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workflow for reproducible
invasive alien species risk
maps under climate change
scenarios using standardized
open data
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Peter Desmet3, Lien Reyserhove6, Luc Lens3

and Diederik Strubbe1

1Terrestrial Ecology Unit TEREC, Department of Biology, Ghent University, Gent, Belgium, 2Ecology,
Department of Biology, University of Konstanz, Konstanz, Germany, 3Research Institute for Nature
and Forest (INBO), Brussels, Belgium, 4Belgian Biodiversity Platform, Département du Milieu Naturel et
Agricole, Service Public de Wallonie, Gembloux, Belgium, 5Royal Meteorological Institute of Belgium,
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Introduction: Species distribution models (SDMs) are often used to produce risk

maps to guide conservation management and decision-making with regard to

invasive alien species (IAS). However, gathering and harmonizing the required

species occurrence and other spatial data, as well as identifying and coding a

robust modeling framework for reproducible SDMs, requires expertise in both

ecological data science and statistics.

Methods: We developed WiSDM, a semi-automated workflow to democratize

the creation of open, reproducible, transparent, invasive alien species risk maps.

To facilitate the production of IAS risk maps using WiSDM, we harmonized and

openly published climate and land cover data to a 1 km2 resolution with coverage

for Europe. Our workflow mitigates spatial sampling bias, identifies highly

correlated predictors, creates ensemble models to predict risk, and quantifies

spatial autocorrelation. In addition, we present a novel application for assessing

the transferability of the model by quantifying and visualizing the confidence of

its predictions. All modeling steps, parameters, evaluation statistics, and other

outputs are also automatically generated and are saved in a R markdown

notebook file.

Results: Our workflow requires minimal input from the user to generate

reproducible maps at 1 km2 resolution for standard Intergovernmental Panel

on Climate Change (IPCC) greenhouse gas emission representative

concentration pathway (RCP) scenarios. The confidence associated with the

predicted risk for each 1km2 pixel is also mapped, enabling the intuitive

visualization and understanding of how the confidence of the model varies

across space and RCP scenarios.
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Discussion: Our workflow can readily be applied by end users with a basic

knowledge of R, does not require expertise in species distribution modeling, and

only requires an understanding of the ecological theory underlying species

distributions. The risk maps generated by our repeatable workflow can be used

to support IAS risk assessment and surveillance.
KEYWORDS

uncertainty in SDMs, conformal prediction, spatial sampling bias, ecological models,
confidence assessment, invasive alien species
1 Introduction

Climate change and biological invasions represent two of the

largest threats to biodiversity in the Anthropocene (Mazor et al.,

2018; Urban, 2015). As a result of climate change, it is expected that

a wide range of species will migrate to follow their shifting climatic

niche and introduced species will find novel areas suitable for their

establishment (Bellard et al., 2018). Some of these introduced

species are likely to have negative impacts on native biodiversity

and human well-being (Simberloff et al., 2013). Assessing the risk of

invasion by alien species is a crucial step for proactive management,

including identifying species for preventive actions such as legal

bans on trade, transport, and possession, targeting early detection

efforts both at entry points and in susceptible ecosystems, as well as

risk management decisions to remove established populations or

limit their further spread (Srivastava et al., 2019). Regardless of the

specific protocol used, risk assessment is defined as the standardized

evaluation of entry, exposure, and consequence of the introduction

of an alien species (Vanderhoeven et al., 2017; González-Moreno

et al., 2019). An evaluation of the risks of introduction,

establishment, spread, and impact are the four main components

of alien species risk assessments (Roy et al., 2017).

Species distribution models (SDMs) are the main tool for

forecasting the risk of establishment of an alien species in a

spatially explicit way (Guisan and Thuiller, 2005; Jeschke and

Strayer, 2008). Correlative SDMs delineate the realized niche of

the organism based on species-environmental relationships

obtained from georeferenced species occurrence data (i.e., species

presence located at specific geographic coordinates) and spatial

environmental predictors. This way, SDMs predict the probability

of species presence in unsampled areas. Additionally, SDMs also

predict environmentally suitable areas where the species is currently

absent, but can potentially be established in the future, depending

on dispersal success. SDMs can be used to guide spatial decision-

making, but recent critiques have highlighted how uncertainties in

species distribution modeling practice have hindered their

widespread uptake in decision-making workflows (Muscatello

et al., 2021; Lee-Yaw et al., 2022; Nguyen and Leung, 2022; Liu

et al., 2020). These issues include the impact of methodological

choices on model outcomes including accuracy, ease of
02
interpretation, and predicted distribution (Wenger et al., 2013;

Sofaer et al., 2019; Brun et al., 2020). For example, algorithm

choice is a major source of variability in model forecasts (Elith

et al., 2006; Hallgren et al., 2019). Also, the choice of predictors,

parameter settings, and spatial grain are all sources of variability

that affect model predictions (Peterson et al., 2018; Fourcade, 2021;

Chauvier et al., 2022). In addition to the uncertainty in model

predictions stemming from the numerous choices to be made

during model development, the failure to record and share these

decisions prevents reproducibility (Feng et al., 2019a).

