressors (Brooks and Kindsvater, 2022; Nolan et al.,

2023). Here we focus on stressor impacts on transition between life
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TABLE 1 Endogenous activity associated with transitional phases of the anuran lifecycle, exogenous stressors that alter biological processes, methods
to assess organismal effects, and potential demographic impacts. ↑ upregulation or increased expression; ↓ downregulation or decreased expression.

Stage
Systemic
response

Endogenous activity Exogenous stressors
Assessment
methods

Demographic
endpoint

Embryolarval
development

Metabolism

Energy production, DNA
synthesis, protein synthesis↑,
alanine ↓ aspartate ↓, a-
ketoglutamine ↑ (Vastag
et al., 2011)

Aquatic conditions, including chemical
pollution, pathogens, predation
(Kiesecker, 2011)

Whole-organism
metabolites (Vastag
et al., 2011)

Embryo mortality;
cessation
of development

Metamorphosis Metabolism

Increasing energy needs,
anabolic activity, tail
apoptosis; greater dehydration
from fasting (Rowland et al.,
2023); purine, arginine and
pyrimidine, urea cycle
metabolites, arginine and
purine/pyrimidine, cysteine/
methionine, sphingolipid, and
eicosanoid metabolism (Ichu
et al., 2014)

↑ galactose metabolism and lactose
degradation with xenobiotic exposure
(Glinski et al., 2021) or reduced
resources; ↓ glutathione (Ichu et al.,
2014); galactose predictive of chytrid
(Wang et al., 2021); predation and
pesticide exposure alter aminoacyl-tRNA
biosynthesis, galactose and glutathione
metabolism, arginine biosynthesis (Snyder
et al., 2022); pesticide exposure impacts
serine and threonine, histadine, linoleic
acid, and sphingolipid metabolism

Whole-organism or tissue
metabolomics (Ichu
et al., 2014)

Delayed
development,
reduced transition
to juvenile stage

Redox
signalling

Lipid peroxidation ↑,
glutathione ↓, catalase ↓,
SOD, CAT, MDA expression
altered during intestinal
development and tail
resorption, ascorbic acid ↑ for
collagen synthesis (Menon
and Rozman, 2007; Guo et al.,
2022); glutathione peroxidase
↓, GST ↓, sulfhydryl groups ↓
(Petrović et al., 2021)

Lower antioxidant activity and increased
lipid peroxidation to xenobiotics or
environmental conditions (abiotic or
density effects; Burraco et al., 2017;
Petrović et al., 2021); ↑ thiol and CAT in
pesticide and nematode infection
(Marcogliese et al., 2021)

ROS production in tissues;
antioxidant enzymatic
responses of SOD, CAT,
MDA, GST (Menon and
Rozman, 2007; Chen et al.,
2017; Guo et al., 2022);
decreased expression of
GSH; increased TBARS

Delayed
development;
reduced transition
to juvenile stage

Endocrine
response

CS in response to ↑ TH,
regulate development via
diodination, glucuronidation,
sulfation, affecting HPT, HPA,
HPG axes (Denver, 2009;
Duarte-Guterman et al., 2014;
Thambirajah et al., 2019)

GC ↑ to some xenobiotics (Burraco and
Gomez-Mestre, 2016; Trudeau et al.,
2020), environmental conditions (Sachs
and Buchholz, 2019; Thambirajah et al.,
2019), predators (Narayan et al., 2013) ;
neurogenerative, oxidative, mitochondrial,
teratological effects (Di Lorenzo
et al., 2020)

CS and TH levels in tissue
or immersed water (Gabor
et al., 2013a); tissue/
organism enzyme activity or
DGE in AR, TR, tra, trb,
dio2, dio3 (Thambirajah
et al., 2022); ambient water
assay; size at metamorphosis
(Rowland et al., 2023);
vitellogenin indicative of
feminization (Venturino
and de D’Angelo, 2005)

Time to
metamorphosis;
cohort sex ratio;
carryover to juvenile
immunity, survival,
fecundity (Kiesecker,
2002, Denver, 2009;
Kohli et al., 2019;
Ruthsatz et al., 2020;
Le Sage et al., 2022)

Immunity

Endocrine-driven
development of immunity;
immunosuppression at
metamorphosis (Rollins-
Smith, 2017)

Viral loads, resistance, and parasite
prevalance affected by pesticides and
abiotic factors (Kerby et al., 2011;
Kiesecker, 2011; Knutie et al., 2017;
Pochini and Hoverman, 2017);
Microbiome in tadpoles impacted by
xenobiotic exposure

Gut microbiome diversity;
at advanced developmental
stages – blood leukocytes,
white cell lymphocytes and
granulocytes (basophils,
neutrophils, eosinophils);
DGE (Row et al., 2016)

Reduced survival
due to pathogens
and parasites
(Kiesecker, 2011)

Juvenile
maturation
to adult

Endocrine
TRH influences TSH (Paul
et al., 2022)

Food constraints ↓ CORT (Prokić et al.,
2021); variance in CORT along latitudinal
cline (Le Sage et al., 2022)

Dermal swab, fecal content,
tissue or ambient water
assay of CS (Gabor
et al., 2013a)

Behavioral responses
to stressors,
reduced dispersal

Immunity

Gut microbiome linked to
resistance of parasites (Knutie
et al., 2017), skin microbiome
linked to resistance of
pathogens (Krynak et al.,
2017; McCoy and Peralta,
2018; Jiménez et al., 2021);
possibly compromised by
shortened developmental
hydroperiod (Brannelly et al.,

