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Pérez-Aragón M (2024) Latitudinal
diversity of planktonic copepods in
the Eastern Pacific: overcoming sampling
biases and predicting patterns.
Front. Ecol. Evol. 12:1305916.
doi: 10.3389/fevo.2024.1305916

COPYRIGHT

© 2024 Rivera, Escribano, González
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Latitudinal diversity of planktonic
copepods in the Eastern Pacific:
overcoming sampling biases and
predicting patterns
Reinaldo Rivera1*, Ruben Escribano1,2, Carolina E. González1

and Manuela Pérez-Aragón1

1Millennium Institute of Oceanography (IMO), University of Concepción, Concepción, Chile,
2Department of Oceanography, Faculty of Natural and Oceanographic Sciences, University of
Concepción, Concepción, Chile
Gradients of latitudinal diversity are one of the biogeographic features calling the

most attention in ecology and macroecology. However, in pelagic communities

of the marine environment, geographic trends and patterns are poorly known.

We evaluated the latitudinal variation in species richness of marine planktonic

copepods in the Eastern Pacific using spatial statistical models and approaches

that mitigate and account for biases in occurrence data. A Boosted Regression

Tree (BRT) and regression-Kriging based models allowed us to estimate and

predict alpha diversity in poorly sampled regions, whereas beta diversity patterns

were assessed using generalized dissimilarity analysis (GDM). Species richness

showed a bimodal pattern, with a maximum of 291 species in the Northern

Hemisphere and Tropical Eastern Pacific Ocean. Particulate Organic Carbon,

salinity (max), spatial autocovariate, range of salinity and temperature, and Mixed

Layer Depth, explained 85.2% of the latitudinal variability of copepods. Beta

diversity was structured into four macrozones associated with the main water

masses of the North and South Pacific.Our analytical approaches can overcome

the limitations of data gaps, predicting greater diversity in subtropical and coastal

areas, while providing insights into key drivers modulating spatial

diversity patterns.
KEYWORDS

bimodality, beta diversity, Kriging, boosted regression tree, generalized dissimilarity
modeling, marine diversity
Introduction

The latitudinal diversity gradient (LDG) is one of the most striking features in ecology

and biogeography. Contrary to the classic notion of an increase in diversity from the poles

towards the equator (Rohde, 1992), studies in marine systems have shown that diversity is

higher at mid-latitudes and decreases towards the equator (Rombouts et al., 2009;
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2024.1305916/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1305916/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1305916/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1305916/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2024.1305916&domain=pdf&date_stamp=2024-04-24
mailto:reijavier@gmail.com
https://doi.org/10.3389/fevo.2024.1305916
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2024.1305916
https://www.frontiersin.org/journals/ecology-and-evolution


Rivera et al. 10.3389/fevo.2024.1305916
Barton et al., 2010; Chaudhary et al., 2016; Saeedi et al., 2017;

Rivadeneira and Poore, 2020; Lin et al., 2021), which constitutes a

pattern that has remained constant for millions of years (Yasuhara

et al., 2012).

Over a large latitudinal gradient, the highest diversity of marine

organisms has been reported in subtropical areas of the Northern

Hemisphere, and a tropical-subtropical plateau in the Southern

Hemisphere (Rutherford et al., 1999; Rombouts et al., 2009; Fautin

et al., 2013; Chaudhary et al., 2016; O’Brien et al., 2016; Saeedi et al.,

2017; Saeedi et al., 2019b; Rivadeneira and Poore, 2020; Chaudhary

et al., 2021; Lin et al., 2021), together with a decrease in species

richness near the equator (Chaudhary et al., 2016; Menegotto and

Rangel, 2018). Although this pattern has been attributed to

sampling biases (Menegotto and Rangel, 2018), empirical

evidence supports this latitudinal trend (e.g., Chaudhary et al.,

2016, 2017; Saeedi et al., 2017; Chaudhary and Costello, 2023,

2019b), reported for mollusks (Saeedi et al., 2017, 2019b),

foraminifera (Brayard et al., 2005), coccolithophores (O’Brien

et al., 2016), ophiuroids (Woolley et al., 2016), crustaceans

(Rivadeneira and Poore, 2020), polychaete worms (Pamungkas

and Glasby, 2021), brown macroalgae (Fragkopoulou et al., 2022),

and higher trophic level organisms, such as fishes, sharks, squids,

and cetaceans (Rutherford et al., 1999; Tittensor et al., 2010). This

spatial pattern among taxonomically distant species suggests the

existence of a common underlying mechanism that supports their

similar distributions (Worm et al., 2005; Rombouts et al., 2011),

which has been mainly attributed to the energy or temperature

hypothesis (Hawkins et al., 2003; Rombouts et al., 2011).