Governmental and non-governmental nature conservation

agencies often use SDMs to guide management and decision-

making regarding invasive species but need transparent and

reproducible workflows for acceptance by stakeholders and

policy-makers (Schwartz et al., 2018; Ferraz et al., 2021; Baker

et al., 2021).

There is an active debate on how to improve the reliability and

transferability of invasive species distribution models, and new

conceptual and methodological approaches are regularly

published (e.g. Barbet-Massin et al., 2018; Bellard et al., 2018;

Chapman et al., 2019; Hao et al., 2019; Sillero et al., 2023).

However, as far as we are aware, most of these proposed

innovations are not geared toward automated reproducibility

(Kass et al., 2018; Feng et al., 2019a; Mostert et al., 2023).

To address this, we developed the WiSDM workflow to

generate reproducible risk maps for potentially invasive alien

species under scenarios of climate change at a high spatial

resolution (1 km2). Our workflow semi-automatically: 1)

identifies highly correlated predictors; 2) mitigates the impact of

sampling bias; 3) generates IAS risk maps for standard RCP

scenarios using an ensemble of multiple machine learning

algorithms; 4) quantifies spatial autocorrelation in the residuals

to assess the impact of clustering of species occurrences; and 5)

generates confidence maps for each IAS risk map. This species

distribution modeling workflow is part of the Tracking Invasive

Alien Species (TrIAS) project, a broader data-to-decision pipeline

guiding alien species detection and management (Vanderhoeven

et al., 2017). TrIAS encompasses the development and publication

of alien species checklists (Reyserhove et al., 2020), identification

of emerging species, and risk assessment. WiSDM is written in R
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markdown and can be exported as an HTML or notebook file

instantly recording all methodological decisions, parameter

choices, and outputs, thereby facilitating reproducibility and

transparency for risk assessments.
2 Methods

2.1 Overview of WiSDM

Our workflow (Figure 1) uses a hierarchical approach, whereby

models are first created at a global scale and then integrated into the

European-level models to characterize invasive species’ realized

niches as extensively as available occurrence data allow. This is

achieved by using the model forecast derived from the global model

as a probability surface to guide the selection of pseudoabsences for

the European model(s). Our SDMs at both the global and European

levels use an ensemble of machine learning (ML) algorithms:

random forests (RF), gradient boosted machine (GBM),

generalized linear model (GLM), and multivariate adaptive

regression splines (MARS). These algorithms were chosen because

they use distinct approaches: bagging, boosting, linear- and

piecewise regression (Table 1). The resulting predictions from

each model are stacked together using a GLM as a meta-model to

combine the predictions in a weighted combination that optimizes

model accuracy (Van der Laan et al., 2007). We used a GLM-based

meta-model, instead of a simple averaging of the invasion risk

predictions produced by the different modeling algorithms, so that

the more accurate models are given a higher weight in the final

model while minimizing the risk of overfitting (Hao et al., 2019).

The meta-model refers to any statistical or ML model used to

combine the information gained from each model’s prediction in an

ensemble, producing the final model for baseline conditions.

Individual country-level maps are a subset of the European model.

The code necessary to run the workflow is available on GitHub

(https://github.com/trias-project/risk-modelling-and-mapping).

The global models are climate-only (Pearson and Dawson, 2003),

and use high-resolution climate data layers (30 arc second, ~ 1 km)

which are available from CHELSA (Karger et al., 2017). The European

model uses climate data layers developed specifically for Europe as part

of the TrIAS project (De Troch et al., 2020). The TrIAS climate data

have been bias-corrected to be compatible with the CHELSA data

layers. In order to use our workflow, we have made available the
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environmental and climate data layers developed for TrIAS via Zenodo

(De Troch et al., 2020). The climate layers summarize 30-year climate

data (1976-2005), and for three emission scenarios of future climate (the

representative concentration pathways (RCP 2.6, RCP 4.5, RCP 8.5) as

defined by the IPCC with coverage for Europe. They are based on an

ensemble of regional climatemodels from the EURO-CORDEX archive

(Kotlarski et al., 2014), that have been statistically downscaled from a

12.5 × 12.5 km to a 1 km2 spatial resolution. WiSDM includes

predictors characterizing land use/land cover for Europe derived from

the CORINE (Coordination of Information on the Environment)

landcover product, anthropogenic pressure from the global terrestrial

human footprint dataset (Venter et al., 2016), the distance to the nearest

freshwater body, and climate variables based on historical (1976-2005)

and future (2040-2070) scenarios. These data have been aligned with

the 1 km2 EEA Reference Grid (European Environment Agency, 2011).

The outputs of WiSDM include 1) a risk map for Europe produced by

global ensemble model based on historical climate conditions; 2) risk

map(s) produced by European ensemble model based on historical

climate conditions; 3) assessment of the predictive performance of all

models; 4) country-level risk maps based on European ensemble model

for historical climate conditions and under RCP scenarios; 5) country

level maps that visualize differences in current vs projected risk under

each of the three RCP scenarios; 6) country-level confidence maps; 7)

table of variable importance; 8) response curves for all predictors used

in the European model; and 9) HTML file from R markdown

document saving all code including, decisions, parameters, thresholds,

and model outputs (GBIF Secretariat, 2022b). Currently, WiSDM is

suitable for modelling plants, mammals, reptiles, amphibians, and birds

in Europe, but it can be adapted for other regions. A list of all the

predictors used in the workflow and links to download via Zenodo is

available (see Data Availability statement). We provide a list of known

ecologically relevant predictors for each taxonomic group as

Supplementary Information (Supplementary Table 1).
TABLE 1 Classification algorithms used in the WiSDM workflow.

