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Introduction: The primary focus of this paper is to assess urban ecological

environments by employing object detection on spatial-temporal data

images within a city, in conjunction with other relevant information

through data mining.

Methods: Firstly, an improved YOLOv7 algorithm is applied to conduct object

detection, particularly counting vehicles and pedestrians within the urban

spatial-temporal data. Subsequently, the k-means superpixel segmentation

algorithm is utilized to calculate vegetation coverage within the urban

spatial-temporal data, allowing for the quantification of vegetation area.

This approach involves the segmentation of vegetation areas based on

color characteristics, providing the vegetation area’s measurements. Lastly,

an ecological assessment of the current urban environment is conducted

based on the gathered data on human and vehicle density, along with

vegetation coverage.

Results: The enhanced YOLOv7 algorithm employed in this study yields a

one-percent improvement in mean AP (average precision) compared to the

original YOLOv7 algorithm. Furthermore, the AP values for key categories of

interest, namely, individuals and vehicles, have also improved in this

ecological assessment.

Discussion: Specifically, the AP values for the ‘person’ and ‘pedestrian’

categories have increased by 13.9% and 9.3%, respectively, while ‘car’ and

‘van’ categories have seen AP improvements of 6.7% and 4.9%. The enhanced

YOLOv7 algorithm contributes to more accurate data collection regarding

individuals and vehicles in subsequent research. In the conclusion of this

paper, we further validate the reliability of the urban environmental

assessment results by employing the Recall-Precision curve.
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1 Introduction

In the last two decades, ecological and environmental issues

have steadily intensified, giving rise to various ecological disasters,

including extreme weather events (Schipper, 2020; Sippel et al.,

2020) and various natural calamities (Karn and Sharma, 2021).

According to statistical data, the period from 2000 to 2019

witnessed a significant deterioration in soil and water quality due

to climate change, resulting in a probability increase of over 75% for

extreme weather events such as droughts and floods compared to

the period from 1980 to 1999 (Kumar et al., 2022). Simultaneously,

the data indicates that from 2000 to 2020, globally, the direct deaths

attributed to extreme cold and severe winter weather were

approximately 14,900 people, with around 96.1 million people

directly affected, leading to a total economic loss of 31.3 billion

USD. The direct deaths caused by extreme heatwaves were

approximately 157,000 people, with around 320,000 people

directly affected, resulting in a total economic loss of 13.4 billion

USD. Additionally, natural disasters such as storms and droughts

have had a significant adverse impact on human life. Between 2000

and 2020, storms led to 201,000 direct deaths globally, with

approximately 773 million people directly affected. Drought-

related natural disasters caused 21,300 direct deaths, affecting

approximately 1.44 billion people. The total economic losses

incurred separately from storm and drought disasters were 1.3

trillion USD and 119 billion USD (Clarke et al., 2022). These

disasters have had severe adverse impacts on both human society

and urban ecological systems (Fischer et al., 2021).Therefore, it is

imperative that we continually monitor the changes in urban

ecological environments, harnessing the information embedded in

urban spatial-temporal data (Guanqiu, 2021), and utilizing

environmental assessments (Oláh et al., 2020; Sarkodie and

Owusu, 2021) as a crucial tool to promptly identify

environmental problems (Li et al., 2020), thus providing a solid

foundation for crafting effective mitigation strategies.

Early ecological assessment methods traditionally relied on

manual data collection and subjective evaluations, involving the

establishment of environmental monitoring stations for periodic

checks on air quality (Han and Ruan, 2020; Gu et al., 2021), soil

quality (Kiani et al., 2020), and vegetation coverage (Feng et al.,

2021; Shi et al., 2022). Based on data obtained from air monitoring

stations, some scholars have employed modeling approaches to

predict and assess the concentration of nitrogen dioxide in the air

within urban areas. The average error in their predictions is

reported to be −0.03 mg/m³ (van Zoest et al., 2020). Additionally,

other researchers have utilized data from monitoring stations to

quantify the concentration of pollutants in the air. They have

identified ozone and nitrogen dioxide, along with various

particulate matter in urban areas, as secondary pollutants

contributing to serious health issues (Isaifan, 2020; Shi and

Brasseur, 2020). Furthermore, they have conducted regular soil

sampling and analyzed the impact of crop residues on the soil.

Around 3.5–4 × 109 Mg of plant, residues are produced each year

globally, among which 75% come from cereals (Mirzaei et al., 2021).

A survey of a wide range of vegetation in different regions revealed

that forests, grasslands and scrublands were most efficient in soil
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erosion control on 20°–30°, 0°–25° and 10°–25° slopes respectively

(Wu et al., 2020).With the development of image processing

technology, researchers have employed manual techniques to

interpret satellite and aerial imagery for assessing alterations in

land cover and land use (Hussein et al., 2020; Talukdar et al., 2020;

Rousset et al., 2021; Srivastava and Chinnasamy, 2021; Aljenaid

et al., 2022; Arshad et al., 2022; Baltodano et al., 2022; Sumangala

and Kini, 2022; Nath et al., 2023), some scholars have conducted

accuracy analysis of geographical spatial remote sensing images

using the Kappa coefficient, achieving an overall accuracy of 80% or

higher for all image classifications. Furthermore, other researchers

have adjusted decisions on land use and land cover change (LULC)

categories obtained from remote sensing images using diverse

auxiliary data. They have employed a maximum likelihood

classifier to generate seven LULC maps, and the overall accuracy

of these seven raster classification maps has exceeded 85%. In the

early stages of ecological environment assessment, the majority of

methods heavily relied on manual sampling to acquire

environmental information within the current region.

Additionally, mathematical models and simulation tools are

frequently employed for predicting changes and responses within

ecosystems, often necessitating considerable manual input and

parameter configuration (Aguzzi et al., 2020; Lucas and

Deleersnijder, 2020; Ejigu, 2021). As researchers gradually

adopted remote sensing imagery for ecological environment

assessment, this method involved mining data from the images to

evaluate the current ecological environment based on the obtained

information. Nevertheless, this process necessitated a significant

investment of both specialized knowledge and time.

In order to reduce the problem of manually setting a large

number of parameters and relying on a large amount of expertise to

assess the ecological environment, and to improve the immediacy of

monitoring. We plan to obtain real-time image information of the

current urban area through drones, and use deep learning-based

object detection algorithms to detect the urban area in the current

image. Based on the detection results of different categories in the

image, we will make an intelligent and comprehensive evaluation of

the urban ecological environment. With the advancement of

machine learning, computer vision, and remote sensing

technologies, intelligent and automated methods have begun to

transform the way urban ecological assessments are conducted,

rendering them more efficient and precise (Mirmozaffari et al.,

2020; Shao et al., 2020; Frühe et al., 2021; Onyango et al., 2021;

Yousefi et al., 2021; Meyer and Pebesma, 2022; Zeng et al., 2022).

Some researchers are leveraging machine learning and data mining

techniques to extract valuable information, patterns, and trends

from urban spatial-temporal data, thereby achieving intelligent

environmental assessments. As hardware performance continues

to improve, accompanied by the accumulation of substantial urban

spatial-temporal data, deep learning, with its outstanding data

modeling capabilities, outperforms traditional machine learning

methods in environmental assessment tasks (Choi et al., 2020;

Sarker, 2021). However, challenges persist when evaluating

ecological systems through intelligent means.

The efficient extraction of spatial information poses a significant

challenge in intelligent ecological environment assessment. To
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tackle this challenge, it is imperative to overcome the intricacies of

ecosystem distribution, enabling the efficient extraction and

analysis of spatial information (Rasti et al., 2020).Urban

ecological environment assessment encompasses various aspects,

including atmospheric conditions, soil quality, and vegetation

coverage (da Silva et al., 2020). In contemporary urban settings,

the substantial increase in the number of motor vehicles has led to a

significant rise in exhaust emissions, resulting in severe

environmental issues such as elevated temperatures. To safeguard

the ecological environment, a common approach involves

expanding vegetation coverage to enhance carbon dioxide

absorption for air purification, thereby improving air quality and

mitigating the adverse effects of exhaust emissions, effectively

alleviating the greenhouse effect (Lee et al., 2020; WMikhaylov

et al., 2020). Hence, the efficient detection of vehicular targets and

vegetation coverage from urban spatial-temporal data becomes a

crucial aspect of urban ecological environment assessment. When

deep learning is applied to the field of target detection, end-to-end

training streamlines the process, eliminating the tedious manual

feature design. Moreover, training on large-scale datasets ensures

that the model possesses robust generalization capabilities.