Dermal microbiome and pathogen
vulnerability impacted by xenobiotic
exposure (Krynak et al., 2017; McCoy
and Peralta, 2018; Jiménez et al., 2021);
habitat degradation affects vulnerability to
pathogens (Stevens and Baguette, 2008;
Costa et al., 2021; Becker et al., 2023)

Microbiome diversity in
skin mucosa (Neely et al.,
2022); antimicrobial
peptides (Huang et al.,
2016); white cell
lymphocytes and
granulocytes (basophils,
neutrophils, eosinophils); B
and T cells in organs,

Susceptibility to
pathogens, reduced
juvenile survival or
limited dispersal due
to disease or
deformities
(Kiesecker, 2002,
Rohr et al., 2006;
Krynak et al., 2017;
Kohli et al., 2019)

(Continued)
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stages (F, Te, Tl, Tj in Figure 1) but present potential effects on

survival and development as well.
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2.1 Development (embryo transition to
tadpole stage; Te)

Survival during the relatively brief stage of embryo development

is largely dependent on a suitable environment to avoid predators,

pathogens, or pollution, and the costs associated with such defenses

differ among amphibian species and developmental mode (Brooks

and Kindsvater, 2022). Amphibian clutches can experience high

mortality from pathogens or predation, depending on the

geographic location and ecological community composition

(Kiesecker, 2011), such that habitat characteristics and regional

observations are most informative in identifying these threats

(Wake and Vredenburg, 2008). Pesticides aggregated as runoff in

wetlands provide another potential stressor for developing embryos

(Smalling et al., 2015) with lethal or sublethal impacts on

individuals. Ultimately, a systematic review revealed that the time

to hatching for embryos was influenced more by taxonomy and

exposure to pollution, rather than experimental setting (lab vs. field;

Egea-Serrano et al., 2012). Singly or in combinations, stressors

during embryogenesis can lead to delayed, wide-ranging effects,

resulting in a diverse array of phenotypic outcomes associated with

aspects of developmental plasticity that are not observed until later

life history stages (Jonsson et al., 2022).

Given the relatively brief duration of this stage in most anuran

species, and rapidly changing metabolism, identifying potential

stressors based on organismal condition or response could be a

challenging diagnostic approach, compared to assessment of

anomalous response during later life stages. Endogenous variation
TABLE 1 Continued

Stage
Systemic
response

Endogenous activity Exogenous stressors
Assessment
methods

Demographic
endpoint

2019); Lower juvenile
immunity relative to
mature adults

MHC-II; antibodies - IgA/X,
IgD, IgF, IgM, IgY

Metabolism
Related to endocrine activity;
longer hydroperiod ↑ lipid
stores (Scott et al., 2007)

Influenced by temperature, water loss,
xenobiotics; food deprivation ↓ CORT;
pesticides altered sucrose and starch
pathway regulation (Zaya et al., 2011,
Dornelles and Oliveria, 2016, Van Meter
et al., 2018)

Body condition; energy
metabolism in tissue

Reduced
juvenile survival

Redox
signalling

Increased antioxidants during
estivation in preparation for
oxidative stress; lower
oxidative metabolism enzyme
activity during estivation
(Rowland et al., 2023)

Food constraints ↑ lipid peroxide; ↓ SOD,
glutathione peroxidase, GST, glutathione
and sulfhydryl groups (Prokić et al.,
2021); pesticides and pathogens ↑ thiol;
nematode infections ↑ thiol, ↑ catalase
(Marcogliese et al., 2021)

ROS production; anti-
oxidant enzymatic responses
of SOD, glutathione
peroxidase, glutathione,
GST, thiol, catalase
(Marcogliese et al., 2021;
Prokić et al., 2021)

Survival to following
breeding season,
potentially a
function of size/
condition at end
of season

Adult
fecundity

Endocrine
activity

Gonadotropins released by
pituitary; estrogen, androgen,
progestogen regulate
reproduction (Duarte-
Guterman et al., 2014)

Endocrine disrupting compounds can
disrupt gonadal development, sexual
differentiation (Lambert et al., 2015;
Marlatt et al., 2022); temperature impact
on sex determination (Lambert et al.,
2015; Ruiz-Garcıá et al., 2021); density-
dependent resource availability (Kissel
et al., 2020)

ER/AR binding; Aromatase
inhibition; impairment of
steroidogenesis; vitellogenin
expression in response to
xenoestrogen exposure; zona
radiata, zona pellucida, DGE
in er, bteb, tra, trb, thbzip,

Altered population
sex ratio (Roco
et al., 2021; Baranek
et al., 2022);
reduced fecundity
Endogenous activity associated with transitional phases of the anuran lifecycle, exogenous stressors that alter biological processes, methods to assess organismal effects, and potential demographic
impacts. ↑ upregulation or increased expression; ↓ downregulation or decreased expression.
FIGURE 1

Vital rates (indicated by arrows) for the anuran life cycle, including
survival rates (green arrows; S) for terrestrial juvenile (Sj) and adult
stages (Sa), transition rates (yellow arrows; T) from embryo to larval
stage (Te), from larval to juvenile stage (Tl), and from juvenile to
adult stage (Tj); and fecundity (purple arrow; F).
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in embryonic metabolite levels is suggestive of energy production

primarily, presumably for DNA synthesis (Vastag et al., 2011).