Algorithm Type Technique Reference

Random Forests (RF) Supervised Bagging Breiman, 2001

Gradient Boosted
Machine (GBM) Supervised Boosting

Friedman,
2001

Logistic regression (GLM) Supervised Regression Cox, 1958

Multivariate adaptive
regression splines (MARS) Supervised

Piece
wise regression

Friedman,
1991
FIGURE 1

Main steps of the WiSDM workflow.
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2.2 Occurrence data preparation

The WiSDM workflow utilizes GBIF as it is the largest

collector of occurrence data in the world (Waller et al., 2021)

with over 2 billion species occurrence records (GBIF, 2023) and

follows FAIR data principles Wilkinson et al. 2016. GBIF has

taxonomic and geographic data gaps, notably for insects and Asia,

respectively which have been the focus of data mobilization

efforts (GBIF Secretariat, 2022a). We recommend that users

check for the availability of additional occurrence datasets from

regional and national environmental agencies if they are not

already present on GBIF. In Belgium, data from the relevant

agencies (e.g. the Institute for Nature and Forest Research

(INBO), Waarnemingen.be, Florabank) are already contributed

to GBIF and regularly updated.

Species names are matched with GBIF taxon keys to download

only those occurrences with accepted or synonymous names,

minimizing taxonomic uncertainty (GBIF Secretariat, 2022b). All

species occurrences that have geographic coordinates and are

within the time frame specified were downloaded. The default

end dates of 1971 and 2010 were chosen to maximize the number

of available observations while staying with +/- 5 years of the end

dates used for the climate data to minimize a temporal mismatch

between the two datasets (Davis et al., 2017). Data with spatial

uncertainty greater than 1 km, and duplicate occurrences in the

same grid cell are removed. Occurrences that correspond to

geographic centroids, biodiversity institutions, and invalid

coordinates are flagged and removed using the Coordinate

Cleaner package (Zizka et al., 2019). If most of these occurrences

are outside of Europe, and there are fewer than ~ 80-100

occurrences in Europe, we recommend running only the global

model until more occurrence data become available. Although it is

possible to obtain accurate SDMs with low numbers of occurrences

as few as five (Pearson et al., 2007; van Proosdij et al., 2016), we

recommend a minimum of 30 and restricting the number of

predictors used to the number of occurrences divided by 10 to

reduce the risk of overfitting.

2.2.1 Mitigating spatial bias in occurrence data
To achieve large geographic coverage, species occurrence

databases that are composed of aggregated species data collections

such as those provided by GBIF are often used. A drawback to using

these databases is their potential for geographic sampling bias (Beck

et al., 2013). Uneven sampling or search effort can mislead

conclusions about the extent and drivers of species distributions

(Gotelli and Colwell, 2001; Lobo, 2008). Sampling bias in our

workflow is mitigated by using taxonomic occurrence grids to

exclude areas of low sampling effort from the background when

randomly placing pseudoabsences (Phillips et al., 2009). The

occurrence grids have a 1-degree spatial resolution in the WGS84

coordinate system (EPSG:4326). Each 1-degree grid cell contains

the number of records present in GBIF corresponding to a specific

taxonomic group: plants, mammals, reptiles, amphibians, and birds.

These are also available for download via Zenodo (Davis

et al., 2023).
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2.3 Global model

The global climate SDM is constructed using all available

species occurrence data, employing CHELSA high-resolution

climate data layers to delineate the complete range of suitable

c l imate condit ions for each species . The number of

pseudoabsences equal to the number of species occurrences

(Barbet-Massin et al., 2012) are randomly located in the same

ecoregions (Olson et al., 2001) inhabited by occurrences, but not in

areas of low sampling effort as indicated by the taxonomic

occurrence grid (see below). Ecoregions are hypothesized to

delineate the area considered theoretically accessible to the

organism (Barve et al., 2011; Guisan et al., 2014). To avoid

inflating model performance metrics, pseudoabsences are sampled

within relevant ecoregions rather than over a large, unrealistic area

(Lobo et al., 2008). These pseudoabsences are then combined with

the occurrences to form a presence-pseudoabsence spatial point

dataset. We use an equal number of pseudoabsences and presences

in both the global and European models because large numbers of

pseudoabsences relative to presences bias the model towards

predicting absences (maximizing specificity). Reported gains in

model performance and accuracy as measured by ROC and AUC

are due to gains in specificity (Lobo et al., 2008). For models with

800-1000 presences, one draw of an equal number of

pseudoabsences is sufficient, otherwise, at least 10 draws are

needed (Barbet-Massin et al., 2012). Highly correlated predictors

are identified using the ‘findCorrelation’ command of the ‘caret’

