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The ability to quantify when and where animals interact is key to the understanding

of a plethora of ecological processes, from the structure of social communities and

predator–prey relations to the spreading of pathogens and information. Despite the

ubiquity of interaction processes among animals and the revolution in tracking

technologies that now allows for the monitoring of multiple individuals

simultaneously, a common theoretical framework with which to analyze

movement data and extract interaction events is still lacking. Given the wide

spectrum of mechanisms that governs how a biological organism detects the

proximity of other organisms, most of the proposed theoretical approaches have

been tailored to specific species or empirical situations and so far have been lacking

a common currency with which to evaluate and compare findings across taxa. Here,

we propose such general framework by borrowing techniques from statistical

physics, specifically from the theory of reaction diffusion processes. Some of

these techniques have already been employed to predict analytically pathogen

transmission events between pairs of animals living within home ranges, but have

not yet pervaded the movement ecology literature. Using both continuous and

discrete variables, we present the mathematical framework and demonstrate its

suitability to study interaction processes. By defining interactions whenever a token

of information is transferred from one individual to another, we show that the

probability of transferring information for the first time is equivalent to the first-

passage probability of reacting in a multi-target environment. As interaction events

reduce to encounter events when information transfer is perfectly efficient, we

compare our formalism to a recently proposed approach to study encounters. Such

approach takes the joint occupation probability of two animals over a region of

interaction as a measure of the probability of encounter, rather than the first-

encounter probability. We show the discrepancy of the two approaches by

analytically comparing their predictions with continuous variables, while with

discrete space–time variables, we quantify their difference over time. We

conclude by pointing to some of the open problems that the reaction diffusion

formalism, alternatively, the reaction motion formalism, as it should be more

appropriately called, might be able to tackle.

KEYWORDS

animal interactions, encounter problems, movement ecology, random walks and
Brownian motion, reaction diffusion processes
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1 Introduction

A vast number of studies in animal ecology aims at linking

behavior at the level of the individuals to the processes governing

the dynamics of a group or an entire population (Levin, 1992).

Underlying this fundamental tenet is the search for general laws

that link the interactions between animals to the patterns that

emerge at much larger scales. A renewed interest in such perspective

has surfaced in the last decades following the introduction of the

movement ecology framework (Nathan et al., 2008) and the

advances in sensor technologies that allow to track animals in

space and time at unprecedented resolution (Matley et al., 2022;

Nathan et al., 2022). It is the ability to follow simultaneously

multiple individuals and infer when and how they interact that

will be instrumental to the understanding of this micro-to-macro

connection. Notably, despite the pervasiveness of interaction

processes between moving organisms, models in the animal

ecology literature of how individuals interact or more simply

when and where they encounter or are in proximity of one

another have been limited.

While theoretical approaches that aim at quantifying

interaction processes have appeared (Hutchinson and Waser,

2007; Bartumeus et al., 2008; McKenzie et al., 2009; Gurarie and

Ovaskainen, 2013; Martinez-Garcia et al., 2020), efforts to develop a

general framework have been stymied by two main factors:

semantic issues, due in part to the different ways in which

animals may interact, and the apparent absence of analytical

“null” models in the movement ecology literature. As animals

interact by relying on their sensory biases, by using their

cognitive mechanisms and by exploiting their motor abilities,

finding a general definition of interaction has been challenging

and the rationale has often resulted in specific choices based on the

biological questions and the species under observation.

In collective movement studies, a classic example is the use of

delays in motor response to determine leadership roles. This

approach has been employed to construct social ranks in a flock

of pigeons based on their global delayed response in following each

other’s trajectories (Nagy et al., 2010), and to extract time-

dependent delays during coordinated maneuvers of foraging bat

pairs to identify leaders (Giuggioli et al., 2015) or to classify the

influential neighbors during collective turns of a shoal of laboratory

fish (Jiang et al., 2017). Examples in animal social studies also

abound (Farine and Whitehead, 2015). In that context, a social

interaction network for a group of individuals is constructed based

on the occurrence per sampling period of well-defined events

(Whitehead, 2008), e.g., grooming, or parent and offspring

associations, and has been used to predict how processes such an

infection or some form of information is spread over the network.

While these and other approaches provide practical tools to

estimate specific forms of relatedness, they often lack a common

currency with which to make comparison across species.