Contaminant levels in egg masses that are linked to deformities and

reduced offspring viability can result from maternal transfer of

contaminants rather than indicating direct environmental exposure

alone (Todd et al., 2011; Metts et al., 2013). Determining

physiological response to a variety of stressors (e.g., contaminant

mixtures and abiotic factors), is a complex challenge that might be

approached by evaluating exposure-based epigenetic changes (e.g.,

DNA methylation, histone acetylation) in developing embryos

(Fogliano et al., 2023) or simply assessing differential responses in

later life stages.
2.2 Metamorphosis (transition from larval
to juvenile stage; Tl)

The morphological restructuring for transition from larval stage to

juvenile stage is dependent on endocrine drivers, specifically surges in

thyroid hormones (TH), regulated by thyroid hormone receptors and

retinoic acid receptors (TR and RXR, respectively; reviewed in Paul

et al., 2022). Endocrine regulation and body morphogenesis during the

larval stage are controlled by the hypothalamic-pituitary-thyroid

(HPT) and hypothalamic-pituitary-adrenal/interrenal axes (HPA/

HPI) as well as the hypothalamus-pituitary-gonadal (HPG) axis

(Duarte-Guterman et al., 2014). Development and metamorphosis

are regulated largely by the release of the thyroid hormones

thyroxine (T4) and tri-iodothyronine (T3) and modulated by the

corticosteroids (CS) corticosterone (CORT) and aldosterone (ALDO;

Denver, 2009). Regulation of TH signal involves cellular processes of
Frontiers in Ecology and Evolution 06
deiodination, glucuronidation, and sulfation (Thambirajah et al., 2019).

Metabolism and cardiac functions associated with development and

metamorphosis are also regulated by CS. Ruthsatz et al. (2020) showed

that certain metamorphic stages were significantly more susceptible to

changes in growth and development due to increased TH levels, with

high TH levels associated with reduced weight and size in tadpole and

froglet stages as well as increased heart rate and reduced energy stores

across all stages.

TH inhibition or impairment can delay development, while CS

production is often associated with accelerated metamorphosis in

response to pond drying or other stressors (Sachs and Buchholz,

2019; Thambirajah et al., 2019), although the role of CORT as a

homeostatic response to stress is complex. The corticotropic releasing

hormone (CRH) regulates the HPA axis as well as the HPT axis,

thereby contributing to additional crosstalk between these pathways

and circulating hormone levels (Thambirajah et al., 2022). CORT

levels in southern leopard frogs increased with exposure to multiple

aquatic stressors, specifically a nitrogenous fertilizer, a pesticide, and

salt (Adelizzi et al., 2019). However, relatively elevated CORT levels

were associated with populations less tolerant to contaminant

exposure, such that differences in stress response could be

indicative of exposure history (Shidemantle et al., 2022). Predator

detection can also elicit an increased CORT response (Narayan et al.,

2013). Signals of agrochemical disruption of endocrine function

among interactions of the thyroid, gonadal, and metabolic axes in

amphibians was reviewed in detail by Trudeau et al. (2020). Early life

stage stressors that elevate CS production can alter endocrine

response throughout the lifecycle of the individual (Denver, 2009).

Stressor perturbations in endocrine functions are particularly

impactful in metamorphosing amphibians and can influence
FIGURE 2

Symbols represent influential abiotic factors and extrinsic sources of population regulation. These potential stressors impact endogenous processes
(shown in center block) in similar ways physiologically, and can affect individuals differently, depending on the life stage at which the stress occurs.
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immunity, survival, and fecundity in subsequent terrestrial life

stages (Kiesecker, 2002; Kohli et al., 2019). A meta-analysis

determining effects on time to metamorphosis found taxonomy,

pollution, and timing of exposure to be more influential than the

experimental setting (Egea-Serrano et al., 2012). Pond drying

constraints influencing larval development are expected to be

impacted in various ways by climate change, depending on

regional location (Walls et al., 2013). The duration of larval stage

and developmental mode, combined with community dynamics

between larval competitors and predators, can distinguish species

resilience and response to such unpredictable environmental

stressors (Belden et al., 2010; Moss et al., 2021; Brooks and

Kindsvater, 2022). Interannual variability in hydrologic regime at

temporary wetlands determines the length of the developmental

period and the density of developing anuran larvae (e.g., Pechmann

et al., 1989). Developmental plasticity in metamorphic climax

allows variable phenotypic response to interannual conditions

and is driven by the neuroendocrine processes responsible for the

development of the immune system, highlighting a potential

tradeoff between accelerated development and resistance to

disease and parasites (Kohli et al., 2019). Likewise, tradeoffs

between development and microbiota diversity or immunology

are demonstrated later in life with increased susceptibility to

pathogens (Le Sage et al., 2022). As northern leopard frog

tadpoles approach metamorphic climax, tail tissue decreases

expression of mitochondrial energy genes and upregulates

expression of immunity genes (Row et al., 2016). Post-

metamorphic immune function may be compromised in

amphibians experiencing shorter hydrologic regimes (Brannelly

et al., 2019), which may further exacerbate disease susceptibility.

Therefore, interannual variance in aquatic habitat suitability can

have lasting impacts on cohort fitness.

During metamorphic climax, metabolic activity changes,

reflecting increasing energy needs, anabolic requirements, and tail

apoptosis; these energetic requirements and fasting effects create a

vulnerable transition from larva to juvenile in which contaminant

body burdens can amplify (Rowland et al., 2023). The aquatic phase

of the amphibian life cycle is also susceptible to reduced growth in

response to pathogens that have been introduced to waterbodies,

although survival is rarely impacted at this stage (Nolan et al., 2023).