package, which identifies the predictor(s) with the highest mean

correlation with all other predictors (Kuhn, 2022). A global risk

map is produced at 1 km resolution based on historical climate

conditions using ensemble modeling as described above. The spatial

extent of the risk map is limited to Europe to reduce computational

processing times. The risk map generated from the global model is

used as input into the European model so that the placement of

pseudoabsences is restricted to areas with a probability of presence

less than 0.5.
2.4 European model

As emerging invasive alien species are unlikely to have many

occurrences in a particular European country, WiSDM constructs

SDMs using occurrences from all of Europe, and then country-level

risk maps are a subset of the European model. The European

occurrences are a subset of the cleaned global occurrence data used

to build the global SDMs. The European level model incorporates

the climatic suitability map generated by the global SDM to locate

pseudoabsences in areas of predicted low habitat suitability. The

pseudoabsences are randomly located in the same ecoregions

inhabited by the alien species (as described above) that overlap

with the areas of low habitat suitability predicted by the global

model. While introduced species may not have had the chance to

fully colonize the ecoregions into which they are introduced,

restricting the invasive range of pseudoabsence selection to these

regions minimizes the chance of selecting pseudoabsences
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corresponding to inaccessible environmental conditions (Chapman

et al., 2019). As with the global model, taxonomic occurrence grids

are used to avoid locating pseudoabsences in areas with low

sampling effort. The pseudoabsences are joined to the occurrences

to create a European presence-pseudoabsence dataset. The baseline

European level risk model uses the historical climate data for

Europe described above, LULC cover data, anthropogenic

pressure, and distance to water, described above. From this

model, risk maps for specific European countries can be obtained.

This model is then projected onto future climate data according to

the three RCP scenarios only for the country of interest for faster

computational processing times. Country-level risk maps are

generated automatically for baseline conditions and the RCPs.

Difference maps in the current baseline risk as compared to the

future risk under the RCP scenarios are also generated.

2.4.1 Addressing multicollinearity
Multicollinearity in SDMs can increase uncertainty and obscure

the most salient predictor in driving species distributions, as well as

inhibit model transferability (Yates et al. 2018; Feng et al., 2019b;

Liu et al., 2020). WiSDM records and removes highly correlated

predictors in the European model using the same method described

for the global model. After adding habitat and anthropogenic

predictors (heretofore referred to as “habitat” predictors) to the

filtered climate dataset, the climate and habitat predictors are

examined together for multicollinearity. If an ecologically relevant

predictor is flagged, we suggest users consult the correlation matrix

to identify alternative predictors for removal as there could be a less

crucial predictor contributing to the collinearity. While dimension

reduction techniques such as principal component analysis can be

used to reduce multicollinearity and improve model transferability

for invasive species (Petitpierre et al., 2017), the effects of individual

predictors on species distributions are obscured. An understanding

of the relationships between invasive species and their environment

can inform decision-making, hence our choice not to use data

reduction methods.

2.4.2 Assessing spatial autocorrelation
WiSDM assesses the residuals from the European level

ensemble model for spatial autocorrelation, using Moran’s I.

Values of Moran’s I greater than 0.1 indicate that the occurrence

data may be highly clustered and thinning before model fitting

should be employed (Boria et al., 2014; Diniz-Filho and Bini, 2005).

The option to thin occurrence data is provided in the workflow via

the rarefy command from the Humboldt R package (Brown, 2023).
2.5 Model evaluation and validation

WiSDM reports both threshold-independent (AUC) and

threshold-dependent (accuracy, sensitivity, specificity, and kappa)

measures of model performance for each algorithm using cross-

validation (Kuhn, 2008) for both the global and European-level

models. The AUC (Area Under the Curve) statistic quantifies the

overall ability of a binary classification model to distinguish between

positive and negative classes, with an AUC of 0.5 indicating random
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performance and an AUC of 1.0 representing perfect

discrimination. Accuracy is measured as the number of True

Positives + True Negatives/Total Observations. The kappa

statistic is measured on a scale of -1 to +1, with 0 indicating the

predictive ability of the model is no better than as expected by

chance. Sensitivity (true positive rate) and specificity (true negative

rate) are reported on a scale of 0-1, with a value of “1” indicating a

perfect score. A variety of methods exist to choose a threshold to

convert the predicted probabilities to classify a location as either

“species present” or “species absent” (Liu et al., 2005). The threshold

value can be determined based on ecological knowledge or by

optimizing a specific evaluation metric, such as the true positive

rate (sensitivity) or the true negative rate (specificity). WiSDM

identifies and applies a threshold where sensitivity is equal to

specificity with the assumption that the cost of predicting false

presences and false absences is the same (Lobo et al., 2008).
2.6 Quantifying and visualizing confidence
of model predictions