Even in the simplest scenario in which an interaction is defined

as an encounter, i.e., a co-location or a proximity event, model

estimations differ greatly depending on how the movement is

represented. The assumption that animals move deterministically,

i.e., perform ballistic motion, has led to the so-called ideal gas model
Frontiers in Ecology and Evolution 02
prediction of an exponential time dependence in the encounter

probability with mean p/(8dbv) (Hutchinson and Waser, 2007),

whereby in a population of density d, a focal individual moves with

constant speed v and encounters other individuals when within a

distance b. The cornerstone of the ideal gas model is the law of mass

action. It posits that encounters are directly proportional to the

concentration of individuals and neglects any dependence on the

statistical properties of the trajectories of the moving entities. In

essence, it is a mean field approximation and deviates further from

the actual predictions the more winding are the movement paths

and the lower the density of individuals.

In the extreme limit of very diluted systems, e.g., one randomly

moving organism searching for static targets, a large literature on

random biological encounters have emerged in the last 20 years.

The focus of that literature has been the study of target encounter

efficiency when an animal’s straight movement paths follow a power

law distance function as compared to a sharply decaying one

(Viswanathan et al. , 2011; Reynolds, 2015), the latter

characteristics of Brownian motion. Various scenarios have been

considered including the distinction between destructive searches,

for which a target is consumed upon encounter, and non-

destructive searches, for which the target is uninfluenced by the

searcher (Santos et al., 2004; Bartumeus et al., 2005), as well as the

difference between hard encounters, which occur whenever a

searcher is within a threshold distance from a target, and soft

encounters whose occurrence depends on some smooth functional

dependence of the searcher–target distance. Given the vast number

of animal interactions, an important study that has brought clarity

to the literature is the one by Gurarie and Ovaskainen (2013), which

has provided a classification of the different types of animal

encounter interactions and has reviewed and compared many of

the theoretical results, in particular of interest to us here, the

findings on what is generally referred to as random search

statistics (see, e.g., Bartumeus et al., 2014; Bartumeus et al., 2016).

In comparison to the vast literature on search of static targets,

past ecological investigations on moving targets, that is on actual

animal encounters, have been limited, with the exceptions of a

couple of analytic studies in one dimension (Tejedor et al., 2011;

Giuggioli et al., 2013), and two-dimensional simulation studies on

animal encounters when moving as Lévy walkers both in terms of

encounter efficiency (Bartumeus et al., 2008) and in terms of

survival advantage when the energy content of the prey is

accounted for (Faustino et al., 2007; Faustino et al., 2012). Lately,

following the improved resolution in tracking technology (Nathan

et al., 2022), there has been an upsurge of interest on encounter

processes (Martinez-Garcia et al., 2020; Albery et al., 2021; Noonan

et al., 2021; Yang et al., 2023). Yet, the animal ecology literature

seems to have missed out a body of work in statistical physics on the

theoretical investigations of encounter and transmission events,

normally referred to as the theory of reaction diffusion processes.

That theory was laid out in the 1980s by Kenkre in the context of

exciton annihilation in molecular crystals as well as in the general

field of exciton capture in sensitized luminescence (Kenkre, 1980;

Kenkre, 1982a; Kenkre, 1982b). Originally, the theoretical

formalism was developed for movement in unbounded discrete

lattices with focus on coherence in exciton motion (Kenkre and
frontiersin.org

https://doi.org/10.3389/fevo.2023.1230890
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Das et al. 10.3389/fevo.2023.1230890
Wong, 1981; Kenkre, 1982b), but specific problems were also solved

in bounded systems (Kenkre and Wong, 1980). A focused aim of

those investigations was the resolution of annoying paradoxes that

had been encountered in the field of molecular crystals regarding

both magnitude and temperature dependence of exciton diffusion

constants extracted from experimental data in aromatic

hydrocarbon crystals (Kenkre and Schmid, 1983; Kenkre et al.,

1985). A decisive demonstration of the errors made in previous

analyses in molecular crystals was given by Kenkre and Schmid in

the papers referenced. This was done in the context of the extraction

of motion parameters frommutual annihilation observations on the

one hand and sensitized luminescence observations on the other. A

study of that demonstration would be highly useful in any

encounter context whether molecular or ecological.