Although phylogeny and abiotic environmental variables determine

the initial likelihood of Bd or ranavirus occurrence in areas of viral

compatibility, other stressors such as pesticides can further

influence viral loads and the resistance of the host population as

well as the prevalence of parasite-induced deformities (e.g., Kerby

et al., 2011; Kiesecker, 2011; Pochini and Hoverman, 2017).
2.3 Maturity (juvenile transition to
reproductive adult; Tj)

The literature on this critical amphibian life stage is scarce, due

in part to the complexity of rearing and maintaining juvenile

amphibian populations in a laboratory setting through

maturation, as well as the challenge of monitoring individual

juvenile amphibians from metamorphosis through reproduction
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in a field setting (see Petrovan and Schmidt, 2019). Furthermore, a

systematic analysis of factors affecting survival found pollutants and

the experimental setting (lab vs. field) to be more influential than

taxonomic group or developmental stage in the study (Egea-Serrano

et al., 2012). Although pre-metamorphic environmental conditions

directly influence post-metamorphic life stages, there may also be

distinctly different age or stage-specific stress responses in

amphibians, as evidenced by variations in sucrose and starch

pathway regulation following pesticide exposure in larval and

juvenile amphibians (Zaya et al., 2011; Dornelles and Oliveria,

2016; Van Meter et al., 2018). Survival to reproduction was

positively correlated with lipid stores at metamorphosis among

two Ambystoma salamander species, and lipid stores were greater

among individuals emerging from longer hydroperiod wetlands.

Furthermore, total rainfall during years of juvenile development

was also positively associated with survival to reproduction (Scott

et al., 2007).

Potential carry-over effects from compromised development

can exist (Kiesecker, 2002; Rohr et al., 2006; Kohli et al., 2019) with

additional risk from stressors in the terrestrial environment.

Terrestrial habitat degradation and habitat fragmentation

influences the connectivity of both amphibian populations and

their potential pathogens (Stevens and Baguette, 2008; Costa

et al., 2021; Becker et al., 2023). Reduced skin and gut microbiota

in the larval stage can also reduce parasite resistance in adults

(Knutie et al., 2017). Amphibian skin contains antimicrobial

peptides linked to immunity and defense functions as well as to

biosynthesis and metabolism (Huang et al., 2016). Skin secretions

have demonstrated antimicrobial antioxidant properties and can be

beneficial to healing (Wang et al., 2020). Bacterial and fungal

taxonomy in skin secretions is associated with disease resistance

(Bates et al., 2022), with the skin microbiome affected by the same

abiotic factors that influence Bd occurrence (Ruthsatz et al., 2020).

Some species’ secretions contain sufficient toxins to be lethal to

predators, thereby reducing mortality via predation (Liu et al.,

2022). Compromised skin microbiome diversity is implicated in

important physiological functions such as electrolyte and hydration

loss, disease susceptibility, and increased pesticide effects. Pesticide

exposure has been linked to disruption of the skin microbiome and

antimicrobial peptides of amphibians, thereby affecting

vulnerability to pathogens (Krynak et al., 2017; McCoy and

Peralta, 2018; Jiménez et al., 2021). Habitat disturbance has also

been associated with skin microbiome diversity, primarily via

pathogen dispersal (Neely et al., 2022), underscoring the

ecological complexity of proximate mechanisms of multiple

stressors and their potential interactions. Enhanced data

collection efforts on juvenile amphibians are essential to improve

risk assessment and informmanagement decisions at the local scale.
2.4 Fecundity (adult production of
embryos; F)

Reproductive failure associated with insufficient hydroperiod is

a determinant of lifetime reproductive success in species dependent

on ephemeral wetlands for breeding (Taylor et al., 2006; Stevens and
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Baguette, 2008). In years with suitable hydroregime, terrestrial

density dependence and sex ratio can affect fecundity within a

population (Kissel et al., 2020; Baranek et al., 2022). Effects of

endocrine disruption in developmental phases as well as during

gamete production could also reduce fecundity via altered gonadal

development, or a high incidence of intersex individuals in the

population (Lambert et al., 2015; Marlatt et al., 2022). Sex-specific

age at maturation could further restrict operational sex ratio in

amphibian populations (Baranek et al., 2022). In addition to the

endocrine disruption associated with xenobiotic exposure,

temperature can affect sex determination, with potential impact

on operational sex ratio following extended periods of anomalous

temperatures (Lambert et al., 2015; Ruiz-Garcıá et al., 2021). The

lasting impact of such shifts will vary depending on the species life

history and genetic sex determination (Bókony et al., 2017).
3 Field-based measures of
stressor response

Assessing the status of a wildlife population or relative

condition of an individual within its habitat is a challenge

complicated by the heterogeneity of both organismal response

and stressor distribution. Acquiring an adequate sample size for a

meaningful detection of environmental or stressor effects could

limit the practical scope of most field-based efforts, while

standardization of conditions can bias the interpretation of

stressor response in most laboratory or mesocosm settings. Stage-

specific physiology, along with ecological or life history

vulnerabilities, provides additional context for interpretation of

potential stressor effects (Venturino et al., 2003). For example,

intestinal development and tail resorption in larvae are coincident

with signs of oxidative stress (Menon and Rozman, 2007).