Uncertainty associated with model predictions and their

transferability to new biogeographic areas or novel climate

conditions presents another barrier to effective decision-making

with SDMs (Brodie et al., 2022). Typically, the accuracy of SDMs is

assessed based on how well the model has performed using cross-

validation or independent data sets. The dominant methods for

quantifying the uncertainty of SDMs are model averaging of the

predictive outputs from different algorithms, reporting the standard

deviation of the predictions, or using the consensus of the outputs

(Thuiller et al., 2019). However, this does not show how good our

individual-level predictions are, or how confident we are of them,

especially outside the conditions that the model has been calibrated

on (‘extrapolation’). Our workflow includes code developed by the

authors to implement the conformal prediction algorithm to

quantify confidence in model predictions. Conformal prediction

is a method that leverages past experience to estimate the level of

confidence associated with individual predictions, providing a

measure of how likely a prediction is to be correct based on

historical data. Conformal prediction is distribution-free and has

a guaranteed error rate (Shafer and Vovk, 2008). Using a prediction

from any method, conformal prediction produces a conformity

measure so that strange or unlikely observations are assigned lower

conformity scores as compared to more likely observations. The

conformity score also known as a p-value (not to be confused with

the P values used for statistical hypothesis testing), is the probability

estimate that the observation belongs to a class label, with a 1 – ϵ
error rate prediction region, a set that contains y with a probability

of at least 1 – ϵ percent. The smaller the error rate, the larger the

prediction region becomes. WiSDM defaults to an error rate of 20%

to balance confidence levels with prediction region size. In binary

classification problems, both classes are often included in the

prediction region, regardless of the size of the error rate. To

address this, probability estimates for each prediction belonging

to a class are obtained separately, yielding p-value A that the

prediction belongs to class A, and p-value B that it belongs to
frontiersin.org
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class B. Thus the most likely class label is based on the class with the

highest p-value. The confidence that the prediction belongs to that

class is 1 - the second highest p-value. (Vovk et al., 2005).

Conformal prediction has been successfully applied in other fields

including Computational biology (Norinder et al., 2014), Medicine

(Pereira et al., 2017), and Drug discovery (Alvarsson et al., 2021) but

is surprisingly absent from ecological applications. The confidence

of each prediction can be visualized in maps, providing an intuitive

understanding of how model confidence varies across space and

climate scenarios. This can help to identify areas or scenarios where

model predictions are less reliable, or where additional data are

needed to improve the model. To facilitate the interpretation of the

confidence maps, WiSDM can optionally show only those

predictions that meet or exceed a user-defined minimum

threshold of confidence.
2.7 Use case

We applied WiSDM to a case study species: Vaccinium

corymbosum L. (North American blueberry, Ericaceae family).

This species was identified as a species of potential conservation

concern by the TrIAS automated early warning pipeline for

prioritizing emerging alien species (Adriaens et al., 2022). North

American blueberry is a deciduous shrub that typically grows in

moist forests, bogs, and swamps, was introduced to Belgium in the

early 1950s and was recently observed to escape from nurseries

(Adriaens et al., 2019). This species and its hybrid Vaccinium

corymbosum × angustifolium is considered invasive in Germany

and the Netherlands and is known to be problematic in protected

areas (wet heathlands, peatlands) there (Schepker and Kowarik,

1998; Penninkhof et al., 2018).

1678 georeferenced occurrences of V. corymbosum from 1971-

2010 were downloaded from GBIF. After removing centroids,

duplicates occurring in the same grid cell, and occurrences with a

spatial uncertainty greater than 1 km, 1064 occurrences remained.

The majority of these occurrences are located in North America

(Figure 2). Of these, only 66 occurrences were located in Europe,

with 3 occurrences in Belgium. To account for variability resulting
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from the location of pseudoabsences, we ran 10 models for Europe,

each with a different draw of pseudoabsences equal to the number of

presences (Barbet-Massin et al., 2012). The 10 models were

evaluated using 4-fold cross-validation. The model with the

highest sensitivity, specificity, Kappa, and AUC was selected and

projected onto the RCP scenarios. WiSDM automatically generated

confidence maps using a minimum confidence threshold of 0.7 for

the best predictive model and RCP scenarios. The R markdown

document published from this workflow shows in detail all settings,

data, algorithms, parameters used, and model validation results and

is included as Supplementary Information (Supplementary S1).
3 Results

3.1 Global model

After filtering for multicollinearity, five climate predictors

remained and were used in the models. Annual precipitation, the

maximum temperature of the warmest month, amount of

precipitation (mm) during the driest month, the annual variation

of precipitation, and the range of annual temperature °C. The mean

predictive accuracy assessed by 10-fold cross-validation for the

algorithms ranged from 0.66 to 0.78 and kappa from 0.32 to 0.55.

After ensembling, the final model had a mean accuracy of 0.77, and

a Kappa of 0.54. Details regarding the performance of each

algorithm, model correlation, and variable importance, as well as

maps of the area used for sampling pseudoabsences, are available as

Supplementary Information (Supplementary S1). The risk map is

shown in Figure 3.
3.2 European model

All occurrences found in Europe (n=66) were used in the

European models. The following predictors were used: annual

variation of precipitation, maximum temperature of the warmest

month, range of annual temperature °C, and percent wetland per 1

km2. 10 models were constructed with 10 unique draws of
FIGURE 2

Global distribution of V. corymbosum occurrences (shown in green) used in the global model.
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pseudoabsences. The results of the 10-fold cross-validation of these

models and the mean of the predicted probabilities demonstrated

consistently good performance, with model 6 having the best

performance (Table 2). The Moran’s I of the residuals from

model 6 was very low (- 0.007) indicating that the occurrences

did not need thinning. To further test and evaluate the model,

Vaccinium corymbosum occurrences located in Belgium from 2011-

2021 were downloaded (n=111) from GBIF. We regard these data as

independent, as they were not used in model building and date after

model calibration (> 2010). This model correctly classified 90% of

the occurrences as present (Supplementary S1). Model 6 was used

for forecasting risk under the RCP scenarios and for the remaining

steps in the workflow. The risk map for Europe generated from

model 6 is shown in Figure 4.