The geographic patterns of diversity in marine environments

have long been described (see Tittensor et al., 2010; Beaugrand et al.,

2013; Miller et al., 2018); however, the ecological and evolutionary

mechanisms of these patterns are not well understood (Roy et al.,

1998; Gagné et al., 2020; Melo-Merino et al., 2020; Moreno et al.,

2021). Most hypotheses attempting to explain contemporary

patterns of diversity are based on the link between the abiotic

environment and species diversity (Pianka, 1966; Currie, 1991;

Rutherford et al., 1999; Kerr, 2001). Nevertheless, there is a lack

of consensus regarding the mechanisms that cause such

relationships (Stokes, 2018). Indeed, a particular set of

environmental ecological hypotheses (e.g., energy, productivity,

and environmental heterogeneity) has been suggested to explain

the processes underlying the distribution of diversity in the oceans

(e.g., Tittensor et al., 2010; Worm and Tittensor, 2018; Brandão

et al., 2021). Among these factors, temperature and productivity

may exhibit the highest explanatory power (Rutherford et al., 1999;

Tittensor et al., 2010). Thus, they have been proposed as the main

driver of diversity in multiple marine taxa (Irigoien et al., 2004;

Brayard et al., 2005; Tittensor et al., 2010; Saeedi et al., 2019a;

Lin et al., 2021).

In the same context, studies on planktonic copepods’ diversity

and geographic variability in relation to environmental parameters

have been performed (Rutherford et al., 1999; Rombouts et al., 2009,

2011; Hooff and Peterson, 2006; Medellıń-Mora et al., 2016;

González et al., 2020), showing a strong temperature dependence,

resulting from the effect of this variable on the vital rates and

ecological responses of copepods. Nevertheless, despite their
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ecological importance and the relatively high amount of data

available on their distribution, open ocean studies on their

biogeographic patterns are scarce and underrepresented in global

biodiversity assessments, with studies mostly concentrated on local

systems of the Pacific (e.g., Williamson and McGowan, 2010;

Medellı ́n-Mora et al., 2016; González et al., 2020, 2021).

Furthermore, the mechanisms or factors that explain and

modulate diversity on a wide scale are insufficiently understood,

and too few studies have been conducted using explicit spatial

analysis to understand and predict biogeographic patterns (Wilson

et al., 2016; Brandão et al., 2021; Rivera et al., 2023).

When studying biogeographic patterns, the total diversity in a

region (gamma diversity) can be decomposed into alpha and beta

diversity. Alpha diversity refers to diversity within a local

community, whereas beta diversity refers to variability between

different communities or sites. It is relevant to note that the factors

underlying alpha, or beta diversity are different (Leprieur et al.,

2011), including historical and environmental processes. Therefore,

it is important to explicitly know the factors that modulate the

spatial structure of copepods along broad environmental gradients

when evaluating ecological hypotheses (e.g., energy, heterogeneity,

productivity) that would explain these diversity trends.

Beta-diversity is a less studied attribute of copepod diversity

over a broad geographic scale. Beta diversity represents the extent of

change in community composition or the degree of community

differentiation in relation to environmental gradients (Whittaker,

1960). The importance of beta diversity lies in the fact that it not

only accounts for the relationship between local and regional

diversity, but also informs about the degree of differentiation

among biological communities (Baselga, 2010). Therefore,

knowing the beta diversity of copepods allows us to understand

and evaluate the ecological drivers that modulate it, as well as and

predict patterns in non-surveyed regions. At the ocean scale,

biological sampling is often sparse and biased to certain regions;

however, environmental data, such as satellite images, are often

more readily available and cover a wide geographic space (Ferrier

et al., 2007; McArthur et al., 2010), constituting useful inputs for

estimating and predicting the geographic patterns of beta diversity

through modeling. It is well-known that large areas of the open

ocean remain unexplored or greatly under-sampled; thus prediction

models may be considered highly valuable tools to overcome

sampling gaps with low sampling coverage (Dornelas et al., 2018).

Planktonic copepods are a key basal component of the trophic

web in marine ecosystems, linking primary production to all higher

trophic levels. They have relatively short life cycles and respond

quickly to oceanographic variations, such as fluctuations in

temperature, oxygenation, stratification, primary production, and

upwelling (Hays et al., 2005; Hooff and Peterson, 2006). Therefore,

planktonic copepods constitute a suitable study model to assess

biodiversity patterns in the ocean for animals with restricted

migration and free-drifting assemblies. An important aspect in

the study of spatial biodiversity patterns in copepods is that they

can be conditioned by the quantity and gaps in the information

(Hughes et al., 2021). Regarding the quantity, in recent decades, the

availability of data on species occurrences in global databases has

greatly improved, such as the Ocean Biodiversity Information
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System (OBIS) (Klein et al., 2019) together with the Geographic

Information Systems (GIS) platforms, allowing us to evaluate

spatial patterns and infer the underlying ecological processes.

This progress also allows for the testing of multiple hypotheses

explaining the geographical distribution of the richness and

composition of planktonic organisms (Tittensor et al., 2010;

Righetti et al., 2019). Regarding information bias, occurrences

from field and online databases have temporal and geographic

biases (Beck et al., 2014; Isaac and Pocock, 2015; Dornelas et al.,

2018), which can mask the patterns of diversity (Hughes et al.,

2021). In some cases, occurrences are directed toward certain

groups of economic or ecological importance (taxonomic bias and

societal preferences) (Titley et al., 2017; Troudet et al., 2017),

proximity to research centers, or easily accessible areas (see

Hortal et al., 2008; Ball-Damerow et al., 2019). Nevertheless, this

is not an impediment to study large-scale diversity patterns given

the development of approaches that allow the evaluation and

consideration of biased information (Rocchini et al., 2011; Ruete,

2015; Monsarrat et al., 2019; Boyd et al., 2021; Tessarolo et al., 2021;

Zizka et al., 2021; D’Antraccoli et al., 2022). These methodologies

allow the estimation of diversity based on the wide spatial coverage

of environmental predictors (Hortal and Lobo, 2011; Alves et al.,

2020), allowing the elucidation of the modulating factors of

copepod diversity.