The techniques used to interpret empirical observations on exciton

annihilation have actually been extended to spatially continuous

domains to study hard encounters in an ecological context, more

precisely to predict the probability of interaction for animals living

within separate home ranges in one (Kenkre and Sugaya, 2014) and

two dimensions (Sugaya and Kenkre, 2018). By representing the

tendency of an animal to remain close to its burrow or nest via an

Ornstein–Uhlenbeck process (Giuggioli et al., 2006; Giuggioli and

Kenkre, 2014), i.e., by tethering its motion using a spring force, an

exact analytic representation of the encounter and transmission

probability when interaction occurs within a cutoff distance has been

derived (Kenkre and Sugaya, 2014; Sugaya and Kenkre, 2018). The

formalism that Kenkre developed with Sugaya in this context towards

the implementation of the reaction diffusion theory has been given in

detail in the recent publication of a book by two of the coauthors (see

chapter 6 in ref (Nitant Kenkre andGiuggioli, 2021). Even though these

analytical techniques clearly represent the most appropriate and

powerful starting point from which to study a broad range of

encounter and interaction processes, surprisingly they have not been

exploited in the animal ecology literature.

Following Kenkre’s reaction diffusion approach, a novel analytic

formalism to study movement on discrete lattices and in discrete time

(Giuggioli, 2020) has allowed to analytically derive the so-called

splitting probabilities, that is, the probability for interaction events

to occur in a set of locations and not others (Giuggioli and

Sarvaharman, 2022). Knowledge of these splitting probabilities

allows one to predict interactions in a multi-target environment,

and has led to analytic predictions of the spatiotemporal dynamics of

random transmission events in arbitrary dimensions and arbitrary

(lattice) topology (Giuggioli and Sarvaharman, 2022), including

hexagonal and honeycomb lattices (Daniel et al., 2023), as well as

when individuals undergo a resetting dynamics (Das and Giuggioli,

2022) or when the environment is spatially heterogeneous

(Sarvaharman and Giuggioli, 2023). All these developments, both

with continuous and discrete variables, should form the backbone of

a general theory of animal interaction and encounter processes and,

given their analytic formulation, should become part of the arsenal of

“null” models in movement ecology.

Here, we present evidence of the need of a reaction diffusion

formalism to study encounter and transmission events between
Frontiers in Ecology and Evolution
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animals, interchangeably referred to as walkers in this study. We

define a transmission event as the first occurrence when

information is successfully transferred between two individuals.

With continuous variables, we consider the spatiotemporal

dynamics of two diffusing animals (Brownian walkers) living in

two separate home ranges undergoing Onrstein-Uhlenbeck motion

and show the analytic formalism that has been developed in that

case (Sugaya and Kenkre, 2018) to represent the probability of first

transmission. With perfect efficiency of information transfer, the

first-transmission event reduces to a first-encounter event, hence

aligning our definition of an encounter event to that of a first-hitting

event that has been used in the ecological literature (Gurarie and

Ovaskainen, 2011). In this limit, we compare the formalism to the

one presented in a recent theoretical investigation by Martinez-

Garcia and collaborators (Martinez-Garcia et al., 2020) where a

pairwise distance threshold probability has been proposed as a tool

to study animal encounters. For the Ornstein–Uhlenbeck case

considered, we analytically derive the mathematical equation that

relates the two probabilities.

For the discrete space–time formulation, we also consider two

diffusing animals (lattice random walkers) living in separate home

ranges. We choose two scenarios to represent the characteristic

reduction in movement range. In the first one, we impose a hard

constraint on the movement range of the animals (reflected lattice

walkers). In the second one, we account for the animal tendency to

return to a den or a burrow by resetting its location at random times

to its own focal point in space (resetting random walkers). For these

two cases, for simplicity, we restrict the interactions to when animals

are co-located on the same site and we quantify the time dependence

of the first-encounter probability (maximal information transfer

efficiency). We compare this dependence to the one obtained by

spatially integrating the animal joint occupation probability of all

possible interaction co-locations, a quantity analogous to the pairwise

distance threshold probability examined with continuous space–time

variables. For the discrete case, we also show the exact formalism to

extract mean first-transmission times.

In the present study, we make various assumptions about the

animals’ behavior, their environment, and how we characterize

their movement. In choosing very simple representations of how

animals move within a home range in one and two dimensions, we

have purposely sacrificed ecological complexity to gain in

conceptual and mathematical transparency. We have disregarded

that animals may engage in activities other than foraging (see, e.g.,

examples in refs Morales et al., 2004; Ovaskainen et al., 2008;

Gurarie et al., 2009 and for relevant techniques developed to infer

behavioral shifts from tracking data). We have also assumed that

animals move in a homogeneous environment and have

represented in a simple manner how the presence of a home

range in one and two dimensions affects their motion. A third

assumption is that we have neglected correlations in the movement

steps, which means that when animals move with some degree of

persistence, our estimation of encounter and transmission rates are

valid for time scales longer than the correlation or persistence time

(Gurarie et al., 2009).
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2 Materials and methods