The current risk map based on historical climate indicates that

much of northern Belgium and the Ardennes region(located along

the southeast border) is highly suitable for North American

blueberry (Figure 5). Risk forecasts for RCP scenarios 2.6, 4.5,
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and 8.5 suggest that environmental suitability for North American

blueberry will greatly decrease in the future for Northern Belgium,

but will remain for the Ardennes in RCPs 2.6 and 4.6 (Figures 5, 6).

Confidence in the predicted risk values is highest by area for the

current risk map (Figures 7A, 8A). The majority of the predicted

risk values under the RCP scenarios are of low confidence (< 0.4)

(Figures 7B–D), with very few predicted risk values having high

confidence (> 0.7) (Figures 8B–D).

The maximum temperature (°C) of the warmest month

followed by the annual range in temperature (°C) had the highest

overall variable importance (Table 3). The response curves indicate

that the probability of occurrence decreases with increasing

maximum temperature of the warmest month and that the

species prefers habitats with both warm and cold seasons with

yearly temperature differences of approximately 22°C (Figure 9).
4 Discussion

WiSDM constitutes an open, reproducible, and flexible

workflow for generating invasion risk forecasts for use in invasive

species risk assessment and management. Our framework is ideally

suited for agencies, consultants, or environmental planners where

fast and easily updatable information on species invasion risk is

needed, e.g., for answering to legal reporting requirements such as

those mandated by the EU (1143/2014) regulation on invasive alien

species or to identify areas where early-detection and rapid response

measures preventing invader establishment should be prioritized.

Uncertainties in the use of SDM outcomes can lead stakeholders to

question the usefulness of invasion risk forecasts for conservation

planning (Kujala et al., 2013).

Given the uncertainty associated with extrapolating risk to

novel climates, WiSDM produces maps of confidence associated

with each risk forecast, allowing identification of where and when

model predictions are the most confident. Notably, the majority of

predictions for the RCP scenarios have low confidence (Figure 7).

For both the historical climate-based and RCP scenarios, the areas

predicted as highly suitable for North American blueberry in
TABLE 2 Results of 4-fold cross-validation for European models.

model threshold sensitivity specificity Kappa AUC

1 0.48 0.85 0.85 0.70 0.89

2 0.51 0.85 0.85 0.70 0.88

3 0.50 0.85 0.85 0.70 0.89

4 0.47 0.82 0.82 0.64 0.87

5 0.52 0.77 0.76 0.53 0.85

6 0.42 0.88 0.88 0.76 0.89

7 0.46 0.83 0.83 0.67 0.91

8 0.54 0.85 0.83 0.68 0.87

9 0.55 0.82 0.82 0.64 0.88

10 0.55 0.79 0.77 0.56 0.85
frontie
FIGURE 3

Current risk map based on historical climate conditions for Europe
generated by the global model for Vaccinium corymbosum. The
black circles indicate occurrences.
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Belgium have high confidence and areas predicted to be absent or of

low suitability have low confidence (Figures 5, 7). This suggests that

in addition to monitoring high-risk areas, surveillance efforts

should potentially also include “predicted to be absent but low

confidence areas”, particularly if they overlap with protected areas

or suspected dispersal pathways. Overall, the high uncertainty of the

forecasts under the RCP scenarios observed in this study warrants

future investigation to determine what steps, if any, can be taken to

decrease it. For example, conformal prediction can be used to

examine the impacts of variable selection or algorithm choice on

model confidence in SDMs. Multivariate environmental similarity

surface (MESS) maps (Elith et al., 2010) provide a spatially explicit
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visualization of the correlation between different climate regimes or

scenarios but leave the user to infer how robust their model is.

Conformal prediction goes beyond mapping correlation by

quantifying the confidence of predictions using a statistical

framework with a guaranteed error rate (Vovk et al., 2005). Thus,

the user can immediately assess the robustness of their model based

on confidence rather than guessing based on climate (dis)similarity.

The European model predicted new areas (Ireland, northern

UK, and the coast at risk of invasion as compared to the global

model (Figures 2, 3) suggesting the existence of regional niches that

would not be observed using only the global model. WiSDM uses

the global model to decrease the likelihood of having false absences

in the European model by not locating pseudoabsences in areas

predicted as suitable by the global model. Furthermore, the

European level model is constrained to regional climate and land

use data which can help to uncover a regional niche (Gallien

et al., 2012).

Response curves provided by WiSDM visualize the relationship

between climate and habitat and invasion risk. They can be used to

evaluate the ecological realism of the model forecasts as well as to

help formulate optimal surveillance efforts in response to changing

environmental conditions. For example, the response curve for the

annual range of temperature and probability of North American

blueberry occurrence shows that invasion is more probable as the

difference between the coldest and warmest temperatures increases

(Figure 9). This suggests that when annual climate extremes occur

(i.e. an unusually cold winter and warm summer), additional

monitoring is warranted (Johnstone, 1986).