Establishing baseline physiology with common biomarkers

provides context of endogenous variability during the amphibian

life cycle. Identifying these informative endpoints and sensitive

stages can preclude the need for extensive accounting of stressor-

specific effects and interactions.
3.1 Physiological processes

Systematic responses to stress include endocrine disruption,

oxidative stress, metabolic perturbation, and compromised

immunity (Venturino et al., 2003). Specifically, elevated CORT and

standard metabolic rate as well as decreased antioxidant enzymes are

common signals of abiotic and xenobiotic physiological stress

(Burraco and Gomez-Mestre, 2016). Endocrine disruption in the

interconnected hormonal axes can also trigger responses in other

systems, such as neurodegenerative effects, oxidative damage,

impairment of mitochondrial function, and teratological effects (Di

Lorenzo et al., 2020). Taxonomic family and pollutant exposure were

significant determinants of developmental abnormalities in a

systematic review of ecotoxicological studies (Egea-Serrano et al.,

2012), and specific phenotypical abnormalities can be ascribed to

different classes of chemicals (Venturino et al., 2003).
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Endocrine-driven developmental processes are highly

conserved in vertebrates (Paul et al., 2022), as are many

physiological endpoints associated with both homeostatic and

lethal responses to pesticides and contaminant exposure. Larval

amphibians are especially susceptible to endocrine disruption due

to their reliance on hormonal cues for initiation and timing of

metamorphosis and sex determination (Duarte-Guterman et al.,

2014). Crosstalk between hormonal axes includes an evolutionary

history of HPT and HPG signaling (Thambirajah et al., 2022).

Genetic sex determination during developmental stages varies

between and within amphibian species due to rapid turnover of

genes such that either males or females can be heterozygotic, with

some species having three sex chromosomes (Miura, 2017). Sex

reversal in response to external temperature or steroid hormones

can also affect the sex ratio of a cohort (Roco et al., 2021). Although

estrogenic and androgenic effects have been studied much more

extensively in mammals, intersex amphibian larvae resulting from

reproductive steroid hormone exposure have been associated with

effects on the androgen receptor (AR) and thyroid receptor (TR)

and altered expression of dio1, dio2, dio3, and thrb (Thambirajah

et al., 2022). Increased vitellogenin production is a common

indication of feminization (Venturino and de D’Angelo, 2005),

and increased formic acid has been suggested as an indicator of

androgen receptor binding and anti-androgenic effects in larvae

(Melvin et al., 2018).

Endogenous changes in metabolism are also associated with

lifecycle-dependent physiological processes (Ichu et al., 2014).

During metamorphosis, metabolic pathways are dramatically

altered in the liver and the tail as a result of lipid and

carbohydrate metabolism (Zhu et al., 2020). Metabolomic

changes during metamorphosis demonstrate physiological

processes associated with morphological restructuring in

metabolic pathways, including the urea cycle as well as arginine

and purine/pyrimidine, cysteine/methionine, sphingolipid, and

eicosanoid metabolism; however, similar metabolite expression

in humans is associated with disease (Ichu et al., 2014). As the

tadpole tail regresses and intestines restructure, lipid peroxidation

is increased; depleted catalase (CAT) and glutathione contribute

to oxidative stress, as demonstrated by CAT, superoxide

dismutase (SOD), and malondialdehyde (MDA) expression; and

the antioxidant ascorbic acid increases as organs develop (Menon

and Rozman, 2007; Guo et al., 2022). Epidermal galactose levels,

and specifically 25 uniquely expressed genes, are predictive of

chytrid outbreaks and are life stage dependent, with higher

expression at metamorphosis (Wang et al., 2021). Food

constraints in the juvenile stage were associated with higher

lipid peroxidase and lower SOD, glutathione S-transferase

(GST), glutathione peroxidase, glutathione and sulfhydryl

groups (Prokić et al., 2021).

Antioxidant system response (AOS) and oxidative stress is

highest at metamorphic peak, and associated with lower

glutathione, CAT, glutathione peroxidase, GST, and sulfhydryl

groups, and oxidative stress is exacerbated by decreasing water

levels (Petrović et al., 2021). Hepatic GST activity has been

proposed as a biomarker indicative of TH signaling imbalance

and developmental effects (Chen et al., 2017). Upregulated
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pathways include transamination and the urea cycle because of

hepatic catabolism, TCA cycle and oxidative phosphorylation

resulting from energy metabolism (although these are

downregulated in the tail), and hepatic glycogen phosphorylation

and gluconeogenesis (Zhu et al., 2020). Decreased activity occurred

in b-oxidation and the pentose phosphate pathway, and

downregulation of glycolysis, b-oxidation, and transamination in

the tail accompanied reduced protein synthesis and lower energy

production and consumption, although glycogenesis, fatty acid

elongation and desaturation, and lipid synthesis were maintained

(Zhu et al., 2020).

Indication of oxidative stress is a common detoxification

response to many chemical classes and is characterized by altered

expression of mixed function oxidases (MFO; e.g., CYP1A, EROD,

demethylase), GSH, lipid peroxides, and antioxidant enzymes

(CAT, SOD; Venturino and de D’Angelo, 2005). Oxidative stress

and lipid peroxidation, as demonstrated by increased SOD and

CAT activity were also associated with hepatotoxicity resulting

from increasing organophosphate exposure, although GST activity

was unchanged, and MDA decreased (Li et al., 2017). Common

indications of oxidative stress as a detoxification response include

glutathione deficits and production of GST (Venturino and de

D’Angelo, 2005). Interactive oxidative stress effects of pesticide

concentration and parasite abundance were observed in thiol

levels of recent metamorphs, with nematode infection related to

elevated thiol and catalase expression (Marcogliese et al., 2021).