2.1 The continuous space–time formalism

To bypass any potential semantic issues, we restrict our study

and define an interaction when a measurable unit of information is

being passed from one individual to the other. Examples include an

infectious disease, which is transmitted through the transfer of a

pathogen, or the passing of knowledge, e.g., food source location. In

these cases, when the movement statistics is Markov and the

information being transferred is a binary variable (presence/

absence), transmission events can be modeled as a first-

absorption process (Spendier and Kenkre, 2013). In other words,

by defining interactions based on the transfer of a token of

information from one animal to another, it is possible to

mathematically model interaction events as a function of the

movement statistics and the ability of the uninformed individual

to receive information from the informed one, as exemplified

pictorially in Figure 1. Modeling and quantifying such events and

identifying the underlying principles under which randomly

moving particles or more generally biological agents react with

each other is an important area of investigation in statistical physics

and is referred to as the theory of reaction diffusion processes.

A well-known assumption to estimate interaction times consists

of summing the average time for two individuals to be in proximity,

T, and the average reaction time or information transfer time upon

proximity, I. Such assumption goes under different names in

different disciplines, e.g., the inverse addition law in chemical

reactions (Soustelle, 2011), or Matthiessen’s rule in solid-state

physics (Ziman, 2001). Kenkre and his collaborators showed the

limitations of such an assumption (Kenkre et al., 1985), whose

validity is restricted to the so-called reaction limited case (T/I → 0)

and the motion limited case (I/T → 0), and developed an analytic

formalism to predict the time-dependent first-transmission
Frontiers in Ecology and Evolution 04
probability between randomly moving entities in unbounded

lattices (Kenkre, 1980; Kenkre, 1982a; Kenkre, 1982b). With a

similar theoretical construct, it is possible to analyze the

transmission problem of two animals, one informed and the

other one uninformed, living in separate home ranges. By

representing them as two Brownian walkers biased towards their

respective focal points in space, i.e., their home range centers,

through a spring force (Ornstein–Uhlenbeck process), Kenkre

and Sugaya (Kenkre and Sugaya, 2014; Sugaya and Kenkre, 2018)

have analytically derived the transmission probability, that is, the

probability that the uninformed (susceptible) individual has

become informed (infected) at time t.

To understand what are the key ingredients necessary to quantify

reaction diffusion processes, in particular the time-dependent

transmission probability of a token of information from one

individual to another, we report here some of the necessary

mathematical details with continuous variables. We start by

considering the partial differential equation (PDE) governing the

dynamics of the joint occupation probability of the two tethered

Brownian walkers, one susceptible and one infected, subject to an

interaction rate C upon proximity (Kenkre and Sugaya, 2014; Sugaya

and Kenkre, 2018). The PDE of the time-dependent joint occupation

probability of walkers 1 and 2 to be at r1 and r2, respectively, contains a
Smoluchowski term to describe the movement to which a transmission

interaction term in the form of a loss is added (Kenkre and Sugaya,

2014; Sugaya and Kenkre, 2018). A variable transformation from the

coordinates r1,2 of the two animals r+ = r1 + r2 (a center of mass

coordinate would be r+=2) and a relative position r− = r1 − r2 (in ref

(Sugaya and Kenkre, 2018), r± are defined with a multiplicative factor

2−1=2) allows one to write the joint PDE governing equation as (Sugaya

and Kenkre, 2018)

∂P(r+,r− ,t)
∂t = ∇+ · ½g (r+ − R+)P(r+, r−, t)� + ∇− · ½g (r− − R−)P(r+, r−, t)�

+2D(∇2
+ +∇2

− )P(r+, r−, t) − C
Z 0

dr
0

+dr
0

−d(r+ − r
0

+)d (r− − r
0

+)P(r+, r−, t) ,
(1)
FIGURE 1

Schematics of the two-dimensional movement paths of two animals tracked over a certain period of time that may transfer information when they
are within a certain distance threshold. The circular disks represent all the spatial locations when the two individuals are simultaneously within a
threshold distance from each other. Animal 1 (red trajectory) carries information, while animal 2 (green trajectory) initially does not. Both the walkers
start from their respective initial points shown as the cross marks, and when information is transferred from the first to the second animal, the green
trajectory turns red. In the left panel, the information transfer process occurs early on (blue disk), which is on the first occasion in which they are
within interaction distance, while in the right panel, transfer occurs on the second occasion (red disk). The inefficiency of the transfer process is
evident in both panels because the green trajectory does not turn red when on the disk boundaries (first encounter), but only after some time the
animals are within the disk. Note that time stamps of the trajectory are not explicitly indicated and the animal paths should not be thought of
representing movement with constant speed. In other words, the disks aim to display direct interactions, i.e., when individuals are within a threshold
distance at the same time, rather than indirect ones when spatial coincidence may occur at different times.
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where D is the diffusion constant of both animals, ∇± represents

the partial differential operator in radial coordinates for r±, d(z) is
the Dirac delta function, R± = R1 ± R2 are the transformed

coordinates of the two animals’ home range centers, g is the

strength of the attraction (spring force constant) towards their

respective home range centers, and the prime symbol of the integral

means that integration is over a given range of values to be specified.