Specifically, algorithms like the YOLO (You Only Look Once)

series for target detection have become widely adopted due to

their optimization of network structure and inference processes,

making them adaptable to various scenarios and target categories in

practical environments (Adibhatla et al., 2020; Parico and Ahamed,

2020; Deng et al., 2021; Kusuma et al., 2021; Tan et al., 2021; Gai

et al., 2023; Majumder and Wilmot, 2023). Therefore, we can tailor

YOLO network models to the characteristics of the dataset, allowing

for precise detection of vehicular targets in urban spatial data. This

targeted optimization strategy aims to enhance the performance of

target detection models in specific scenarios, supporting efficient

computer vision solutions for accurate detection and extraction of

vehicular targets within urban spatial information. Building upon

this, it becomes feasible to comprehensively analyze vehicular

density and regional vegetation coverage, establishing a target

detection-based model for urban environmental assessment.

The rest of this paper is organized as follows. The second

chapter provides a detailed exposition of the YOLOv7 object

detection algorithm and the K-means superpixel segmentation

algorithm. In the third chapter, we delve into the improvements

made to the YOLOv7 object detection algorithm, presenting these

changes through the demonstration of enhanced results. The fourth

chapter is dedicated to elucidating the details of various indicators

in urban environmental scoring, along with the methodology

employed for calculating urban environmental scores.

Simultaneously, experimental comparisons were conducted on the

modified YOLOv7 algorithm introduced in this paper, and the

results of these experiments are thoroughly discussed. In Chapter 5,

we review the methods used in previous studies, focusing on the

application of the YOLOv7 algorithm to ecological environments.

We also analyze some of the limitations of the assessment approach

in this paper and suggest directions for future research. Finally, in

Chapter 6 the whole study is summarized, conclusions are

presented and a comprehensive summary of our work is given.
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2 Problem formulation

As stated in Section 1, YOLO network models will be improved

for the characteristics of the dataset to allow precise detection of

vehicular targets in urban spatial data. In the field of deep learning,

YOLOv7 stands as a significant advancement in the YOLO series of

object detection algorithms, demonstrating higher accuracy and

faster processing speed (Fu et al., 2023). By introducing model

reparameterization and the novel ELANmodule (Liu et al., 2023), it

notably enhances the detection performance, especially for fine-

grained objects, resulting in a significant improvement in object

detection tasks.

YOLOv7 employs a comprehensive set of CBS (Convolutional,

Batch Normalization, Silu activation) modules during the feature

extraction stage in the network backbone, effectively extracting

features from input images. The CBS module, formed by

concatenating convolutional layers, batch normalization

operations, and Silu activation functions (Yang, 2021), robustly

shapes the feature maps. When dealing with aerial data, where

vehicles and people showcase diverse models and perspectives in

terms of size and distance, YOLOv7 adapts to this diversity. The

varied sizes and dimensions of vehicles and people, particularly

ranging from small to large cars, are effectively learned by the

algorithm, demonstrating its ability for generalization. The

combined use of convolution, batch normalization, and Silu

activation functions allows the algorithm to better understand

vehicles and people of different sizes and shapes. This strategy,

incorporating convolutional operations, proves particularly

effective when dealing with complex aerial datasets.

Vehicle targets typically exhibit distinctive textural

characteristics, including reflections on windows and the

glossiness of their body surfaces. Additionally, the overall shape

and contours of vehicles are key features, encompassing the overall

appearance of the body and the relative positions of its various

components. Notably, vehicle wheels often present circular or

elliptical contours, a feature that plays a crucial role in

distinguishing vehicles from other objects. Therefore, both the

contour and texture features of vehicles are vital information for

algorithms to accurately identify targets as vehicles. The YOLOv7

algorithm introduces max-pooling layers after certain convolutional

layers to retain contour and texture features, capturing essential

information in the images. The use of max-pooling layers reduces

the spatial dimensions of feature maps while alleviating

computational load and preserving image significance. This

process also imparts some degree of position invariance to the

algorithm, enabling it to correctly recognize features even if the

objects have slightly shifted positions. This contributes to the

accurate identification of vehicle targets by the algorithm.

In the feature extraction phase of YOLOv7, a series of

convolution, activation, and pooling operations are iteratively

applied within the network. These operations progressively reduce

the spatial dimensions of the feature maps while simultaneously

increasing their depth. This iterative process systematically extracts

feature maps with diverse levels of hierarchy and semantic

information from the input image. The iterative nature of this
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process enables the network to gradually abstract and comprehend

information within the input image, providing a richer feature

representation for subsequent predictions of target bounding boxes

and class probabilities. Based on the key feature information

extracted from the images, YOLOv7 predicts the coordinates of

bounding boxes for each grid cell and anchor box. YOLOv7 also

predicts a confidence score, indicating whether an object is present

within the bounding box. The confidence score (Yunus, 2023) is

usually treated with an sigmoid function to ensure that it is between

0 and 1. After the model generates prediction results, it compares

these predictions with the actual labels, calculates relative losses,

and adjusts the model’s weights through gradient descent to

minimize these losses, thus improving the model’s ability to

predict targets. Subsequently, a non-maximum suppression

(NMS) technique is applied for filtering (Zaghari et al., 2021). All

detection boxes are sorted based on their confidence scores in

descending order, resulting in a sorted list of detection boxes. The

detection box with the highest confidence score is selected from the

list as the network prediction result.

Classification is done based on the number of vehicles and

people detected in the input image by applying a target detection

algorithm. Subsequently, we define the regions of green vegetation

in the images with precise pixel boundaries and employ the K-

means superpixel segmentation algorithm (Zhang J. et al., 2023) for

preprocessing. Firstly, we transform the images from the RGB color

space to the LAB color space, which provides a more

comprehensive representation of colors. The input M*N image is

segmented into K superpixel blocks, with each superpixel block

having a size of MN
K . The dimensions of each superpixel block are

defined as S. The calculation formula for S is Equation 1:

S =

ffiffiffiffiffiffiffiffiffiffiffi
M*N
K

r
(1)

By traversing the eight neighboring pixels around the center

point ( S
2 ,

S
2 ) of each superpixel block and calculating the gradient

using a difference-based method, we determine the pixel with the

minimum gradient value as the new center point for the pixel block.

The pixel gradient is calculated as in Equation 2:

Grandient(x, y) = dx(i, j) + dy(i, j) (2)

where dx(i, j) and dy(i, j) are calculated by Equations 3, 4:

dx(i, j) = I(i + 1, j) − I(i, j) (3)

dy(i, j) = I(i, j + 1) − I(i, j) (4)

where I(i, j), I(i + 1, j) and I(i, j + 1) denote the pixel values at, (i, j),

(i + 1, j) and (i, j + 1) respectively.

Subsequently, we perform clustering on the newly obtained K

superpixel block centers using the K-means algorithm. Initially, we

use the K superpixel block centers as the initial cluster centers.

Then, we assign data points by assigning each data point to the

nearest cluster center, thus forming K clusters, which is calculated

as shown in Equation 5.
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Ivk =
1  if   k = argminj ‖ xi � cj ‖2

0  else

(
(5)

where data points are represented as xi, cj stands for cluster centers,

and Ivk is an indicator variable for each data point belonging to the

K-th cluster. It takes the value 1 if the data point belongs to cluster k,

and 0 otherwise.

Finally, the new center of each cluster is computed, i.e., the

mean Mk of all data points in that cluster, is calculated as shown in

Equation 6.