The objectives of this study were: (i) evaluate the relationships

between the latitudinal gradient of copepod diversity and multiple

environmental variables, (ii) predict copepod richness in regions

where sampling is currently deficient, and (iii) estimate and predict

beta diversity patterns and their underlying environmental factors.

Our analytical approaches aim to overcome biases and limitations

derived from data gaps, while providing insights into key drivers

modulating spatial patterns of diversity and composition for

planktonic free-drifting organisms over a large scale in the ocean.
Materials and methods

Study area and occurrences

The study area corresponds to the Eastern Pacific (66.5°N to 60°S,

and 180°W to 67°W). Georeferenced occurrences of copepods were

o b t a i n e d f r om th e COPEPOD da t a b a s e ( h t t p s : / /

www.st.nmfs.noaa.gov/copepod) (O’Brien, 2014) and OBIS database

(http://www.iobis.org) using the ‘robis’ package (Provoost and Bosch,

2022) and OBIS mapper application (https://mapper.obis.org). All

online databases were accessed on January 10, 2022 (see

Supplementary Table S1). Initial zooplankton observations gathered

81.417 occurrences. The search was limited to the 0–4000 m depth

range, given the higher availability of occurrences for this layer in the

water column, which constitutes the average depth of the oceans

(3.682 m). Occurrences without geographic coordinates, coordinate

duplicates, equal to zero, or located within continents were excluded.

The taxonomic validity of 692 species names was assessed by

checking all names of the World Register of Marine Species

(WoRMS, http://www.marinespecies.org) through the match_taxa

function of the ‘robis’ package (Provoost and Bosch, 2022).
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Taxonomic assignment was performed at the species level,

eliminating the occurrences at higher taxonomic levels. Only the

species name classification was considered for occurrences classified

as subspecies. Unaccepted species names have been corrected and

synonyms and misspellings have been reconciled. After the

data-screening and filtering procedures, 37.158 valid records of

525 species were retained for downstream analyses (see

Supplementary Table S1).
Diversity of copepods

Species richness (SR) is the total number of different species

present in a community, or specific geographic area. Unlike SR,

taxonomic distinctiveness is a measure of biological diversity that is

used to evaluate the uniqueness of species in a community or

ecosystem. We thus calculated the average taxonomic distinctness

(D+) and variation in taxonomic distinctness (L+) to estimate the

average and expected deviation of diversity for the study area when

compared with a species inventory. These indices show the average

and expected deviations for the study area when compared to an

inventory of species (aggregation matrix). For the region, Razouls

et al. (2023) indicates 849 species (Zones 20, 24, 25 and 26) (https://

copepodes.obs-banyuls.fr/en/searching.php). With the list of

registered species, an aggregation matrix was built at the level of

class, order, family, genus and species. The average (D+) (Equation

1) and variation in taxonomic diversity (L+) (Equation 2) are

defined according to the following equations:

D+   = 2ooi   < j  wij

N(N − 1)
(1)

L+ = 2ooi  < j(wij −  D+)2

N(N − 1)
(2)

Where the double sum is applied to all species i, j. N is the

sample number, and wij is the assigned taxonomic path length of

branch between i and j species (Clarke and Warwick, 1998). L+ is

the variance of the taxonomic distances (wij) between each pair of

species i and j from their mean value (D+). The aggregation matrix

was organized, and a classification tree was built from a random

selection (n = 1000) of species from the general species inventory,

thus comparing the indices and establishing a confidence interval of

95%. The TAXDTEST routine available in PRIMER 7 software was

used (Clarke and Gorley, 2015).

To assess the spatial variability of the copepod diversity in the

eastern Pacific, we created a map of the study area using a hexagonal

cell. Each hexagonal cell covered an area of approximately 3

degrees. The species richness and rarefied species richness (ES50)

were calculated for each hexagonal cell. We calculated the ES50

among 50 random samples, repeatedly sampled to standardize the

data, and accounted for the sampling effort (Gotelli and Colwell,

2011; Saeedi et al., 2019a). It repeatedly resampled 50 randomly

chosen records from all available records and calculated the average

number of species per 50 records (Oksanen et al., 2022; Saeedi et al.,

2022). It is important to highlight that if the data are not
frontiersin.org
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standardized by reference to the sampling effort, it is not possible to

distinguish whether the patterns are biased or not (Fernandez and

Marques, 2017). The ES50 estimates the total number of species in a

community, including those which may have not been observed in

the sample. This is based on the abundance of rare species present

in the sample to infer the presence of non-observed species. It differs

from rarefaction in that the latter standardizes the comparison of

species richness between different samples, especially when the

samples have different sizes. ES50 was calculated using the ‘vegan’

package (Oksanen et al., 2022).