Note that P(r+, r−, t) in Equation (1), which describes the

dynamics in a four-dimensional space, is the spatiotemporal

dependence of the joint occupation probability (distribution) of the

informed and uninformed individual. When a transmission event

occurs, the uninformed individual disappears, and thus the

probability P(r+, r−, t) is identically zero. This aspect is captured by

the last term of Equation (1), which indicates that there is a

probability loss over time at rate C when the two animals are

within the interaction distance, indicated by the prime integration

with respect to the separation distance variable. When the rate C = 0,

there is no interaction, while an encounter event is represented with

C → ∞. Note also that the presence of the integration allows one to

specify the spatial locations where interactions may occur

(integration over r+) and at what distance it may occur (integration

over the relative coordinate, r−).
With P(r+, r−, t) being non-zero when both the informed and

the uninformed individuals are present, the first-transmission

probability, T r0±
(t), that is, the probability (density) that a first-

transmission event has occurred anywhere in the interaction region,

is simply given by

T r0±
(t) = C

Z
dr+

Z 0
dr−P(r+, r

0
+, r−, r

0
−, t); (2)

where the symbols r0± indicate the dependence on the initial

conditions (r0+, r
0
−) via P(r+, r

0
+, r−, r

0
−, t), which represents the

solution of Equation (1) when; the two animals are localized at r0±
at time t=0. In Equation (2), we have dropped the prime superscript

on the integration over r+, since we consider it over the entire two-
dimensional space, while we have kept it for the relative coordinates

since that is only over the interaction region.

To proceed further, one needs to find the solution P(r+, r
0
+, r−,

r0−, t) of Equation (1) and then insert it in Equation (2) to obtain the

first-transmission probability. In some situations, like the one we

are analyzing here, the solution can be found analytically in terms of

quantities that can be derived from the dynamics in the absence of

interactions (C = 0). This is accomplished by employing the so-

called Montroll’s defect technique (Montroll and Potts, 1955; Nitant

Kenkre, 2021), which allows one to find analytically the Laplace

transformed ~P(r+, r
0
+, r−, r

0
−, ϵ) − ~f (ϵ), which represents the Laplace

transform of a function f(t), i.e., ~f (ϵ) =
Z ∞

0
dt f (t)e−ϵt , ϵ being the

Laplace variable. More precisely, one may express the first-

transmission probability analytically as a ratio of quantities in

Laplace domain defined independently of the transmission

phenomenon, namely (Sugaya and Kenkre, 2018)

~T r0±
(ϵ) =

~m(ϵ)
1
C + ~n(ϵ)

, (3)
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whose time dependence can be found numerically by

performing an inverse Laplace transform. In Equation (3), the

quantity m(t) represents the probability, in the absence of any

interaction, that the two animals are within the interaction region

at time t starting from the initial coordinates (r0+, r
0
−),

m(t) =
Z

dr+

Z 0

dr−P(r+, r
0
+, r−, r

0
−, t), (4)

where P(r+, r
0
+, r−, r

0
−, t) is the joint occupation probability

solution of Equation (1), when C = 0, given the initial conditions

r0+ and r
0
−, referred to as the propagator (solution). It is simply given

by the product of two-dimensional Ornstein–Uhlenbeck

propagators for each animal centered around their respective

focal point or home range center (Sugaya and Kenkre, 2018).

While m(t) depends on the animal initial conditions (to lighten

the formalism, we have omitted this aspect from the notation), the

function n(t) does not have any spatial dependence and is the

probability, in the absence of any interaction, that the locations of

the two animals are within the interaction region at a time t after

starting within it,

v(t) =

Z
dr+

Z 0
dr

0

−

Z 0
dr−P(r+, r

0

+, r−, r
0

−, t)Z 0
dr

0

−

: (5)

Note that while T r0±
(t) is normalized in time and has units of

inverse of time, n(t) and m(t) are dimensionless quantities, but are

not normalized in time, thus are not time probability density per se.