Mk =
1
Nk
oN

i=1Ivkxi (6)

where Nk is the number of data points in the K-th cluster. Repeat

the above steps until the cluster centers no longer undergo

significant changes. Based on the continuously updated Ivk and

Mk through iterations, achieve the minimum intra-cluster sum of

squares, thereby achieving the effectiveness of the K-means

clustering algorithm.

Accordingly, the calculation of the area share of the

corresponding pixel range of the green vegetation is completed.

From the obtained area share data, the percentage of green

vegetation coverage can be determined and used as part of the

ecological environment evaluation index.
3 Theoretical analyses

3.1 Understanding the sensitive objects

As technology continues to advance, unmanned aerial vehicle

(UAV) technology has become increasingly mature, and the use of

UAVs for city data acquisition has become a popular method for

environmental assessment. However, UAV aerial images often

exhibit characteristics such as small and densely distributed

targets in large quantities. To address this, we have modified the

original YOLOv7 algorithm to make it suitable for the task of

environmental assessment using UAV aerial images. In the original

YOLOv7 backbone, after inputting the image, there are four CBS

modules used for channel modification, feature extraction, and

down sampling. In order to retain image features and prioritize

coarse-grained filtering, we introduced the proposed Biff module

after the four CBS modules to replace the ELANB module in the

original network. The Biff module applies Biformer to the gradient

flow main branch. Biformer is a Transformer architecture designed

to address visual tasks in dense scenes. In urban environments,

UAVs detect a large number and variety of targets, which can lead

to interference when sampling shared query-key pairs within the

image, making it challenging for the model to correctly distinguish

between targets in different semantic regions. This issue is also

present in Vision Transformers (Bazi et al., 2021) (VIT) and Swin

Transformers (Tummala et al., 2022) (Hierarchical Vision

Transformer using Shifted Windows, SwinT). In dense scenes,

due to the multitude of targets, Transformer models need to
frontiersin.org
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focus on different regions of the image to capture relevant features.

Typically, Transformer models use self-attention mechanisms to

achieve this goal. However, due to the presence of shared query-key

pairs, the model can introduce interference between different

regions, thus reducing performance. The design goal of Biformer

is to address this issue by employing a Bi-level Routing Attention

(BRA) mechanism, ensuring that the model can correctly focus on

different regions or features in dense scenes.

The core module of Biformer, known as Bi-Level Routing

Attention, initially employs a Patchify operation to partition the

input features from their original format of (H, W, C) into smaller

segments of dimensions (S2, HW
S2 , C). The Patchify operation

involves the subdivision of a larger image into smaller blocks,

often referred to as patches, the Patchify operation is shown in

Equation 7. This enables the analysis, processing, or feeding into a

neural network for predictive purposes of each individual patch.

This approach is instrumental for the comprehensive

examination, manipulation, or neural network training with

large-scale images. Neural networks are often better suited to

handle inputs of fixed dimensions, making this partitioning

process essential. In this context, In denotes the input feature

map, and Ps represents the desired dimensions for splitting the

input into smaller blocks.

x = patchify(In, Ps = H==S) (7)

Subsequently, the linear projection of query, key, value and the

region query and key are generated by Equations 8, 9.

query, key, value = linearq, k, v(x) : chunk(3, dim = −1) (8)

queryr , keyr = query :m( dim = 1), key :m( dim = 1) (9)

The linearq,k,v(x) operation involves linearly projecting and

mapping the input features. The purpose of the chunk operation

is to partition a tensor along a specified dimension and return these

partitions as a tuple. In this context, when dim=−1 is used, it

signifies that the tensor is divided along its last dimension, with each

partition containing three elements. The variable m is utilized to

compute the mean of query and key vectors along the second

dimension (dim=1). The resultant regional query and key vectors

are then employed to generate the adjacency matrix Ar for the

region graph, and the adjacency matrix Ar is calculated as shown in

Equation 10.

Ar = queryr (keyr )T (10)

Subsequently, the routing index matrix RIM is computed,

where topk is an indexing operation on the adjacency matrix to

obtain the indexes where its first k maxima are located, pruning the

adjacency matrix by reserving only top-k connections for each

region, RIM is computed as shown in Equation 11.

RIM = topk(Ar
) (11)

The new keyg and valueg vectors are obtained by aggregating

key with the routing index matrix and value with the routing index

matrix by the gather operation. The gather operation obtains the

specified specified elements from key and value according to the
Frontiers in Ecology and Evolution 05
indexes in the routing index matrix RIM and composes a new

tensor, which is computed as shown in Equation 12 and Equation

13, respectively.

keyg = gather(key,RIM) (12)

valueg = gather(value,RIM) (13)

The BRA attention mechanism is calculated as shown in

Equation 14:

Output = unpatchify(bmm(A, valueg )) + LCE(V) (14)

where bmm is the batch matrix multiplication and A is calculated as

shown in Equation 15:

A = Softmax (bmm(query, keyg : transpose( − 2,−1))) (15)

The LCE(V) operation for local context enhancement employs

Depthwise Convolution (Zhao et al., 2021) (DWConv). Depthwise

convolution represents a convolutional operation within

convolutional neural networks, specifically designed to process

convolutions among different channels, also referred to as feature

maps, within input data. The computation of depthwise

convolution unfolds as follows:

Firstly, it computes Depthwise Convolution, which is calculated

by Equation 16.

Mi = Di*X (16)

where Di is a convolution kernel of size K×K,Mi is the intermediate

feature map, X is the input feature map, and * denotes the

convolution operation.

Then, a channel-by-channel convolution operation is applied to

the intermediate feature map Mi using a convolution kernel of size

1×1, Pi to combine the results from different channels to generate

the final output feature map Y . This process can be represented by

Equation 17.

Y =oCin
i=1(Pi*Mi) (17)

where Pi denotes the convolution kernel used for the ith channel

and * denotes the channel convolution operation.

The specific design of the Biformer module comprises the

following steps: Initially, it employs a 3x3 Depthwise Separable

Convolution (DWConv) to encode relative position information.

Subsequently, it utilizes the BRA (Bi-Level Routing Attention)

attention mechanism along with an MLP (Multi-Layer

Perceptron) module with two layers, having an expansion rate of

e, for modeling cross-position relationships and embedding on a

per-position basis. The BRA attention mechanism prioritizes the

filtering of the least relevant key-value pairs at a coarser-grained

region level before computing token-level attention for the

remaining regions. This operation is performed using sparse

sampling instead of down sampling, thereby preserving fine-

grained details, which is particularly crucial for small target

objects in dense scenarios.

Building upon this foundation, we introduce the Biff module.

Initially, it calculates the product of c2 and e and converts the

resulting product into an integer through the int operation. This
frontiersin.org
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yields the hidden feature channel count, where c2 represents the

output channel count. The symbol c denotes the number of

channels and is calculated as shown in Equation 18. The symbol e

is the base of the natural logarithm in mathematics.

c = int (c2*e) (18)

Subsequently, the input feature x is processed by the CBS

module for feature extraction to improve the perceptual field and

feature representation of the network as shown in Equation 19.

y = CBS(x) (19)

Then, as shown in Equation 20 we split y into two parts y1, y2
along dimension 1 by Split operation. The symbol c is the split point

of the split operation.

(y1, y2) = Split(y, c, 1) (20)

And y2 as input, as shown in Equation 21, we process y2 through

BiFormer module operations:

y2 = Biformer(y2) (21)

Subsequently, as shown in Equation 22, we join y1 with the

processed y2 and pass the result through a second CBS.

z = CBS(Concat(y1, y2), dim = 1) (22)

where Concat denotes the concatenate operation is used to join y1, y2
together to generate a new tensor and z is the final output.

The rich gradient flow is preserved by connecting two different

feature branches and an additional Split operation. Finally, the

multi-layer feature information is spliced and a Biformer module

with state sparse attention is added to the backbone of the module,

aiming to enhance the detailed information and fine-grained

features of the image.

We replaced the first ELANB module in the YOLOv7 model

with a Biff module of our design and compared it in terms of

parametric network performance and parameters. As shown in

Table 1, the network model parameters are listed in the table,

including the coefficients controlling the depth of the channel, the

coefficients controlling the width of the network, the number of

layers of the network model, the number of parameters of the

network, and the floating-point computational power of the

network, and other important information.