To assess the modality in the number of species and the ES50,

Hartigan’s dip statistic (HDS) (Hartigan and Hartigan, 1985) was

used through the ‘diptest’ package (Maechler, 2021). Unimodality is

assumed when p > 0.05 (i.e., not significant) and not unimodal if p <

0.05 (bi- or multimodal) (Hartigan and Hartigan, 1985).
Environmental database

Twenty-three environmental variables were selected to define

candidate predictors for modeling the distribution of richness, ES50,

and beta diversity. Chlorophyll-a concentration (chla-a) (maximum,

minimum, and average), dissolved oxygenconcentration (maximum,

minimum, and average), mixed layer depth (MLD), nitrate (mean),

net primary productivity (NPP) (maximum, minimum, and average),

photosynthetically active radiation (PAR), pH, phosphate

concentration, particulate organic carbon (POC), sea surface

salinity (SSS) (maximum, minimum, average, and range) and sea

surface temperature (SST) (maximum, minimum, average, and

range). These variables are recognized for their relationship with

the physiology of copepods and for constraining their distribution

(Escribano and Hidalgo, 2000). The oceanographic variables were

obtained from Bio-ORACLE v 2.2 (Assis et al., 2018) at a spatial

resolution of 5 arcminutes (0.08° or 9.2 km at the equator) (https://

www.bio-oracle.org), spanning from 2000 to 2014. The variables PAR

and POC were downloaded from the Global Marine Environment

Dataset (GMED Version 2.0) https://gmed.auckland.ac.nz/

index.html. The MLD was obtained from the Copernicus database

(https://www.copernicus.eu) at a resolution of 0.25 degree. All the

environmental variables were aggregated at a spatial resolution of

0.08 degree. To obtain the average value and range of the

environmental variables for each 3° cell, zonal statistics were used.

This method allows calculating descriptive statistics of the data that

are associated with specific zones and how these vary within different

geographic units (i.e., 3° cells).
Variable selection

Multicollinearity between environmental predictors was tested

using the Variance Inflation Factor (VIF) and Spearman’s rank

correlation coefficient. Highly correlated variables were considered

if VIF > 3 and r > 0.85 (Dormann et al., 2013). This procedure

ensures the removal of collinear descriptors and reduces overfitting

(Guillaumot et al., 2020). Based on the low correlation and available

empirical evidence (e.g., Escribano and Hidalgo, 2000; Rombouts
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et al., 2009), eight predictors were retained and used to develop the

Regression-Kriging and Generalized Dissimilarity Modelling

(described below): MLD, NPP (max), NPP (min), pH, POC, SSS

(max), SSS (range) and SST (range) (Supplementary Table S2;

Supplementary Figure S1). VIF analysis was performed using the

‘usdm’ package (Naimi et al., 2014), and correlation analyses were

performed using the ‘raster’ (Hijmans, 2023) and ‘corrplot’ (Wei

and Simko, 2021) packages.
Relationships between species richness
and environmental variables

To evaluate the relationships between oceanographic variables

and the number of species, as well as ES50, we used a Boosted

Regression Tree (BRT) (Elith et al., 2008). Exploratory analysis

highlighted that species richness and ES50 data have non-linear

relationships with the explanatory variables; therefore, we used BRT

because it deals with non-linear and non-monotonic relationships

between response and explanatory variables (Elith et al., 2008). The

BRT parameters were selected to optimize the model using the

‘caret’ (Kuhn, 2008) and ‘dismo’ packages (Hijmans et al., 2021).

The tree complexity of the model was fixed at 2, and the learning

rate was 0.01. Although BRT is a flexible technique and has shown

high performance relative to other algorithms (see Elith et al., 2008),

it does not explicitly consider spatial autocorrelation. Therefore, we

used the residual autocovariate (RAC) technique to address spatial

autocorrelation. Spatial autocorrelation was accounted for by

adding an autocovariate term to the final selected BRT. The RAC

represents the influence of neighboring observations on the

response variable at a specific location (Escalle et al., 2016). First,

the BRT model was computed using uncorrelated variables

(Supplementary Figure S1 and Supplementary Table S2). The

residuals calculated for each grid cell were used to compute the

autocovariate using focal calculation. The residual autocovariate

was considered an explanatory variable in the BRT model (Crase

et al., 2012). Second, the best fitting model was selected as the model

with the lowest Akaike Information Criterion (Burnham and

Anderson, 2004) and the highest deviance was explained. The

Moran index was calculated to evaluate the autocorrelation of the

residuals of BRT without RAC (simple BRT) and BRT+RAC

models using the ‘spdep’ package (Bivand, 2022). The models

were estimated using a Poisson distribution, and model selection

was performed using forward and backward approaches

considering the total explained deviance. The BRT models were

performed using the ‘gbm’ package (Greenwell et al., 2022).
Estimation of species richness

To predict the geographic gradient of species richness,

regression-kriging (R-K) was performed (see Alves et al., 2020).

This method considers the richness-environment relationship and

its autocorrelation structure to predict the richness gradients (Alves

et al., 2020). First, well-sampled cells were selected to calculate the

semi-variogram. A fitted species accumulation curve was calculated
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using a rational function to describe the association between species

richness and sampling effort for each cell (Lobo et al., 2018).