One may notice in fact that, sinceP(r+, r
0
+, r−, r

0
−, t) is normalized in

space, by integrating Equation (4) over all relative distance values,

r−, m(t) would equal exactly 1. This mathematical remark is

equivalent to stating that, in the absence of interactions, there is

certainty that the two animals are somewhere in space.
2.2 The discrete space–time formalism

The recent development of the discrete space–time approach

follows in the footsteps of the original studies on exciton

annihilation in unbounded and periodic lattices (Kenkre, 1982b)

and has extended that formalism to bounded domains with

reflecting boundaries (Giuggioli and Sarvaharman, 2022), to

scenarios when the movement is altered by random resetting to a

given location (Das and Giuggioli, 2022), to dynamics in presence of

spatial heterogeneities such as global biases (Sarvaharman and

Giuggioli, 2020), variable diffusivities in space (Sarvaharman and

Giuggioli, 2023), permeable barriers (Kay and Giuggioli, 2022;

Sarvaharman and Giuggioli, 2023), and different media and

interfaces (Das and Giuggioli, 2023).

The equation governing the transmission problem between two

lattice random walkers is similar to the continuous version, but with

the notable difference that the dynamics for the informed and

uninformed individuals are governed by a difference equation

rather than an integro-differential equation as in Equation (1). By
frontiersin.org

https://doi.org/10.3389/fevo.2023.1230890
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Das et al. 10.3389/fevo.2023.1230890
calling P(n1, n2, t) the joint occupation probability at discrete time t

for one walker to be at site n1 and the other at site n2, one has

P(n1, n2, t + 1) = o
ℓ1,ℓ2

A(n1, ℓ1, n2, ℓ2)P(ℓ1, ℓ2, t) − ro
s

0 dn1,sdn2,sA(s, ℓ1, s, ℓ2)P(ℓ1, ℓ2, t)�:
2
64

(6)

In Equation (6), the elements of the tensor A(w1,w1,w2,w2)

represent the transition probabilities at each time step for the first

walker to move from site w1 to site w1 and for the second walker to

move from site w2 to site w2. As we consider that the two

individuals move independently of one another, A = B1 ⊗B2,

where B1(w1,w1) and B2(w2,w2) control, respectively, the

movement steps of walker 1 and walker 2. Compared to the

continuous case, the interaction term in Equation (6) is now a

summation rather than an integral, with da,b a Kronecker delta and
the prime symbol indicating all lattice sites where interaction may

occur, while r represents the transfer probability once the two

walkers are within the interaction range, and it is in place of the rate

of the transfer C of the continuous case.

Note that while we use discrete time variables, it is

straightforward to convert Equation (6) to continuous time and

changing accordingly jump probabilities to rates. There is, however,

a computational convenience in using discrete versus continuous

time in our context, and that is in the ease to invert to discrete time a

generating function (i.e., a discrete Laplace transform) as compared

to inverting to continuous time a function defined in the Laplace

domain (Giuggioli, 2020).

One of the advantages of the spatially discrete formalism over

the spatially continuous one is that it allows one to analytically

quantify the so-called splitting probability of interaction, that is, the

(time-dependent) joint probability that a transmission event occurs

in a set of lattice sites or nodes and not in others. This prescription

is naturally constructed in discrete space given the ease with which

to associate the joint presence or absence of individuals at a set ofM

locations with coordinates Sm = (sm, sm) (m = 1,…,M), where the

first and second coordinates refer, respectively, to the first and

second animal. Given the (unordered) set Sm where the two

individuals may transfer information, the probability that a

transmission event (in any of the possible locations) occurs at

time t for the first time (first-transmission probability) is given by

(Giuggioli and Sarvaharman, 2022)

T n0 (t) = o
M

m=1
T (m)

n0 (r, t), (7)

where n0 = (n10 , n20 ) represents the initial location of the two

animals, and T (m)
n0 (r, t) is the time-dependent probability that the

transmission event occurs when the animals are at the lattice

coordinates Sm and not at any of the other M − 1 sites of

interaction, the so-called splitting probabilities.