As can be seen from the data in the table, we keep the original

network width coefficient in the improved network, reduce the
Frontiers in Ecology and Evolution 06
depth coefficient of the network to realize the scaling of the network

channel, and substantially enhance the computational ability of the

model under the condition of small increase in the number of

network layers and parameters. Therefore, it can be demonstrated

that the improved Biff module can substantially enhance the

computational power of the network at the cost of a small

increase in parameters. Subsequently, the effectiveness of the Biff

module in target detection will be verified for enhancement.

To assess the effectiveness of the Biff module, this study

conducted experiments using the Visdrone2019 aerial dataset.

The Visdrone2019 dataset was meticulously curated by the

AISKYEYE team from the Machine Learning and Data Mining

Laboratory at Tianjin University in China. This dataset

encompasses information from multiple sampling points in urban

and rural areas within 14 different cities across China, spanning

thousands of kilometers. The dataset’s information was captured by

various models of unmanned aerial vehicle (UAV) cameras and

includes ten predefined categories: pedestrian, person, car, van, bus,

truck, motor, bicycle, awning-tricycle, and tricycle. These data were

collected using different UAV models under diverse scenarios,

weather conditions, and lighting conditions. In total, the dataset

comprises 10,209 static images, with 6,471 images used for model

training, 548 for validation, and 3,190 for testing. The images

typically exhibit high resolutions ranging from 1080p to 4k,

boasting a high level of detail. Notably, the detection targets

within the images tend to be small in scale, set against complex

backgrounds, and often occluded by other objects, leading to

relatively low mAP scores. It is precisely due to these challenges

that this dataset holds immense research value, enabling researchers

to explore and enhance object detection algorithms to address a

variety of complex real-world application scenarios.

As shown in Figure 1, the heat map is generated after passing

the input image through four CBS modules and one ELANB

module in the original YOLOv7 network. In contrast, Figure 2

presents the heat map obtained after the input image passed

through four CBS modules and the Biff module designed in this

study. A clear comparison reveals that after processing with the Biff

module, irrelevant information, such as anti-overturning barriers

on the motor vehicle lanes and dividing lines on sidewalks, has been

filtered out. Additionally, it is evident that the attention on distant

vehicles has significantly improved through comparison.
3.2 Improving the YOLOv7 heat map

In urban UAV (Unmanned Aerial Vehicle) aerial images, a

prevalent scenario involves a multitude of vehicle targets, often

characterized by their small scale and high abundance. Accurate

detection of these small targets necessitates a more precise

assessment of the overlap between predicted bounding boxes and

the ground truth boxes. To address this challenge, we have

undertaken improvements to the original YOLOv7 algorithm by

enhancing the IOU (Intersection over Union) loss function. This

enhancement aims to reduce false positives and false negatives by

ensuring correct matching. The original YOLOv7 algorithm utilizes

the CIOU (Ni et al., 2021) (Complete Intersection over Union) loss
TABLE 1 Comparison of network model parameters.

Pre-improvement Post-improvement

Depth_multiple:1.0 Depth_multiple:0.33

Width_multiple:1.0 Width_multiple:1.0

Layers:415 Layers:421

Parameters: 37.22M Parameters: 37.38M

Gflops: 105.2 Gflops: 113.4
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function for IOU calculation. The CIOU is calculated as shown in

Equation 23:

LCIoU = 1� IoU +
r2((Bboxx ,Bboxy), (PBboxx , PBoxy))

c2
+ aV (23)

where a is a balancing parameter that is not involved in the gradient

calculation and is calculated as shown in Equation 24. r is the computed

Euclidean distance. c is the diagonal distance of the smallest enclosure

that covers both the target and the predicted bounding box. (Bboxx ,B

boxy) are the center coordinates of the bounding box, (PBboxx , PBoxy)

are the center coordinates of the prediction box.

a =
V

(1 − IoU) + V
(24)

V is used to calculate the consistency of the target bounding box

and predicted bounding box aspect ratios, which is calculated as in

Equation 25:
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V =
4
p2 arctan

Bboxw
Bboxh

− arctan
PBboxw
PBboxh

� �2

(25)

Where Bboxw and Bboxh are the width and height of the

bounding box respectively. PBboxw and PBboxh are the width and

height of the prediction box respectively.

While the CIoU (Complete Intersection over Union) loss

function takes into account the overlap area, center point

distance, and aspect ratio in bounding box regression, it uses the

relative proportion of width and height to represent aspect ratio

differences, rather than employing the absolute values of width

and height. Consequently, this approach can hinder the model’s

effective optimization of similarity. To address this limitation,

we have replaced the original CIoU loss function in YOLOv7

with the EIoU (Wu et al., 2023) (Enhanced Intersection over

Union) loss function. The calculation formula for EIOU is

Equation 26.
FIGURE 2

Heat map after 4 CBS modules and replacing ELANB module with Biff module.
FIGURE 1

Heat map of YOLOv7 after four CBS modules and one ELANB module.
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LEIoU = 1 − IoU +
r2((Bboxx ,Bboxy),(PBboxx ,PBoxy))

c2

            + r2(Bboxw ,PBboxw)
cw2

+ r2(Bboxh ,PBboxh)
ch2

(26)

In this context, cw and ch refer to the width and height of the

smallest bounding box that can simultaneously encompass both the

target and predicted bounding boxes. The EIoU (Enhanced

Intersection over Union) loss function extends the CIOU

(Complete Intersection over Union) loss function by separately

calculating the influence of aspect ratios on the length and width of

both the target and predicted bounding boxes. This direct

minimization of the disparity in width and height between the

target and predicted bounding boxes aids in achieving higher

localization precision in UAV aerial image detection tasks.

Furthermore, it enhances convergence speed, facilitating efficient

and accurate detection of small-sized vehicle targets in

aerial images.

A comparison of the visualized heatmap of the original

YOLOv7 version with the enhanced YOLOv7 algorithm proposed

in this study is illustrated in Figures 3, 4. Our algorithm
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incorporates specific optimizations in the network’s backbone to

better accommodate densely distributed detection targets and

increase the focus on relevant objects. This contribution leads to

improved predictions of detection boxes and consequently

enhances the overall detection accuracy. By introducing the EIoU

(Enhanced Intersection over Union) loss function to fine-tune the

model training weights, we have bolstered the detection

performance, particularly for small-sized targets. These heat map

visualizations clearly illustrate that the enhanced algorithm, in the

context of handling densely distributed small target detection tasks,

has achieved significant improvements over the original

YOLOv7 network.

Shown in Figure 5 is the original image from the VisDrone2019

dataset. In Figure 6 shows the performance of our enhanced

YOLOv7 network in the detection task. It is clear from these

figures that the algorithm proposed in this paper has the ability to

accurately detect distant vehicle targets.

The improved YOLOv7 network structure of this paper is

shown in Figure 7, and both the Biff module and the original

Biformer module are also shown in the figure. In our design, the
FIGURE 4

Improved YOLOv7 heat map.
FIGURE 3

Original YOLOv7 heat map.
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custom-developed Biff module is indicated in red, highlighting its

position within the network. The Biff module’s structural diagram is

represented in blue, while the Biformer module within the Biff

module is distinguished by its purple color.
4 Evaluation of the city
environmental quality

4.1 Detected vehicles and persons

We selected 600 images from the Visdrone2019 dataset for our

subsequent environmental assessment research. These 600 images

are categorized into four categories:
Fron
Category 1. High vegetation coverage, low human and

vehicle density;

Category 2. High vegetation coverage, high human and

vehicle density;
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Category 3. Low vegetation coverage, low human and

vehicle density;

Category 4. Low vegetation coverage, high human and

vehicle density.
Each category consists of 150 images and we have selected some

of the detection results to be presented in Figure 8.