It should be noted that an inherent limitation to correlative

SDMs, including ours, is that the area at risk of invasion may be

greater than what is predicted by the model due to the ability of the

species to potentially occupy climates and regions that it does not

currently inhabit. Failures to accurately predict the full invasive
A B

DC

FIGURE 5

Current risk map (A) based on historical climate conditions for Belgium generated by the best European model for Vaccinium corymbosum and
under RCP scenarios 2.6 (B), 4.5 (C), and 8.5 (D).
FIGURE 4

Current risk map based on historical climate conditions for Europe
generated by the best European model for Vaccinium corymbosum.
Occurrences are represented by black circles.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1148895
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Davis et al. 10.3389/fevo.2024.1148895
distribution of introduced species are frequently attributed to the

violation of a core assumption of SDMs: that the species being

modeled is in equilibrium with the environment. The violation of

this assumption can occur when the species realized niche is

substantially different from its fundamental niche, or in the case

of niche expansion when introduced species colonize ‘novel’

environments in their introduced range, which may not be
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apparent during the early stages of invasion (Václavı ́k and

Meentemeyer, 2012). Apparent niche expansion can occur when

eco-evolutionary changes (e.g., genetic adaptations) result in

changes in species’ fundamental niches, or because, for example,

biotic interactions and dispersal limitations prevent species from

occupying all suitable areas available to them across their native

range. Characterizing species’ fundamental niches is generally
A B

DC

FIGURE 7

Confidence maps for the predicted distribution of Vaccinium corymbosum based on historical climate (A), and RCP scenarios 2.6 (B), 4.5 (C), and 8.5
(D), with confidence values ranging between 0 (no confidence) and 1 (maximum confidence). A value of 0 indicates that the prediction is completely
nonconforming and not supported by previous data while 1 indicates the prediction is identical to a previous observation in the data.
A B

C

FIGURE 6

Difference maps illustrate the spatial difference between historical climate and RCP scenarios 2.6 (A), 4.5 (B), and 8.5 (C). Green areas indicate where
the highest positive differences are observed, and beige and white areas indicate the highest negative differences.
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considered impossible without information on ecophysiological

tolerances. Still, there is an active debate about whether certain

model settings or algorithms are better able to approximate

fundamental niches – and thus species’ full potential distribution

- using occurrence data only (Jiménez et al., 2019). In addition,

missing ecological and/or anthropogenic predictors and gaps in

occurrence data that span ecoregions or larger, can also lead to the

under-prediction of the full distribution of a species. WiSDM is not

set up as a bespoke ecological niche modeling framework to test

hypotheses about the factors governing species distributions across

native and invasive ranges and how to best model them. Instead,

WiSDM produces data-driven SDMs, taking a pragmatic approach

by combining GBIF occurrence data from both native and invasive

ranges, into a single modeling framework.

The models underlying WiSDM do not account for dispersal,

thus the maps produced by WiSDM indicate where a species can

potentially colonize once introduced to a region. Furthermore, risk

assessments for IAS are often conducted for species that are not yet

(widely) present in a country or region thus quantifying the

geographic area suitable for the species is an essential step in the

risk assessment process. Until a consensus emerges on how

potential distributions are best obtained using correlative SDMs
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(e.g. algorithms, choice of background area, parameter settings) or

until alternative (data demanding) process-based models (e.g. based

on ecophysiological mechanisms and/or demography and

dispersal) can be upscaled to apply to modeling large numbers of

species, the WiSDM approach represents a robust and informed

tool for use in invasive species risk assessment and management.

Furthermore, the modeling workflow can easily be rerun when new

occurrence data become available, e.g., through increased

biodiversity monitoring, to potentially improve the prediction of

the area at risk of invasion. Models can also be run using different

baseline climate and habitat predictor layers. WiSDM currently

defaults to using a 1976-2005 climate average for model training,

which may lead to some uncertainty in estimating species

occurrence - environment relationships especially for the most

recent occurrence data (Milanesi et al., 2020). The amount of

uncertainty introduced by our choice to use a ‘static’ baseline

depends on the rate of change of the predictor variables over time

and on how important individual predictor variables are for each

species’ distribution (Bracken et al., 2022). While no consensus

currently exists about how to best ensure optimal correspondence

between available occurrence data and predictor variables (Steen

et al., 2019), users may decide to use more detailed annual predictor
TABLE 3 Percent variable importance for each algorithm for the best European model (model 3).

overall GLM GBM RF MARS

Percent wetland 1.3 8.6 0.0 0.0 0.3

Variation in annual precipitation (coefficient of variation) 28.2 53.2 36.0 32.1 0.0

Temperature annual range °C 32.3 0.0 32.1 27.0 63.1

Maximum temperature warmest month °C 38.2 38.2 31.9 40.9 36.6
front
The number corresponding to the most important variable is shown in bold for each algorithm.
A B

DC

FIGURE 8

Maps of predicted risk based on historical climate (A), and RCP scenarios 2.6 (B), 4.5 (C), and 8.5 (D), with confidence levels equal to or greater than
0. 7. Pixels containing risk values with confidence levels less than 0.7 are not shown.
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variables (e.g. such as the ERA5 and ERA5-Land time series),

effectively turning WiSDM into a dynamic species distribution

model (Abrahms et al., 2019).