Amphibian physiological responses to environmental stressors

have been well documented (Park and Do, 2023), and the various

threats that impact amphibian populations can elicit similar

physical effects. For example, xenobiotic exposure or threatening

environmental conditions (e.g., pond drying or predator presence)

is commonly associated with oxidative stress and production of

reactive oxygen species (ROS; Burraco et al., 2017). Habitat

fragmentation and degradation, coincident with anthropogenic

infringement and climate change, contribute to invasive species

introduction, disease outbreak, and increased pollution, multiplying

threats to immunocompetency (Kiesecker, 2011). Immune

functions impacted by common amphibian stressors and their

interactions are indicated in various matrices and measurements.

For example, glucocorticoids (GC) are CS hormones influencing the

immune system, tissue inflammation, and cardiovascular response

(Rollins-Smith, 2017), and frequently indicate physiological stress.

However, some stressors, e.g., food deprivation, can yield

differential endocrine responses, with reduced CORT in juveniles

conserving energy resources as opposed to increased CORT levels in

food-deprived tadpoles (Crespi and Denver, 2005).
3.2 Omics technologies

Stressor-specific measurements of organismal response

introduce complexity to both laboratory and field-based

assessment approaches, as well as to the interpretation of multi-

stressor scenarios. Evaluating biomarker expression can help

identify biochemical perturbations indicative of systemic stress to

environmental conditions. The suite of ‘omics technologies,
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including genomics, transcriptomics, proteomics, and

metabolomics, can shed light on the underlying biological

processes and provide a means to identify specific genes,

metabolites, and pathways that are affected in an amphibian

ecological risk assessment.

Comparative genomics is increasingly recognized as a valuable

tool for conservation purposes (Kosch et al., 2023). This includes

the use of reference genomes in eDNA approaches for monitoring

populations (Breton et al., 2022; Saeed et al., 2022), informing

genetic rescue efforts for threatened amphibians (Kosch et al.,

2023), and using sequence information to predict protein

similarity and infer ecotoxicological implications across species

(LaLone et al., 2023). However, compared to other vertebrate

classes, genomic coverage for amphibians is currently recognized

as lacking (Hotaling et al., 2021). Kosch et al. (2023) provided a

review of the 32 available amphibian reference genomes and found

variable annotation quality for the available genomes and uneven

coverage across amphibian families, with genomic comparison

further complicated by the presence of large, repetitive genomes.

This limited availability of amphibian reference genomes presents

challenges for generalizing ecotoxicological results to higher

taxonomic levels within the class Amphibia. Despite these

challenges, genetic approaches can provide conservation insights.

This is particularly true for amphibian species with cryptic habits

and biphasic life cycles, which complicate traditional field-based

measurements of survival, fecundity, and migration (Mazerolle

et al., 2007; Funk et al., 2021). Landscape genetics, for instance,

can reveal connectivity within a population as well as isolated

subpopulations (Watts et al., 2015). This information can then be

used to prioritize conservation targets for threatened amphibians

(e.g., Forester et al., 2022). The pressing need for increasing

knowledge of amphibian genomes to assist in conservation efforts

was highlighted by Calboli et al. (2011). It is hypothesized that only

a relative few, simple mechanisms of gene alterations are indicated

in amphibians’ response to numerous environmental stressors.

Functional genomics has been used to probe the molecular

underpinnings of field observations concerning the sexual

differentiation in amphibians (Bögi et al., 2002), fragmentation of

populations (McCartney-Melstad et al., 2018), and pathogen-host

interactions (Zamudio et al., 2020).

In the laboratory, transcriptomics approaches leverage

differential gene expression (DGE) approaches by contrasting the

expression level of transcripts in stressed individuals versus control

individuals. Changes in gene expression can reveal which genes are

upregulated or downregulated, thereby identifying perturbations in

specific biochemical pathways regardless of the origin of the

stressor. The magnitude of the response could indicate functional

points of departure (e.g., Ewald et al., 2022; Mittal et al., 2022).

Transcriptomics data, generated from controlled laboratory

exposures, provide a comprehensive view of gene expression

changes comparable to traditional apical endpoints. The large

volume of data, coupled with the fact that the expression

responses are specifically associated with the mechanism of the

stressor, suggests the possibility of developing expression-based

“fingerprints” or signatures resulting from single and multi-

stressor exposures. These can be used to determine if the
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magnitude of an exposure to a toxicant or stressor of a particular

mode of action is likely to elicit biological perturbations that can be

linked to or predictive of apical effects. Furthermore, high-

throughput transcriptomics (HTTr) methods have been

developed to observe changes in gene expression in cells, rather

than in test species, after exposure to chemicals (Schirmer et al.,

2010). These methods are less resource-intensive than traditional

toxicity testing and can be used to determine at what concentration

chemicals impact cellular biology and to develop adverse outcome

pathways (AOPs). For vertebrates, such regulatory testing programs

aim to evaluate the potential endocrine-disrupting effects of

chemicals, utilizing the conservation of certain endocrine

pathways among vertebrate classes to evaluate the feasibility of

extrapolating data across taxa. These approaches integrate

functional genomics with transcriptomics to establish the

confidence levels in pathway conservation while identifying the

specific needs for additional data to advance read-across methods

for estrogen, androgen, thyroid, and steroidogenesis pathways in

vertebrate ecological receptors (McArdle et al., 2020).