The detection results shown within the blue box depict the target

detection performance under conditions of high vegetation coverage

and low human and vehicle density. The detection results in the red

box exemplify the target detection performance under conditions of

high vegetation coverage and high human and vehicle density. The

green box illustrates the detection results in conditions of low

vegetation coverage and low human and vehicle density, while the

yellow box demonstrates the detection results in conditions of low

vegetation coverage and high human and vehicle density. In the

presented results, it is evident that vehicles of different scales, such as

cars, buses, and motorcycles, are accurately detected.
FIGURE 6

Improved YOLOv7 detection effect diagram.
FIGURE 5

Original image.
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4.2 Calculated vegetation coverage

In Figure 9 the preprocessing results of color superpixel

segmentation achieved by K-means clustering algorithm are
Frontiers in Ecology and Evolution 10
shown. In Scenes 1–2, precise segmentation of vegetation within

the images has been successfully accomplished, distinguishing

between buildings and barren land within green areas and

isolating them from the images. In Scene 3, accurate identification
FIGURE 7

Improved YOLOv7 network structure diagram.
FIGURE 8

Effectiveness demonstration of the four categories.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1310267
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1310267
of vegetation occluded by buildings is also achieved. In Scene 6, not

only is extensive vegetation accurately identified, but also the fine

linear green spaces between urban roads are precisely segmented. In

Scenes 5–8, we observe clear segmentation results of vast and

continuous vegetation areas. The green vegetation regions in the

images have been accurately delineated, providing a robust

foundation for subsequent vegetation coverage statistics.

After successfully segmenting the targeted vegetation objects

within the images, their areas are computed, followed by the

calculation of their proportion within the images to assess

vegetation coverage. VC1 to VC8 in the figure represent different

levels of vegetation coverage. When evaluating vegetation coverage,

the following criteria are employed:

(1) If the percentage of vegetation objects in the image area

exceeds 30%, it is categorized as high coverage, indicating a high

level of urban greening.

(2) If the percentage of vegetation objects in the image area falls

between 10% and 20%, it is categorized as moderate coverage,

indicating a moderate level of urban greening.

If the percentage of vegetation objects in the image area is below

10%, it is categorized as low coverage, indicating a relatively low

level of urban greening.

(3) This assessment method helps us gain a comprehensive

understanding of urban greening and provides quantitative

information regarding vegetation coverage, which is of significant

importance for ecological and evolutionary research.
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4.3 Number of sensitive objects

The Figure 10 demonstrates the process of utilizing the

‘detect.py’ file within the YOLOv7 model to load pre-trained

model weights and perform inference on test images. The results

of this inference are visually presented on the images, including

detected bounding boxes, categories, and confidence scores.

Additionally, in the development environment, real-time printing

of the detection count for each category is provided. Through the

calculation of the number of targets belonging to the ‘person’ and

‘motor vehicle’ categories, an assessment of vehicle density is

conducted. This methodology aids in a deeper understanding of

the distribution of vehicles within the urban environment. From

Figure 10, it is apparent that we have conducted population counts

for both vehicles and pedestrians in Regions 1–6 and Region 8. In

Region 7, motorcycles have also been included in the count. In

Region 9, we have specifically tallied motor vehicles and a modest

number of pedestrians, with non-motorized vehicle categories such

as bicycles excluded from the calculation. In Regions 10–16, it is

evident that the population counts for different vehicle categories

maintain a high level of precision. This precision plays a pivotal role

in establishing a robust foundation for our subsequent ecological

and environmental assessments.

In Figure 10, we present the results of the improved YOLOv7

algorithm on test images, where it accurately detects corresponding

targets based on the classification from the Visdrone2019 dataset.
FIGURE 9

Segmentation effect in different scenes.
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Subsequently, we focus on the categories of motor vehicles and

humans, calculating their cumulative counts, which are

prominently displayed at the bottom of the image. VP1 to VP16

respectively represent the cumulative counts for motor vehicles and

humans in images 1 to 16.
4.4 Calculating the Air Quality Index

The air quality in urban areas is one of the key factors in

assessing the ecological environment of cities. In order to

comprehensively evaluate the urban ecological environment, data

on air quality is collected from various monitoring points to assess

the changes in urban air quality over a specific period. The

evaluation is carried out by calculating the Air Quality Index for

the urban air quality. The AQI is determined based on-air quality

standards and the impact of pollutants such as particulate matter

(PM10, PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone

(O3), and carbon monoxide (CO) on human health, ecology, and

the environment. The conventional concentrations of monitored

pollutants are simplified into a single conceptual index,

representing the degree of air pollution and the graded condition

of air quality. The calculation method for the Air Quality Index

varies by region, and different countries may adjust and modify the

calculation methods based on their national circumstances. In this

study, we adhere to the air quality index calculation standards of

China. The AQI is calculated by Equations 27, 28:
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AQ =
AQhigh �AQlow

PChigh �PClow
(C� PClow) + AQlow (27)

where AQ is the air quality sub-index and C is the pollutant

concentration limit value when the actual test is conducted. PChigh

and PClow are obtained from Table 2 based on the values of C. PChigh

is the pollutant concentration limit for pollutants greater than or

equal to C, and PClow is the pollutant concentration limit for

pollutants less than or equal to C. AQhigh is the air quality sub-

index limit for PChigh, and AQlow is the air quality sub-index limit

for PClow.

In Table 2, C is the current measured pollutant concentration.

The limits of PM2.5, NO2, PM10 are calculated as follows, employing

24 hours as an example. When the current measured PM2.5

concentration value C is 157, its corresponding pollutant

concentration limit and air quality sub-index limit correspond to

the yellow area in the table. If the current measured concentration

value C of NO2 is 150, the corresponding pollutant concentration

limits and air quality sub-index limits correspond to the gray area in

the table. When the current measured PM10 concentration C is 40,

the corresponding pollutant concentration limits and air quality

sub-index limits correspond to the blue area in the table. The limits

of other pollutants can also be calculated similarly in this way.

The calculated value of AQI is usually a quantitative

characterization of the pollution level of the main pollutants,

which is calculated by Equation 28:

AQI = max (AQ1,AQ2,AQ3 … AQn) (28)
FIGURE 10

Statistics on the number of people and vehicles in different scenarios.
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According to the calculated Air Quality Index, we are able to

comprehensively assess the current air quality. A lower numerical

value of the Air Quality Index indicates a better current air quality,

while a higher value signifies poorer air quality. This index is

computed based on a comprehensive evaluation of various

pollutant concentrations in the air, providing us with an effective

means to objectively measure and compare air quality conditions in

different regions and at different time points.

In the first two weeks of November 2023, we selected Shenyang

City in Liaoning Province, China, as the monitoring site to measure

the concentrations of six different pollutants in the air. In Figure 11,

the distribution of concentrations for six pollutants during the first

two weeks of November is presented in the form of box plots. These

box plots are constructed using data information such as upper and

lower bounds, median, upper and lower quartiles, and outliers.
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From the box plots, it is evident that concentrations of PM2.5, PM10,

SO2 and O3 exhibited outlier values during the first two weeks of

November, indicating data points that surpassed the normal range.

This implies that on certain dates, pollutant concentrations

exceeded the anticipated levels.

In Figure 11, the red solid line represents the median

concentration of pollutants during this period, while the blue

dashed line indicates the mean concentration of pollutants.

Comparing the calculated median and mean values facilitates a

more comprehensive analysis of the central tendencies and

distribution of the overall data. The use of box plots

vividly presents the dispersion of pollutant concentration data,

allowing for a clear understanding of the changing trends of

different pollutants during this period and identifying

potential anomalies.
TABLE 2 Thresholds for pollutant concentrations corresponding to air pollution indices (Dionova et al., 2020; Popov et al., 2020), the yellow, grey
and blue areas are the corresponding pollutant concentration limits and AQSIs when the 24-hour average concentration values of PM2.5, NO2 and
PM10 are 157, 150 and 40, respectively.