Following the proposal of Alves et al. (2020), three sampling effort

metrics were combined: a) completeness (i.e., percentage of species

richness estimated by the accumulation curve), b) the ratio between

the number of occurrences within the cell and the observed species

richness, and c) the slope between the accumulated number of

species and the number of occurrences (Lobo et al., 2018). First,

the values to establish well-sampled cells were selected according to

the values proposed by Alves et al. (2020): completeness > 95%, ratio

> 15, slope < 0.02, and minimum number of occurrences (10). The

number of well-sampled cells was estimated by using the ‘KnowBR’

package (Lobo et al., 2018). Secondly, the semi-variance values of the

variogram were fitted with a spherical function because it presented

the lowest root mean squared error (RMSE) (see Supplementary

Table S3). Generalized Linear Models (GLM) were fitted only from

well-sampled cells to identify the significant predictors. A model

selection approach was performed to retain the subset of variables

that best explained species richness, and these variables were

predicted by R-K (Figure S2). Finally, species richness was

predicted using ‘automap’ (Hiemstra et al., 2009) and ‘gstat’

packages (Pebesma, 2004; Pebesma and Graeler, 2021).
Geographic pattern of beta diversity and
clustering of species composition

To model and evaluate the spatial pattern of beta diversity, we

used Generalized Dissimilarity Modelling (GDM). This method

relates biological distance to ecological distance, and estimates and

predicts spatial patterns of turnover in community composition

across large areas (Ferrier et al., 2007; Brown et al., 2014). GDM is

an extension of the GLM, allowing the modeling of community

dissimilarity against a set of environmental predictors (Ferrier et al.,

2007). GDM estimates the magnitude and rate of turnover along

environmental gradients, representing the dissimilarity between

pairs of sampling units as a function of environmental differences

and geographical distances (Fitzpatrick et al., 2013). GDM was

fitted to the presence of species at each site, and compositional

dissimilarity was predicted at unsampled localities based on

environmental data. Eight environmental covariates were used:

MLD, NPP (max), NPP (min), pH, POC, SSS (max), SSS (range),

and SST (range) (Supplementary Figure S2; Supplementary Table

S2). The possible influence of spatial processes was evaluated by

including the geographic distance between pairs of locations as a

predictor variable. The importance of the variables was assessed by

a permutation test (n = 100). The analyzes were performed with the

‘gdm’ package (Fitzpatrick et al., 2020).

To determine regions with similar species composition (GDM

analysis), we performed cluster analysis using the unsupervised

classification algorithm K-means (Lloyd’s algorithm) to partition

the data into a set of K clusters. To estimate the optimal number of

clusters, we used the Silhouette method with the ‘factoextra’

package (Kassambara and Mundt, 2020), and a map of this

classification was created using the ‘ecbtools ’ package

(Williamson, 2016).
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Finally, we followed best-practice standards in species

distribution modeling, providing a full description of the

modeling steps following the ODMAP (Overview, Data, Model,

Assessment and Prediction) protocol (Zurell et al., 2020)

(Supplementary Table S4). All statistical analyzes were performed

in the R software (R Core Team, 2023) and the environmental

variables were processed in ArcGIS 10.4.1 (ESRI, 2016).
Results

Species richness

Based on the inventory of 692 species of copepods described in

the Eastern Pacific and the list of 525 species recorded in this study,

the mean (D+) and variation taxonomic distinctness (L+) showed
that the values of taxonomic distinctness were mostly within the

95% confidence level, indicating that the observed copepod diversity

contained the expected level of diversity for the region (Funnel plot,

Figure 1). The L + had a mean of 69 and an expected variance of

61.5 (Figure 1).
Relationship of number of species, ES50
and environmental variables

The BRT+RAC model had the best fit to explain the number of

species and retained six variables. The percentage of total deviance

explained was approximately 85.2%. POC accounted for most of the

relative influence (21.4%), followed by SSS, spatial autocovariate,

SSS (range), SST (range), and MLD (Table 1). Because spatial

autocorrelation was detected in the BRT model without

autocovariates (Table 1), we chose the BRT+RAC model given its

lack of spatial autocorrelation (Moran’s index = 0.004; p value =

0.485) (Table 1).

The BRT+RAC model had the best fit to explain the ES50 and

retained six variables. The percentage of total deviance explained

was approximately 81.3%. The autocovariate accounted for most of

the relative influence (25.7%), followed by SST (range) (18.2%), SSS

(max), MLD, POC, and SSS (range) (Table 1 and Supplementary

Figure S3).
Observed and predicted latitudinal
diversity gradients

The observed richness showed a heterogeneous pattern in the

Eastern Pacific, with the highest values observed (291 species) off

the coast of Alaska, Ecuador, northern Chile, and around 30°S–179°

W (Figure 2A). ES50 showed a spatial pattern similar to that of the

number of species, revealing the greatest richness at intermediate

latitudes, with higher diversity in coastal areas in the Northern

Hemisphere and in oceanic areas in the Southern Hemisphere

(Figure 2B). The relationship of species richness and ES50 with

latitude was significantly different from a unimodal distribution,

indicating bimodality in both trends (Hartigan’s dip test, D = 0.048
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and and D = 0.045; p-value < 0.01 and < 0.05, Figures 3A, B,