Metabolomics technology may also provide a means to address

the uncertainties surrounding chemical risk assessment of single

and multiple stressors. Available technology measures the changes

in hundreds (if not thousands) of metabolites simultaneously,

effectively capturing a metabolomic fingerprint as a snapshot of

an organism’s altered physiology. This metabolomic fingerprint of

subcellular biological responses often represents immediate or early

response within the organism to stresses and can be associated with

signaling networks that are linked to adverse outcomes at higher

levels of biological organization. Successful application of

metabolomics to differentiate multi-stressor response was

achieved by Snyder et al. (2022). Similarly, the use of

transcriptomics and proteomics for advancing amphibian

toxicogenomic studies was reviewed in Helbing (2012). Relying

on ‘omics technologies to identify meaningful suites of stressor

response and target demographic vulnerabilities for sample

collection could offer a comparative physiology approach for

detecting impacted individuals and populations.

Exogenous impacts of xenobiotic exposure can exacerbate

stressors that accompany particular life stages. Reduction in body

size during metamorphosis and fasting during hibernation result in

increased metabolic demands and greater body burdens of

contaminants due to biomagnification (Rowland et al., 2023).

Aquatic exposures of various pesticides were associated with

increased galactose metabolism and lactose degradation,

indicating effects on energy metabolism (Glinski et al., 2021).

Pathways associated with glucogenesis and glycolysis were also

indicators of energy metabolism impacts in terrestrial juvenile

frog exposures (Van Meter et al., 2022). The urea cycle was

frequently impacted by various pesticides, and the purine

metabolism pathway was also enriched, indicating increased

energy production as a response to toxicity. Reduction in

glutathione levels is another common result of pesticide exposure

indicative of oxidative stress in both larval and juvenile amphibians

(Ichu et al., 2014). Reduced citrate, a-ketaglutarate, and fumarate

were also proposed as oxidative stress biomarkers, as intermediates

of the tricarboxylic acid cycle (Melvin et al., 2018).
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The magnitude of altered metabolite regulation during later life

stage terrestrial exposures was not indicative of bioaccumulation,

and exposure to combinations of pesticide did not always have a

synergistic effect on juvenile toads (Van Meter et al., 2018). In fact,

extrinsic sources of urea as fertilizer at low concentrations can

counteract combined pesticide effects, presumably by facilitating

excretion and detoxification, although excessive doses can be

detrimental (Van Meter et al., 2022). Hepatic metabolome

analyses revealed altered pathways indicating stress caused by

both predation and pesticide exposure; these include aminoacyl-

tRNA biosynthesis, galactose metabolism, glutathione metabolism,

and arginine biosynthesis (Snyder et al., 2022). Transgenerational

fertility effects of endocrine disruption due to pesticide exposure

were associated with greater mass, increased palmitoleic:palmitic

acid ratio, and decreased glucose (Karlsson et al., 2021). As studies

of multistressor deviations from normal metabolite activity

continue, identification of meaningful pathway perturbations

could provide a systematic method of identifying locations of

environmental impacts without prerequisite knowledge of specific

land use changes or fate and exposure of particular pollutants.
3.3 Sampling strategies

Traditional measures of contaminant impacts on amphibians

focus on body burden concentrations and somatic indices of body

condition (e.g., Băncilă et al., 2010) as well as general indicators of

genotoxic and mutagenic impacts (i.e., comet and micronucleus

assays) and more targeted analyses of cellular-level endpoints. For

larger taxa (e.g., birds and mammals), marking individuals and

collecting tissue samples can be a routine, noninvasive procedure

conducted in the field to inform physiological condition. However,

the small body size of amphibians hinders repeated sampling of

blood or plasma for various analyses. For smaller amphibians,

sampling techniques might involve toe-clipping for both

individual identification as well as tissue collection, or sample

collection might require sacrifice of individuals, particularly at

earlier life stages.

Many common assays measure hematological enzymatic

responses typical of exposure to specific xenobiotic contaminants

(Ohmer et al . , 2021) . For example , esterase act ivi ty

(acetylcholinesterase, butyryl cholinesterase, and carboxyl

esterase) can indicate potential developmental effects, but

response varies greatly within and between species (Venturino

et al., 2003; Venturino and de D’Angelo, 2005). Hematological

measures representative of immune response include leukocytes,

neutrophil/lymphocyte ratio, bacterial killing assays, and delayed

hypersensitivity assays (Ohmer et al., 2021). Changes in neutrophils

and lymphocytes are often proportional with increased

glucocorticoid levels, indicating physiological stress; however,

neonicotinoid exposure altered leukocyte profiles relative to

neutrophils or eosinophils but did not affect CORT levels in

northern leopard frogs (Gavel et al., 2021). Neutrophil to

lymphocyte ratios were also a good indication of environmental

stressors and were associated with total dissolved solid levels in

aquatic habitats that impacted growth and development (Ruso et al.,
frontiersin.org

https://doi.org/10.3389/fevo.2024.1336747
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Awkerman et al. 10.3389/fevo.2024.1336747
2021). Combinations of physiological indices are also informative to

link endpoints with individual condition (e.g., Park et al., 2021).

Several minimally or non-invasive techniques that may be more

effective for amphibians are now routinely used including

urinalysis, fecal sampling, waterborne sampling, salivary swabs,

and dermal swabs (Narayan et al., 2019). Among these

techniques, saliva has only been validated in adults and not

juveniles. Janin et al. (2012) concluded that CORT concentrations

in saliva were highly correlated with urine measurements in toads.

Urinalysis has been previously used to track endocrine response

such as the reproductive hormones estradiol, progesterone, and

testosterone within both captive and wild caught amphibians

(Narayan, 2013). Additionally, CORT levels can be quantified

from urine to identify differences in stress response due to

predation risk or pathogen prevalence (Kindermann et al., 2012;

Narayan et al., 2019). While urine samples have the distinct

advantage of being highly concentrated for measuring endocrine

functions along with physiological stress, the method is not always

ideal for smaller amphibians producing lower volumes (Narayan,

2013; Baugh et al., 2018).