Air Quality
sub-index
(IAQI)

Pollutant items and their concentration thresholds

SO2

24 hours
average/
(mg/m3)

SO2

1 hour
average/
(mg/m3)

(1)

NO2

24 hours
average/
(mg/m3)

NO2

1 hour
average/
(mg/m3)

(1)

PM10

24 hours
average/
(mg/m3)

CO
24 hours
average/
(mg/m3)

CO
1 hour

average/
(mg/m3)

(1)

O3

1 hour
average/
(mg/m3)

O3

8 hours
average/
(mg/m3)

PM2.5

24 hours
average/
(mg/m3)

0 0 0 0 0 0 0 0 0 0 0

50 50 150 40 100 50 2 5 160 100 35

100 150 500 80 200 150 4 10 200 160 75

150 475 650 180 700 250 14 35 300 215 115

200 800 800 280 1200 350 24 60 400 265 150

300 1600 (2) 565 2340 420 36 90 800 800 250

400 2100 (2) 750 3090 500 48 120 1000 (3) 350

500 2620 (2) 940 3840 600 60 150 1200 (3) 500

Instruction

(1) The 1-hour average concentration limits for sulphur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) are for real-time reporting
only, and the 24-hour average concentration limits for the respective pollutants are to be used in daily reports.
(2) Sulfur dioxide (SO2) with a 1-hour average concentration limit higher than 800mg/m3 is no longer subject to its air quality sub-index calculation, and
the sulfur dioxide (SO2) air quality sub-index is reported as a sub-index calculated from the 24-hour average concentration.
(3) Ozone (O3) 8-hour average concentration values above 800mg/m3 are no longer subjected to their air quality sub-index calculations, and the ozone
(O3) air quality sub-index is reported as a sub-index calculated from the 1-hour average concentration.
f

FIGURE 11

Box-plot of air pollutant concentration index for November 2023 in Shenyang, China. Because the concentration of CO is much higher than that of
other pollutant units (left), we show a separate boxplot of CO concentration (right).
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The assessment method of Air Quality Index is of paramount

importance for maintaining the living environment of urban

residents. By adopting corresponding protective measures based

on different levels of air quality, the aim is to ensure the health and

well-being of citizens. Utilizing the Air Quality Index to evaluate

urban air quality provides an accurate depiction of the extent of

atmospheric pollution. Its simplicity and clarity in calculation make

it easily understandable for both urban residents and relevant

authorities. This enables timely implementation of appropriate

protective measures in response to diverse air quality conditions,

contributing to the provision of a healthy living environment for

city dwellers. Therefore, the calculation of the Air Quality Index

stands as an effective tool for assessing and monitoring the

ecological environment of urban areas.
4.5 Calculating the noise index

With the improvement of urban residents’ living standards and

the advancement of science and technology, the number of vehicles

in cities has significantly increased. Traffic noise has become one of

the primary factors detrimental to the urban ecological

environment. Traffic noise refers to the noise generated by

various modes of transportation during their movement,

primarily composed of engine noise, intake, and exhaust noise,

among others. Accurate calculation and assessment of traffic noise

are beneficial for evaluating the urban environment and

safeguarding the health of city residents.

Currently, smartphones have become indispensable in people’s

lives. Simultaneously, smartphones are equipped with rich sensors

and computing capabilities that can be utilized for environmental

noise monitoring (Nuryantini et al., 2021). Noise pollution in urban

areas was assessed by collecting noise information using

smartphone devices at selected sampling points in the

Vidrone2019 aerial dataset. The chosen noise sampling locations

are mainly distributed along major roads with heavy traffic flow in

urban areas and near residential areas with lower vehicular density.

To ensure the reliability of experimental data, noise information

measurements were conducted continuously for ten minutes from

different angles at each sampling point. The noise level (NL) is

expressed in decibels (dB).

According to environmental noise standards, urban noise

standards can be classified into five categories, with their standard

values shown in Table 3.
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When the noise level exceeds 65dB, the environmental noise is

defined as severe noise pollution. When the noise level is within the

range of 60–65dB, the environmental noise is classified as moderate

noise pollution. In the case of noise levels ranging from 55–60dB,

the environmental noise is designated as mild noise pollution. Class

0 and Class 1 standards are suitable for areas primarily dedicated to

residential living and educational institutions. Class 2 standards are

appropriate for mixed-use areas with a combination of residential,

commercial, and industrial activities. Class 3 and Class 4 standards

are suitable for major traffic arteries and industrial zones within

urban areas. The noise levels measured from various angles in both

main roads and residential areas in the city are presented in part

in Figure 12.

In urban life, traffic noise is still primarily attributed to vehicular

noise. Based on long-term measurements of noise levels, areas with

significant noise pollution are identified. Strategies to mitigate noise

impact in these identified areas include implementing real-time

road traffic control and planting noise-reducing green belts along

roadsides. These measures aim to enhance the quality of the urban

ecological environment.
4.6 Score of the regional environment

Calculate the current ecological score for the urban area based

on statistical data such as vegetation cover, human and vehicle

density, air quality and noise levels. Calculated as shown in

Equation 29:

Current environmental situation =
100*VC

a*VP + b*AQI + l*NL
(29)

where VC denotes the vegetation coverage and VP denotes the

cumulative sum of the counted personnel categories and vehicle

categories. The paraments a , b , l are the weight values

corresponding to the different impact indicators in the

environmental assessment, which are all non-negative and the

sum of the three weight values is one.

When the computed result exceeds a certain threshold, it

indicates that the self-optimization of the urban environment is

insufficient, necessitating the strengthening of environmental

protection measures. When the computed result falls within the

range between two thresholds, the urban vegetation environment

may contribute to a slight mitigation of the greenhouse effect,

providing a pleasant living environment. When the computed

result is below the minimum threshold, the urban vegetation

environment significantly reduces the greenhouse effect, resulting

in a relatively pleasant living environment. The scores calculated

according to the urban condition assessment formula are shown in

Figure 13, where the values of b and l are set to 0 and the value of a
is set to 1. Only the density of people and vehicles and the

vegetation cover are taken into account.

In Figure 13, in Regions 1–2, 5–8, 10–11, and 15, despite

abundant vegetation coverage, the presence of a significant

number of individuals and vehicles within the area results in a

lower environmental rating. In contrast, Regions 3–4, 13, and 15

exhibit extensive vegetation coverage with fewer individuals and
TABLE 3 Urban Class 5 Ambient Noise Standards.

Category Daytime Evening or night

Category 0 50dB 40dB

Category 1 55dB 45dB

Category 2 60dB 50dB

Category 3 65db 55dB

Category 4 70dB 55dB
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vehicles in the images, leading to higher environmental ratings. In

Regions 9, 14, and 16, the vegetation coverage is relatively sparse,

and some vehicles are still present within the area, resulting in lower

environmental ratings.
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In Figure 14, we utilized multiple ecological evaluation

indicators to calculate the urban ecological environment scores

for the current sampling points over a specific period. The

ecological assessment scores according to the four different
FIGURE 12

Measurement results of some urban trunk roads and residential areas.
FIGURE 13

Environmental score assessment: a = 1,   b = l = 0.
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scenario categories mentioned in Section 4.1 of this paper are

presented in Figure 14. As the displayed images were randomly

captured at monitoring points on November 7, 2023, the AQI

values for that day were employed for the air quality assessment.

In this assessment, aiming for a comprehensive evaluation of

urban ecological quality, we introduced information on noise levels

and the Air Quality Index within the current time frame.

Adjustments were made to the weight parameters in the urban

environment assessment. Specifically, for this assessment, we set the

value of a to 0.4, and the values of l and b were set to 0.3 each. The

use of this comprehensive assessment method aims to consider

various factors affecting the urban ecological environment more

comprehensively, providing more accurate results for urban

ecological assessments. This approach not only takes into account

factors such as vegetation coverage but also adequately considers

crucial elements like noise and air quality, enhancing the

effectiveness and practicality of the assessment. The careful

selection of these weight parameters aims to balance the relative

importance of each indicator to better reflect the overall urban

ecological quality.
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Observing Figure 14 it is evident that in monitoring points with

higher vegetation coverage on the given day, the urban ecological

environment assessment scores show a significant improvement. In

the first category, due to the higher vegetation coverage in the

current area, there is a relatively lower number of vehicles and

pedestrians, and the air quality level on that day is considered good.