The climate data currently used by WiSDM were generated

using the RCP scenarios from the CMIP5 (Coupled Model

Intercomparison Project Phase 5). The RCP scenarios have since

been updated with the new SSP (Shared Socioeconomic Pathway)

based scenarios from CMIP6 (Coupled Model Intercomparison

Project Phase 6). The updated scenarios in CMIP6 that

correspond to RCP2.6, RCP4.5, and RCP8.5 from CMIP5 are

called SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. The SSP

scenarios result in similar 2100 radiative forcing levels used by

their RCP counterparts, but use different assumptions and

improved models with more recent emissions data (Tebaldi et al,

2021). In contrast to RCP scenarios, the SSP scenarios provide

economic and social reasons for the assumed emission pathways

and land use changes. The SSP scenarios start with emissions data

from 2014 (the RCPs start with data from 2007), thus the scenarios

start with a higher emissions level and also show a slower decline.

When interpreting the results from SDMs using either RCP or SSP

scenarios, it is important to consider the assumptions used such as

the expected levels of greenhouse gases, population growth, and

mitigation as these in addition to the climate models used can

influence the results and introduce uncertainty into the projections

(Thuiller et al., 2019).

Open, transparent, data-driven risk assessments, with clear

indications of uncertainties, foster credibility, which is vital for

acceptance by stakeholders and uptake by policy-makers (McGeoch

et al., 2012; Groom et al., 2019; Sofaer et al., 2019). The WiSDM

approach fits well with recent trends towards transparency and

repeatability in ecological forecasting, such as encapsulated in the

‘best practice standards’ for SDM model development (e.g. Araújo
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et al., 2019; Zurell et al., 2020). WiSDM further promotes the uptake

of SDM modeling into policy and conservation actions by its

adoption of the FAIR principles of ‘Findability, Accessibility,

Interoperability, and Reuse’ by making the workflow freely

available on GitHub and publishing all data layers needed to run

the workflow on Zenodo. The flexible nature of WiSDM also makes

it possible for users to customize our code to match the specific

demands of the assessment under consideration (e.g. use of

alternative climate scenarios and habitat predictors, or model

algorithms and settings). The customized settings used are

automatically recorded in an R markdown document that can be

shared to ensure transparency and reproducibility. Thus, the

reproducible workflow presented here maximizes the usefulness

of available open data and provides a structured framework for

obtaining and interpreting forecasts of the invasion risk of

introduced species.
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Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., and Zimmermann, N. E.
(2019). Uncertainty in ensembles of global biodiversity scenarios.Nat. Commun. 10 (1),
1446. doi: 10.1038/s41467-019-09519-w
frontiersin.org

https://doi.org/10.1111/j.1466-8238.2012.00768.x
https://doi.org/10.1111/j.1466-8238.2012.00768.x
https://www.gbif.org/about-species-counts
https://doi.org/10.15468/39omei
https://doi.org/10.35035/doc-jjrz-b144
https://doi.org/10.3897/neobiota.44.31650
https://doi.org/10.1046/j.1461-0248.2001.00230.x
https://doi.org/10.5334/cstp.238
https://doi.org/10.1016/j.tree.2014.02.009
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1016/j.ecolmodel.2019.108719
https://doi.org/10.1111/ddi.12892
https://doi.org/10.1196/annals.1439.002
https://doi.org/10.1016/j.ecolmodel.2019.01.020
https://doi.org/10.1111/j.1469-185X.1986.tb00659.x
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1111/2041-210X.12945
https://doi.org/10.5194/gmd-7-1297-2014
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1371/journal.pone.0053315
https://doi.org/10.1371/journal.pone.0053315
https://doi.org/10.1111/ecog.05877
https://doi.org/10.1111/j.0906-7590.2005.03957.x
https://doi.org/10.1111/ele.13577
https://doi.org/10.1007/s10531-008-9333-4
https://doi.org/10.1007/s10531-008-9333-4
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1038/s41559-018-0563-x
https://doi.org/10.1890/11-1252.1
https://doi.org/10.1002/ece3.6832
https://doi.org/10.1101/2022.09.15.507996
https://doi.org/10.1111/cobi.13669
https://doi.org/10.1111/geb.13482
https://doi.org/10.1021/ci5001168
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
https://doi.org/10.1111/j.1365-2699.2006.01594.x
https://doi.org/10.1046/j.1466-822X.2003.00042.x
https://doi.org/10.1007/978-3-319-60816-7_19
https://doi.org/10.1111/nyas.13873
https://doi.org/10.1111/geb.12530
https://doi.org/10.1890/07-2153.1
https://doi.org/10.1093/database/baaa084
https://doi.org/10.1111/1365-2664.13025
https://doi.org/10.1111/conl.12385
https://doi.org/10.1016/j.ecolmodel.2022.110242
https://doi.org/10.1016/j.ecolmodel.2022.110242
https://doi.org/10.1016/j.tree.2012.07.013
https://doi.org/10.1093/biosci/biz045
https://doi.org/10.1079/PAVSNNR201914020
https://doi.org/10.1111/ddi.12985
https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.5194/esd-12-253-2021
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.3389/fevo.2024.1148895
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Davis et al. 10.3389/fevo.2024.1148895
Urban, M. C. (2015). Accelerating extinction risk from climate change. Science 348,
571–573. doi: 10.1126/science.aaa4984
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