If Yn10 ,n20
(n1, n2, t) is the propagator of Equation (6) in the

absence of any interaction (r = 0), one can write the generating

function— ~f (z) =o∞
t=0z

tf (t) for a generic function f (t)—of the

splitting probabilities, i.e., ~T (m)
n0 (r, z) =o∞

t=0z
tT (m)

n0 (r, t) as the

following ratio (Giuggioli and Sarvaharman, 2022)
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~T (m)
n0 (r, z) =

det  ½S(m)(r, z)�
det  ½S(r, z)� , (8)

with Sii(r, z) = (1 − r)=r + ~Ysi ,si (si, si, z) and Sij(r, z) = ~Ysj ,sj (si,
si, z), and S(m)(r, z) the same as S(r, z) bu t w i th the

v e c t o r (~Yn10 ,n20
(s1, s1, z), ~Yn10 ,n20

(s2, s2, z),…, ~Yn10 ,n20
(sM , sM , z))

T

replacing the m-th column (the symbol T indicates transpose). Note

that Yn10 ,n20
(n1, n2, t) is the discrete analog of the joint occupation

probability used in the continuous variable section, which was

expressed in terms of the transformed variable (r+, r−).
To represent animals roaming within their own home ranges,

we consider two cases. In the first, the home ranges have partial

overlap and the range where animals move is bounded by

impenetrable boundaries (reflected random walkers). In the

second, the domain is periodic, but large enough to be effectively

unbounded, and each animal resets at random times to its own focal

point (resetting random walkers). In both cases, we consider the

individuals to move independently, leading to a product form of the

propagator for the process without transmission (r = 0), namely,

Yn10 ,n20
(n1, n2, t) = Qn10

(n1, t)Qn20
(n2, t), where Qn0 (n, t) are the

occupation probabilities for each independent walker.

For computational convenience, we consider that an interaction

event may occur only when the animals are co-located and we study

both the one and two-dimensional scenarios. For the one-

dimensional case, we focus on the first-encounter probability, that

is, we set r = 1, and we compute, through a numerical inversion of

the generating function, the time dependence of the first-encounter

probability, offering a quantitative comparison with the

corresponding discrete equivalent of m(t) in Equation (18), which

is given by

m(t) = o
M

m=1
Yn10 ,n20

(sm, sm, t) : (9)

Note that also in this discrete case, m(t) could be rewritten in

terms of relative coordinates, but since we are considering only co-

locations as encounters, it has no advantage.

For the two-dimensional case, we limit ourselves to the analysis

of the mean first-transmission time with reflected random walkers,

but no comparison can be made to a corresponding mean for m(t)
given that it is not a normalized probability function and the

evaluation of an average, via o∞
t=0tm(t), is not finite.
Diffusion in partially overlapping range-
limited one-dimensional domains

We consider that each animal diffuses within its own one-

dimensional lattice domain, both of size N , and that the two

domains overlap only partially. In this case, the tensors Bm (m =1

and 2) reduce to matrices and their elements are Bmii
= 1 − qm, Bmij

= Bmji
= (di,j+1 + di,j−1)qm=2 when away from the boundary sites

and Bm11
= BmNN

= 1− qm=2. The actual dimension of the overlap

region, that is, the number of lattice sitesM where the animals may

transmit information or encounter one another, is directly related to

the distance H = jc1 − c2j between the central locations of the home
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ranges c1 and c2   via  M = N −H . The individual walker

propagator in this case is given by (Giuggioli, 2020)

Qn0 (n, t) = o
N−1

k=0

h(N)
k (n, n0)½1 + s(N)

k �t , (10)

where

h(N)
k (n, n0) =

ak

N
cos  ½(n − 1

2
)
pk
N
� cos  ½(n0 −

1
2
)
pk
N
� (11)

with a0 = 1 and ak = 2 for k ≥ 1, and

s(N)
k = q½cos  ( pk

N
) − 1�, (12)

for the first animal, and h(N)
k (n −H, n0 −H) with n = 1 + H,…,

N +H for the second animal.

FromYn10 ,n20
(n1, n2, t) = Qn10

(n1, t)Qn20
(n2, t), it is easy to

obtain the generating function ~Yn10 ,n20
(n1, n2, z), and use it to

construct ~T n0 (z).
Diffusion with resetting in
one-dimensional domains

For the case of the resetting random walkers, one requires to

modify Equation (6) by adding on the right-hand side the terms r1
dn1,c1 and r2dn2,c2 , with r1 and r2 representing the probability for the

first and second walker to relocate at random times to site c1 and c2,

respectively. In this case, the tridiagonal matrices are given by Bmij
=

Bmji
= (di,j+1 + di,j−1)(1 − rm)qm=2 and Bmii

= (1 − rm)(1 − qm).