Therefore, the environmental score for the first category is relatively

high. In the second category, although the vegetation coverage

exceeds that of the first category, the presence of a large number of

moving vehicles in the current area leads to elevated noise levels.

Additionally, the emission of exhaust fumes from vehicles surpasses

that of the first category. Consequently, the second category,

characterized by more vegetation coverage and a higher presence

of vehicles and pedestrians, receives a lower score than the first

category, which has more vegetation coverage and fewer vehicles

and pedestrians. In the third and fourth categories, it is evident that

the current area’s vegetation coverage is significantly lower than

that of the first and second categories. While the noise level test may

not visually depict the noise caused by construction sites around the

current area, the statistical data on noise levels indicate an
FIGURE 14

Environmental score assessment: a = 0:4,  b = l = 0:3.
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increasing trend in the indices. Therefore, the third category,

representing cities with less vegetation and fewer vehicles and

pedestrians, as well as the fourth category, denoting cities with

less vegetation and more vehicles and pedestrians, exhibit urban

ecological scores significantly lower than the first two categories.

In the calculation of ecological environment scores, we

determined the weight values a, l, b based on surveys conducted

in different types of regions. The research results indicate that in

cities with a higher concentration of industrial zones, urban

residents exhibit a heightened concern for air quality. Conversely,

in residential areas situated farther away from industrial zones,

residents are more attentive to both current air quality and

vegetation coverage in their vicinity. Consequently, we established

the weight values according to the primary concerns of urban

residents regarding the ecological environment, enabling the

computation of the current ecological environment assessment

scores. When a=1, l=b=0, the calculated daily data yields

environmental scores for four different categories, namely 22.63,

2.14, 0.84, and 1.15. In the case of a=0.5, l=0.3, b=0.2, the
computed scores for the same four categories are 1.46, 1.29, 0.11,

and 0.58, respectively. This indicates that varying weight values

result in distinct environmental score outcomes, thereby facilitating
Frontiers in Ecology and Evolution 17
a differentiated assessment of the ecological environment in

different regions. The judicious setting of weight values in

environmental scoring allows us to more accurately reflect the

concerns of residents in different areas. Furthermore, it provides

robust support for the formulation of targeted measures for

ecological conservation and improvement.
4.7 Comparisons with the other YOLOs

In practical applications, multi-class object detection is

common, making mAP (Mean Average Precision) highly valuable

for the holistic evaluation of model performance. where mAP is

calculated as shown in Equation 30:

mAP =
Z

P(R)dR (30)

where precision P and recall R are calculated as shown in

Equation 31 and Equation 32, respectively.

P =
TP

TP + FP
(31)
TABLE 4 Comparison experiments with different detection algorithms.

Method
Object class

mAP0.5
Pedestrian People Bicycle Car Van Truck Tri Awn-Tri Bus Motor

YOLOv3-LITE 34.5 23.4 7.9 70.8 31.3 21.9 15.3 6.2 40.9 32.7 28.5

YOLOv4 24.8 12.6 8.6 64.3 22.4 22.7 11.4 7.6 44.3 21.7 30.7

TPH-YOLOv5 29.0 16.7 15.6 68.9 49.7 45.1 27.0 24.7 61.8 30.9 37.3

YOLOv7 43.6 38.1 36.0 78.2 45.6 53.0 32.8 34.6 62.4 48.7 47.3

YOLOv8 50.2 39.7 21.3 74.8 50.5 46.2 33.3 22.1 67.4 45.3 40.2

OURS 57.5 47.4 21.6 84.9 50.5 44.4 36.8 18.1 63.7 58.4 48.3
fro
FIGURE 15

Map curve of the improved YOLOv7 algorithm map.
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R =
TP

TP + FN
(32)

In the formula, TP stands for True Positives, which denotes

cases where the detected object is a true positive, meaning it is a real

target and is correctly detected as such. FP represents False

Positives, indicating instances where the detected object is a false

positive, meaning it is not a real target, but the detection falsely

identifies it as one. FN represents False Negatives, signifying

situations where the detected object is a false negative, meaning it

is a real target but is not correctly identified by the detection

algorithm. P(R) represents the non-linear equation of the PR

curve. mAP stands for mean Average Precision, a comprehensive

performance metric. P stands for Precision, and R stands for Recall.

The individual mAP curves and corresponding values for the

improved YOLOv7 algorithm for the 10 different categories in the

Visdrone2019 dataset are shown in Figure 15. mAP is a

comprehensive performance evaluation metric that considers

precision-recall curves for different categories and computes their

average. mAP offers a comprehensive assessment of multi-class

object detection performance.

As shown in Table 4, to further validate the detection

performance of our improved algorithm in this study, we

conducted a comprehensive evaluation on the VisDrone2019

dataset and compared it with mainstream deep learning-based

object detection algorithms. We used the mAP (Mean Average

Precision) metric for comparative analysis. It can be observed that

our improved algorithm achieved a relative increase of 17.6% in

mAP0.5 compared to YOLOv4, an 11% improvement compared to

TPH-YOLOv5, and an 8.1% enhancement compared to YOLOv8.

Specifically, we noted a significant improvement in the detection

accuracy of categories such as pedestrians and people within the

dataset. Compared to YOLOv4, the average precision of the

pedestrian category increased by 32.7%, and the average precision

of the people category increased by 34.8%. For larger targets such as

trucks and buses, there was also a notable improvement in detection

average precision, with increases of 21.7% and 19.4%, respectively.

These experimental results confirm the effective detection

performance of our improved algorithm for densely populated

small objects in UAV aerial imagery.
5 Discussion

With the rapid development of deep learning technology, the

YOLOv7 algorithm, as the next-generation efficient object detection

tool in the YOLO series, has found extensive applications in various

ecological assessment domains. In the field of greenhouse gas

assessment, the improved YOLOv7 object detection algorithm is

applied for real-time detection, tracking, and counting of vehicles in

urban areas. The calculated number of vehicles is then used to assess

the current air quality. When there is an excess of vehicles, timely

traffic flowmanagement is implemented to reduce carbon emissions

and improve urban air quality (Chung et al., 2023; Rouf et al., 2023;

Zhang et al., 2023). In the domain of air pollution ecological

assessment, the YOLOv7 object detection algorithm is employed
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to detect emission sources in low-rise suburban areas and assess the

current air quality (Szczepański, 2023). In the field of vegetation

ecological assessment, the YOLOv7 object detection algorithm is

utilized to identify harmful plants such as weeds that may pose a

threat to other vegetation. Based on the assessment results, prompt

measures are taken to address areas with severe ecological damage

(Gallo et al., 2023; Peng et al., 2023). Additionally, the YOLOv7

object detection algorithm is applied to extract features from trees,

analyze them based on the extracted key features, and assess their

health status to ensure the healthy growth of trees (Dong et al.,

2023). Despite the widespread applications of the YOLOv7

algorithm in various ecological assessment domains, its

application in the field of urban ecological environment

assessment remains relatively limited. This presents a promising

avenue for future research. By combining the YOLOv7 algorithm

with urban spatial-temporal data, it becomes feasible to achieve

real-time monitoring and assessment of urban ecological

environments, thus promoting the preservation and sustainable

development of urban ecosystems.

In the current field of ecological research, urban ecological

assessment is a critically important task. Some scholars utilize fish

DNA damage and physiological response biomarkers to assess the

ecology of urban streams (Bae et al., 2020). Simultaneously, to gain a

more comprehensive understanding of ecosystem status, other

scholars employ Bayesian networks to integrate various types of

knowledge, analyze the probabilities of different scenarios, and

conduct risk assessments for urban ecological environments

(Kaikkonen et al., 2021). Furthermore, soil cover change is a key

factor in assessing ecological environments; some scholars, through

spatial autocorrelation analysis, interpret risk aggregation patterns

to achieve more precise ecological assessments (Ji et al., 2021). Air

quality is also a crucial factor assessed by many researchers in urban

ecological environments. Some researchers analyze the water-

soluble concentrations of harmful heavy metals in urban roads,

quantify their health risks in the urban ecology, and use this

information to assess the urban ecological environment (Faisal

et al., 2022). Additionally, some scholars collect dust samples

along urban traffic routes, calculate the average concentrations of

toxic pollutants such as lead, copper, and chromium, and use the

results to evaluate the current urban air quality (Kabir et al., 2022).