respectively). Well-sampled cells were observed primarily at the

Bering Sea, Gulf of Alaska, Gulf of Mexico, Eastern Tropical Pacific

Ocean (ETPO), and the southern hemisphere between 40–58°S and

180°W (Supplementary Figures S4 and S5). The variogram model

that best fit the pattern of species richness among the well-sampled

cells was the Spherical function (sill = 1489; range = 588; nugget =

62; kappa = 1.7; Supplementary Table S3). The diversity predicted

by R-K revealed higher predicted richness, with a maximum of 362

species (Figure 2C). The highest species richness was concentrated

in continental margins, mainly in tropical and subtropical areas,

and decreased in temperate areas. The difference between the

observed and estimated richness showed extensive poorly

sampled regions (Supplementary Figure S6), and higher residual

variation was detected in the areas of low observed richness

(Figure 2D). The species richness estimated by R-K showed a

bimodal pattern (Hartigan’s dip test, D = 0.059; p-value < 0.05)

(see Supplementary Figure S7).
Frontiers in Ecology and Evolution 06
Spatial patterns of beta diversity

GDM explained 53.8% of the deviance in beta diversity. The

predictors with the best fit to explain this pattern were geographical

distance, SST (range), POC, SSS (max), NPP (min), MLD, and SST

(range) (Supplementary Figure S8). Spatial prediction of the

variation in copepod composition revealed regions with similar

copepod communities distributed along a latitudinal gradient

(Figure 4A). The composition differs between the temperate and

equatorial zones, as well as between oceanic and continental areas

(Figure 4A). Cluster analysis revealed four areas with similar species

composition. The areas were numbered latitudinally from C1 to C4

for better interpretation (see Figure 4B). There is an exclusive group

for the Northern Hemisphere in temperate and cold zones (C1)

covering the Bering Sea, Gulf of Alaska, and part of the California

Current, and another exclusive group for the Southern Hemisphere

(C4) in the Southern Ocean (Figure 4B). The C2 cluster is shared

between both hemispheres and is mainly oceanic, whereas the C3
TABLE 1 Summary of the BRT Poisson and BRT + residual autocovariate (RAC) used to model number of species and estimated species richness
(ES50) of copepods.

Model Relative influence % De r Moran’s I Moran
p-value

Number of species

BRT SSS (max) (33.8), POC (25.1), NPP (max) (16.1), MLD (14.4), SST
(range) (10.5).

42.3 0.29 0.006 0.001

BRT
+ RAC

POC (21.4), SSS (max) (19.7), autocovariate (18.2), SSS (range) (15.9), SST
(range) (13.3), MLD (11.5).

85.2 0.33 0.006 0.485

Estimated species richness (ES50)

BRT MLD (25.7), SSS (max) (25.6), POC (25.6), STT (range) (17.6), NPP
(min) (5.3).

26.1 0.37 0.006 0.001

BRT
+ RAC

Autocovariate (25.7), SST (range) (18.2), SSS (max) (16.8), MLD (16.6), POC
(11.8), SSS (range) (11).

81.3 0.35 0.009 0.782
% De = total percentage of the deviance explained by each model; r = Pearson’s correlation index between observed and predicted values; I = Moran’s index maximum absolute value for each
model and associated p-value. SSS, Sea Surface Salinity; NPP, Net Primary Productivity; POC, Particulate Organic Carbon; MLD, Mixed Layer Depth and SST, Sea Surface Temperature.
A B

FIGURE 1

(A) Average taxonomic distinction index (D+) and (B) variation in taxonomic distinctness’ (L+) for the copepod community in the Eastern Pacific. The
segmented line in red shows the mean, whereas the continuous lines are the distribution of probability at 95%.
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cluster is oceanic-coastal with a large latitudinal distribution,

encompassing the Humboldt Current System and the Pacific

Central-American coast (Figure 4B).
Discussion

The geographic tendency of the specific richness of copepods in

the Eastern Pacific is concordant with the bimodal pattern

previously described for other taxa (e.g., Chaudhary et al., 2016;

Saeedi et al., 2017; Rivadeneira and Poore, 2020; Pamungkas and

Glasby, 2021), showing a significant asymmetric and bimodal

pattern with higher diversity in the Northern Hemisphere

(Figures 2A, B, and Supplementary Figure S7). From an
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ecological perspective, the bimodal pattern reported for copepods

has the potential to be explained by SST, bathymetry, and NPP.

Regarding temperature, this could exclude species intolerant to high

values that are typical in tropical areas (Chaudhary and Costello,

2023). Regarding bathymetry, a wider continental margin in the

Northern Hemisphere would provide a larger habitat, which is

concordant with the species-area hypothesis (Lomolino, 2000). This

is complemented by high primary productivity, which is

characteristic of upwelling zones in the North Pacific (Zaytsev

et al., 2003) and in the South Pacific off the coast of Chile and

Peru (Escribano et al., 2012). Other mechanisms that have not been

explicitly evaluated to date, such as physiological limitations, biotic

interactions, and trophic resource availability, could also explain the

dip in species richness in the equatorial zones (Chaudhary et al.,
A B

DC

FIGURE 2

(A) Spatial distribution of number of species, (B) estimated species richness (ES50), (C) richness estimated from Regression-Kriging, and (D) residuals.
Isolines represent richness predicted by R-K. Datum=WGS84. The map was constructed with ArcGIS 10.4.1 (ESRI, 2016). Map uses Behrmann equal
area projection.
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2016; Chaudhary and Costello, 2023). Therefore, the bimodality

and asymmetry of species richness indicate that there is not only a

general factor that determines diversity patterns on a broad scale.