Another minimally invasive technique for endocrine analysis

for amphibians of any size is immersing the individual in a clean

container of water for a designated length of time, after which the

released hormones can be quantified from the water. Most studies

have used this technique to measure CORT release rates, which

have been validated with circulating plasma levels (Gabor et al.,

2013a). Waterborne sampling has evaluated CORT release rates in

the presence or absence of Bd, predation, or pesticide exposure

(Gabor et al., 2013b; Van Meter et al., 2019; Snyder et al., 2022) and

can also be indicative of nitrate stress in amphibians (Ruthsatz et al.,

2023). CORT is a potentially useful biomarker for amphibians to

indicate stress, and non-invasive sampling methods offer the

potential of serially sampling the same individual (Narayan et al.,

2019; Tornabene et al., 2021). Therefore, within a short timeframe

baseline values and acute elevation in CORT are quantifiable

(Hammond et al., 2018). Szymanski et al. (2006) collected feces of

adult anurans to quantify reproductive hormones, enabling sex

identification. In addition to CORT, two other reproductive

hormones, progesterone and estradiol, have also been quantified

in water from amphibians (Baugh et al., 2018).

While dermal swabbing is most notable for detecting the

presence of pathogens in amphibians (e.g., Standish et al., 2018),

more recent studies have expanded on what can be tested in

amphibian mucus, such as DNA collection and glucocorticoids

(Poorten et al., 2017; Narayan et al., 2019; Santymire et al., 2021). A

lab-based salamander study examined the difference between liver

metabolomics and dermal swab metabolomics, to determine if

similar pathways are impacted in the presence of pesticides,

measuring for presence/absence of pathogens and glutathione as

well (Van Meter et al., in press). Dermal swabs enable in situ field

sampling with minimal handing time, which is particularly

advantageous for threatened and endangered species and allows
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serial sampling of the same individual or environment (Santymire

et al., 2018, 2021; Scheun et al., 2019; Tornabene et al., 2021).

Sampling techniques that are well-established at the individual

level can also provide a comparison, through DGE or hepatic

metabolites, of localized stressor response indicative of differential

population-level effects. Such response-based metrics could

preclude the necessity to anticipate synergies, compensation, and

interactions between ubiquitous stressors that might be

heterogeneously distributed. Rather than spatially explicit analysis

of stressors within the species distribution, identifying variance in

relative response within the population could target conservation

concerns more rapidly within a diverse landscape while accounting

for baseline fluxes in physiology. For example, the complex

physiological changes during metamorphosis comprise endocrine

interactions and changes in energy allocation as tail resorption and

leg growth occurs, such that tissues sampled could vary in the

cellular-level activity. Stage-specific fluxes in endocrine activity also

affect response observed in individuals, such that standardizing

measurements within consistent developmental stages is advisable

when sampling larvae. Field-based observations could also be

influenced by the environment of the individuals, making

observations about water quality, larval density, and community

composition relevant to evaluating stress response. As measures of

individual response are considered within appropriate life stage

time points, comparable evaluation of location-specific

perturbations in baseline physiological functions can guide more

targeted conservation actions.
4 Discussion

As amphibians are impacted by multiple stressors and their

interactions, the capability to assess cumulative impacts on

biochemical pathways within an organism’s native habitat facilitates

quantification of exposure risk and possible additive or synergistic effects.

However, even at the organismal level, amphibians often lack sufficient

toxicology data for evaluation of cellular-level responses (Marlatt and

Martyniuk, 2017), and variance in individual response and chronic

exposure obscure definitive metrics of detrimental effects on the

population. Additional research is needed to identify reliable

biomarkers that are consistently indicative of points of departure from

normal cellular function in response to environmental stressors.

Standardized indices of biomarker perturbations in response to

stressors enables identification of reliable predictors of long-term

impacts (Pham and Sokolova, 2023); however, caution must be taken

to verify cellular responses are linked to demographic effects, rather than

a homeostatic response to stressors (Forbes et al., 2006). Evaluating

potential threats linked to synergistic exposure effects (e.g., reduced

dermal microbiota) or multiple exposure routes (i.e., aquatic and

terrestrial) requires situation-specific ecological context.

Implementation of weight of evidence effects could further classify

cumulative threat levels of variable biomarker responses (Cecchetto
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et al., 2023). An initial step towards multi-stressor risk assessment is

outlined here, namely by exploring stage-specific variance in biochemical

pathways and identifying points of physiological vulnerability in the life

cycle as a screening-level conservation approach.
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Kijanović, A., et al. (2021). Carry-over effects of desiccation stress on the oxidative
status of fasting anuran juveniles. Front. Physiol. 12, 2206.

Relyea, R. A. (2009). A cocktail of contaminants: how mixtures of pesticides at low
concentrations affect aquatic communities. Oecologia 159, 363–376. doi: 10.1007/
s00442-008-1213-9

Relyea, R. A., and Diecks, N. (2008). An unforeseen chain of events: lethal effects of
pesticides on frogs at sublethal concentrations. Ecol. Appl. 18, 1728–1742.

Relyea, R., and Hoverman, J. (2006). Assessing the ecology in ecotoxicology: a review
and synthesis in freshwater systems. Ecol. Lett. 9, 1157–1171.

Rittenhouse, T. A., and Semlitsch, R. D. (2007). Distribution of amphibians in
terrestrial habitat surrounding wetlands. Wetlands 27, 153–161.
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