Some researchers construct comprehensive ecological security

assessment systems for ecosystems by considering the importance

of ecosystem services, ecological sensitivity, and landscape

connectivity (Xu et al., 2023). Remote sensing satellite technology

is commonly used to acquire ecological environment data, enabling

the detection and analysis of dynamic changes in the ecological

environment in urban ecological assessments. Urban ecological

environments can be assessed spatially and temporally based on

remote sensing surface temperature data and urban surface

ecological conditions (Estoque et al., 2020; Firozjaei et al., 2020).

Some scholars extract past climate change rates and extreme

weather information from tree rings using new statistical tools,

applying them in urban vegetation ecological assessments

(Wilmking et al., 2020). Mathematical modeling and computer

simulations are also employed to simulate ecosystem dynamics and

responses to different pollution and management scenarios. High-
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resolution modeling methods and soil-crop models quantify factors

such as greenhouse gas balance, allowing for the calculation of

greenhouse gas emissions and the assessment of the impacts of the

greenhouse effect (Launay et al., 2021). These studies have provided

valuable insights for our work, emphasizing the significance of air

quality and vegetation coverage as crucial factors in ecological

assessment. In urban environments, vehicle exhaust emissions

and the dense distribution of the population are two primary

contributors to urban greenhouse gas effects. The density of

people and vehicles in urban areas is a key environmental factor,

second only to vegetation coverage. Consequently, we have chosen

to conduct a comprehensive assessment of urban ecological

environments based on combined metrics of population density,

vehicle density, and vegetation coverage. This approach aims to

assist governmental authorities in formulating environmental

policies and facilitating more effective urban planning to enhance

the quality of urban ecological environments. Past research has

primarily focused on direct exploration of acquired spatiotemporal

data or, based on this foundation, utilized mathematical modeling

and statistical tools for analysis. During data sample collection,

significant manpower and equipment are typically required. Upon

completing the data collection process, mathematical models are

established based on the obtained data, involving a large number of

parameters that need manual design, resulting in substantial

computational complexity. There has not been sufficient

utilization of deep learning algorithms capable of uncovering

latent features in data without the need for manual rule design.

Simultaneously, there has been a lack of comprehensive analysis

and research based on information detected from images. In this

context, the ecological factors related to visual information have not

been fully utilized. Therefore, it is a meaningful attempt for us to

apply the deep learning-based YOLO target detection theory to

urban ecological assessment in this paper.

The introduction of the YOLOv7 object detection algorithm

offers us a novel approach to emphasize crucial visual information

in ecological environment assessment. By initially conducting

object detection through image data, we can recognize and

highlight key elements in the environment, such as population

density, vegetation coverage, and others. Subsequently, we employ

the detected object information to acquire relevant data, enabling

further analysis and evaluation of the ecological environment. The

potential advantage of this method lies in its ability to intuitively

capture visual information within the ecological environment and

integrate it with traditional data, thereby providing a more

comprehensive ecological assessment. To this end, we have

enhanced the YOLOv7 algorithm by introducing a custom-

designed Biff module in the backbone of the network model. This

module serves to reduce interference from irrelevant information in

the images, enhancing the focus on specific targets, and providing a

solid foundation for coordinate prediction and inference stages.

Furthermore, we have modified the IoU calculation section of the

original network model’s loss function, replacing the original CIoU

loss function with the EIoU loss function, and adjusted the training

weights of the model. These adjustments have strengthened the

detection performance for small-sized targets. Following 400 epochs

of training and ensuring consistency between network parameters
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and image input sizes, we compared our improved algorithm with

the original YOLOv7 and other YOLO-series-based algorithms

proposed by other researchers, using the Visdrone2019 datasets.

Experimental results show that, compared to the original YOLOv7,

our improved algorithm achieves a one-point increase in the mAP

(average precision) evaluation metric and demonstrates significant

improvements in the AP values for the person, pedestrian, car, and

van categories. Specifically, the AP values for the people and

pedestrian categories have increased by 13.9% and 9.3%, while

those for the car and van categories have improved by 6.7% and

4.9%. These results robustly affirm the effectiveness of our

improved algorithm.

However, some limitations still persist in the improved

algorithm. Firstly, the Visdrone2019 dataset commonly contains

small-scale, densely distributed, and indistinct target instances,

leading to occasional instances of missed detections.

Consequently, when utilizing the improved YOLOv7 algorithm

for object counting, certain biases may arise. To address this

concern, we have implemented manual corrections to statistically

adjust the counts of persons and vehicles. Secondly, in the context of

vegetation coverage statistics, complex background scenes pose a

challenge. While superpixel segmentation techniques can accurately

detect and distinguish regions resembling vegetation coverage,

setting uniform color thresholds for segmentation across different

scenes remains problematic. Lastly, our improved YOLO object

detection algorithm has yet to consider other factors affecting

environmental assessment, including waste disposal, air pollution,

sewage discharge, and more. In future research, we will expand the

ecological and environmental image dataset to cover various

situations, such as images of skies and urban rivers with different

pollution levels. By applying target detection algorithms, we will

identify pollution areas in the images and calculate corresponding

color thresholds. Based on these color thresholds, we will compare

the pollution situation in the ecological and environmental dataset

to assess the current pollution level and further determine the

degree of urban air and water pollution. Meanwhile, we will refine

the noise data generated by factors such as pedestrian

conversations, driving cars, and construction sites. By analyzing

the movement status and quantity of different objects and people in

the images, we will calculate the noise generated and thus evaluate

the noise level at the current location. To obtain rich information

using a single collection device, we plan to equip drones with sound

sensors and air quality detection sensors to collect multiple urban

ecological information in real-time from specific areas, thus

achieving a comprehensive assessment of the current urban

region’s ecological environment. Utilizing drone equipment for

comprehensive urban ecological assessment will be a major

direction in our future research.
6 Conclusions

The rapid development of deep learning technology has

facilitated the widespread adoption of the YOLOv7 algorithm in

various domains, including healthcare, industry, agriculture, and

transportation, leading to a significant enhancement in the
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efficiency and precision of object detection. However, despite its

extensive application in diverse fields, its potential utility in the

realm of ecological environment assessment remains relatively

unexplored. This paper presents an innovative approach that

combines the improved YOLOv7 object detection algorithm with

urban spatial-temporal data to enable real-time monitoring and

evaluation of urban ecological environments, thereby promoting

ecosystem conservation and sustainable development. This

methodology holds potential significance in urban planning and

environmental policy formulation, particularly in enhancing the

quality of urban ecological environments. In comparison to

traditional ecological assessment methods, this approach makes

full use of visual information, providing fresh perspectives and

directions for future research.

Nevertheless, there are still some unresolved issues

assoc ia ted with this object ion theory for ecolog ica l

environment assessment, which we intend to address in our

subsequent work:
Fron
1. Addressing the issue of small-scale, densely distributed, and

indistinct features in unmanned aerial vehicle (UAV) aerial

datasets. This will involve making targeted improvements

to the YOLOv7 network model and augmenting the

existing dataset with high-quality images containing rich

information to reduce biases in small object detection tasks,

thereby enhancing data accuracy.

2. Tackling the complexity of background scenery in

vegetation coverage statistics. The current reliance on a

single threshold for precise vegetation area detection is

challenging. We plan to explore updated classification

algorithms, as deep learning technology continues to

mature, with the expectation of achieving superior

performance compared to the k-means superpixel

segmentation algorithm.

3. The current paper assesses urban ecological environments

solely based on the density of individuals, vehicles, and

vegetation coverage, without incorporating other

environmental impact factors. Our future work will

involve enriching the dataset to include categories such as

water quality, urban waste, and air visibility, enabling

comprehensive and accurate assessments of urban

environments from multiple perspectives.
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