These tendencies could be investigated in regional studies to

evaluate the effect of biotic interactions (e.g., co-occurrence) as a

potential causal mechanism for bimodality.

According to the BRT+RAC model, the most important

variables that explained and modulated the number of species

were POC, SSS (max), and autocovariate (Table 1). Although

there is no single predictor of species richness, there are

fundamental variables, such as temperature, that modulate the

large-scale patterns of pelagic diversity (Rombouts et al., 2009;

Tittensor et al., 2010). Based on to Tittensor et al. (2010), SST alone
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is one of the most efficient predictors of coastal and oceanic species

distribution on a global scale. Our results revealed that variability of

temperature, and not its average value, was an efficient predictor of

richness along the latitudinal gradient. Therefore, high temperature

variability, together with the presence of warm waters in the

equator, could constitute the main cause of the observed bimodal

gradient because equatorial regions are too warm for some species

(Chaudhary et al., 2021). Another physical mechanism that could

explain the difference between areas of high diversity in the

subtropics and less diversity in the equatorial zone would be the

presence of two opposing currents (Equatorial Counter Current and

South Equatorial Current). These two currents have distinct

hydrological features: the warm pool to the west and the Pacific
A B

FIGURE 3

(A) Bimodality of number of species and (B) estimated species richness (ES50) of Eastern Pacific copepods. Black dots = empirical species richness;
blue line = estimated trend; gray shade represents 95% point wise confidence interval. The figure was constructed with R software (R Core
Team, 2023).
A B

FIGURE 4

(A) Predicted spatial variation in copepods species composition. Locations with similar colors are expected to contain similar communities. (B) Map
illustrating the clustering of GDM. A four-class classification of the region derived from predicted dissimilarities (C1 to C4). Symbol colors represent
each plot’s membership in a specific assemblage. The figure was constructed with ArcGIS 10.4.1 (ESRI, 2016). Map uses Behrmann equal
area projection.
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Equatorial Divergence, regions separated by well-defined fronts in

salinity, pC02, and macronutrients (Le Borgne et al., 2002). These

physical characteristics would generate a barrier such as the East

Pacific Barrier reported for tropical fish (Gaither et al., 2016), and

plankton (Bowen et al., 2016), which would limit the spread of

organisms with a consequent break in diversity.

Regarding SSS as a modulator of species richness, it has a direct

influence on feeding and egg production (Dutz and Christensen,

2018), growth rate, and population composition (Magouz et al.,

2021), which are factors that ecologically regulate the community

structure of the systems. Another modulator of copepod diversity is

NPP, which has a positive relationship with richness, and a reported

trend for marine and terrestrial organisms (Mittelbach et al., 2001;

Chase and Leibold, 2002; Woodd-Walker et al., 2002; Fukami and

Morin, 2003; Rombouts et al., 2009). This relationship can be

explained by the fact that productivity is a key factor in the

composition of copepod diets (Vargas et al., 2006, 2010). This is

particularly important in coastal upwelling systems, given that high-

quality food resources and lower temperature variability exert an

advantageous effect on copepods, despite constituting an advective

environment that may generate important changes in their life

cycles (Peterson, 1998), biomass, and abundance (Escribano et al.,

2012; Medellıń-Mora et al., 2016) with potential consequences for

the ecosystem food web.

Another important factor spatially structuring the observed and

estimated diversity of copepods is the MLD, which indicates the

relevant (effective) temperature of the upper-ocean copepods at a

macroscale (Rombouts et al., 2009, 2011; Rajakaruna and Lewis,

2018). Indeed, a strong negative relationship was observed between

diversity and MLD (Supplementary Figure S3) indicating that

diversity was high in stratified waters, which may be due to that a

stable physical structure in the near-surface ocean provides higher

vertical niche availability than can support a high number of species

(Rutherford et al., 1999). Indeed, copepod diversity was higher in

areas with stable seasonal ocean temperatures, trends that have also

been reported for the Atlantic Ocean (Woodd-Walker et al., 2002).

This result corresponds with the observation that oligotrophic

regions, with low seasonal variability have high copepod diversity

(Medellıń-Mora et al., 2021).

The high contribution of POC to the spatial variability of

copepod richness is related to the fact that zooplankton in

general, are important mediators of the flux of organic material

into the deep ocean through contributions to both the active and

passive carbon fluxes (the biological pump) (Ducklow et al., 2001),

and their community composition has a significant influence on

particle export, repackaging of POC with depth, carbon attenuation,

and export through the mesopelagic zone (Steinberg et al., 2008;

Wilson et al., 2008). In this regard, Omand et al. (2015) pointed out

that disaggregation of large POC by zooplankton and the

detrainment of POC-rich water from the mixed layer via the so-

called mixed-layer pump (Gardner et al., 1995) constitutes one of

the mechanisms that explain the export of small particles (0.2 to 20

mm) to depths up to 1000 m (Dall’Olmo and Mork, 2014). The

discrepancies in POC, SST and SSS values in the Pacific Ocean are

influenced by a complex interaction of various factors (Gebbie and

Huybers, 2012). These factors include different water masses
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present in the region and the circulation patterns of the

thermohaline current (Gebbie and Huybers, 2012). These water

masses originate from different geographical areas and exhibit a

variety of temperatures, salinity levels and ages, which interact and

intermingle. The thermohaline current plays a fundamental role in

this process, as it facilitates the transport of warm and saline waters

towards higher latitudes, while directing cold and less saline waters

towards lower latitudes. This causes significant mixing in the

subtropical and tropical regions of the ocean, and therefore could

constitute a macroscale structuring of the unequal distribution of

species richness along the latitudinal gradient (Emery, 2001).

Our species richness prediction allowed us to identify areas of

high diversity on the coasts of the Gulf of Alaska, California

Current, Eastern Tropical Pacific Ocean (ETPO), and central-

northern Chile (Figure 2B). The reported pattern can represent

the differential sampling effort made in both hemispheres, with gaps

and biases in the spatial distribution of the occurrences (Hickisch

et al., 2019; Maitner et al., 2023). To overcome these limitations, the

R-K method based on well-sampled cells (see Supplementary Figure

S4) was used to fill these gaps (Lobo et al., 2018). Robustness in the

prediction of the variation on richness by R-K at a broad geographic

scale is supported by considering the autocorrelation intrinsically

present in species richness (Legendre, 1993; Dormann, 2007;

Snickars et al., 2014; Alves et al., 2020), allowing for a better

understanding of the drivers of its geographic variation (Diniz

et al., 2003; Dormann, 2007). Similarly, the latitudinal gradient of

beta diversity showed changes from the coastal to the open ocean, as

well as between hemispheres (see Figure 4A). For the East Pacific,

the four clusters (Figure 4B) represent unique communities,

suggesting high idiosyncratic and dispersal limitations in the East

Pacific. The spatial tendency of the composition revealed an area

exclusive to the Northern Hemisphere and one in the Southern

Hemisphere, and two shared clusters in the temperate and southern

regions (Figure 4B). This indicates that although there is a bimodal

gradient of richness, the specific composition has a defined

structure that obeys the dynamics of the current systems in both

hemispheres (e.g., California Current, Humboldt Current System,

Pacific Equatorial Countercurrent and North/South Pacific

Subtropical Gyres) with a unique fauna with high levels of

endemism as a result of basin-scale circulation patterns and

mesoscale eddies, which come from the coastal upwelling zone,

generating plankton transport (Medellıń-Mora et al., 2021).

GDM revealed that the turnover in community composition

changed at a greater rate with increasing geographical distance, SSS

(range), and POC, showing a broad latitudinal gradient in turnover

from Alaska to Tierra del Fuego (Figure 4A). The relationship was

approximately linear for SST (range), indicating a weak effect on

compositional turnover along these gradients (Supplementary

Figure S9), for which processes related to oceanographic

dynamics, such as POC circulation, productivity, and MLD, were

the main modulators of replacement patterns. The productivity

gradients are strongly influenced by local winds, bathymetry, and

upwelling patterns (Sobarzo et al., 2007; Medellıń-Mora et al.,

2021), which generates heterogeneity in the water column

chemistry. These environmental gradients can generate shifts in

species composition and diversity patterns, as has been reported in
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some groups, such as phytoplankton on a global scale (Righetti

et al., 2019), as well as in other regions, such as the South Australian

Gulfs and semi-enclosed bays in Victoria (Leaper et al., 2011). An

aspect of interest in future research would be to evaluate the

patterns of community composition in upwelling and non-

upwelling regions to study regional processes that may affect

species turnover at the mesoscale.

To our knowledge, quantitative analysis and prediction of beta

diversity have not yet been conducted in copepods of the East

Pacific (but see Chaudhary and Costello, 2023 for a different

approach). Knowledge of these geographic trends contributes to a

better understanding of species shifts and similarities across broad

environmental gradients (Buckley and Jetz, 2008; Jankowski et al.,

2009). The geographic patterns of the composition of copepods

studied through GDM constitute the first explicit analysis of a large

dataset to geographically delimit regions confirmed by changes in

copepod communities.

A critical aspect in the study of spatial patterns of diversity is the

limitation that may be generated by spatial and temporal biases in

the occurrence of species (Boakes et al., 2010; Bowler et al., 2022).

The availability of occurrences on a global scale through OBIS is

valuable for the study of marine macroecological patterns; that

together with an appropriate curation and utilization of suitable

statistical tools that consider autocorrelation (e.g., spatial

regression, geostatistics) allows the identification of diversity

trends on a broad geographic scale (see Alves et al., 2020;

Cavalcante et al., 2022). Indeed, spatial prediction techniques,

such as R-K and GDM, allow the generation of a robust

prediction in regions that are less studied, enabling the

overcoming of shortfalls in knowledge that limit our

understanding of diversity patterns and gradients (see Hortal and

Lobo, 2011; Alves et al., 2020).

Finally, knowledge on the main ecological factors driving

diversity patterns (richness and composition) of copepods

constitutes an important opportunity for understanding ecological

processes that operate on a broad geographic scale and allows the

identification of areas where greater sampling efforts are required.
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