By taking periodic boundary conditions (BmN1
= Bm1N

= (1 −

rm)qm=2), the propagator for an individual resetting random walker

is given by (Das and Giuggioli, 2022)

Qn0 (n, t) = ro
N−1

k=0

g(N)
k (n, c) 

g t
k − 1
gk − 1

+ o
N−1

k=0

g(N)
k (n, n0) g

t
k , (13)

where c is the resetting site, gk = (1 − r)½1 + s(N)
k � with sk given in

Equation (12) and g(N)
k (x, y) = cos  ½2pk(x − y)=N�=N . Analogously

to the reflecting case above, the propagator for both walkers, that is,

the solution of Equation (6) in the absence of transmission events, is

given by Yn10 ,n20
(n1, n2, t) = Qn10

(n1, t)Qn20
(n2, t).
Diffusion in two-dimensional range-limited
home ranges

For a two-dimensional setting, we consider animals living in

home ranges of rectangular shape of identical size. The range

limitation of the animals is ensured by reflecting boundary

conditions. The two home ranges are aligned along the vertical

axis, but are shifted by an amount equal to H sites along the

horizontal axis. In the absence of interactions, for each animal the

propagator is given by (Giuggioli, 2020)

Qn0 (n, t) = o
N−1

k=0
o
N−1

‘=0

h(N)
k (nx , nx0 )h

(N )
‘ (ny , ny0 )½1 +

s(N)
k

2
+
s(N )
‘

2
�t , (14)
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where N and N represent, respectively, the number of sites

along the two directions and with h(L)w (n,m) and s(L)w given,

respectively, in Equations (11) and (12).

To determine the mean transmission time at any of the co-

locations, one requires knowledge of the mean first-passage time

between the initial location and the co-location sites, the mean first-

passage between all co-location sites (all permutations), and the

mean return time to the co-location sites. For that, we use Equation

(14) to build the product of the individual propagators in time by

shifting by H sites the coordinates of the horizontal axis for the

second individual. For an initial condition with coordinates n0 =
(nx0 , ny0 ) along the horizontal and vertical axes and with n = (nx , ny),

we construct the generating function of the four-dimensional

propagator,

~Yn10 ,n20
(n1, n2, z) =o

∞

t=0
ztQn10

(n1, t)Qn20
(n2, t)

= o
N−1

k1=0
o
N−1

‘1=0
o
N−1

k2=0
o
N−1

‘2=0

h(N)
k1

(n1x , n1x0 )h
(N )
‘1

(n1y , n1y0 )h
(N)
k2

(n2x − H, n2x0 −H)h(N )
‘2

(n2y , n2y0 )

1 − z½1 +
s(N)
k1
2 +

s(N )
‘1
2 �½1 +

s(N)
k2
2 +

s(N )
‘2
2 �

,

(15)

with the range in n1x and n2x being, respectively, ½1,N� and ½1 +
H,N +H�, while the range for both n1y and n2y is ½1,N �.

From Equation (15), it is straightforward to obtain the mean

(first) return time (Kac, 1947) to a site n = (n1x , n1y , n2x , n2y),

Rn = ½h(N)
0 (n1x , n1x)h

(N )
0 (n1y, n1y)h

(N)
0 (n2x − H, n2x − H)h(N )

0 (n2y , n2y)�−1, (16)

and through a simple differentiation (Redner, 2001), i.e.,

T(n10 ,n20 )→(n1,n2) =
d
dz ½

~Yn10
,n20

(n1,n2,z)

~Yn1 ,n2 (n1,n2,z)
�jz=1, the mean first-passage

T(n10 ,n20 )→(n1,n2)

= 2 o
N−1

k1=0
o
N−1

l1=0
o
N−1

k2=0
o
N−1

l2=0
k1+k2+l1+l2>0

½h(N)
k1

(n1x, n1xo )h
(N )
l1

(n1y , n1yo )h
(N)
k2

(n2x − H, n2xo − H)h(N )
l2

(n2y , n2yo )

−h(N)
k1

(n1x , n1x)h
(N )
l1

(n1y , n1y)h
(N)
k2

(n2x − H, n2x − H)h(N )
l2

(n2y , n2y)� h(N)
0 (n1x, n1x)h

(N )
0 (n1y , n1y)

n

�h(N)
0 (n2x , n2x)h

(N )
0 (n2y , n2y)½(s(N)

k1
+ s(N )

l1
)(s(N)

k2
+ s(N )

l2
) + s(N)

k1
+ s(N )

l1
+ s(N)

k2
+ s(N )

l2
�g�1

,

(17)

between a starting site n0 = (n1x0 , n1y0 , n2x0 , n2y0 ) and a target

site n = (n1x , n1y , n2x , n2y).
3 Results

3.1 Difference between
first-encounter probability and
distance threshold probability

We consider the case of perfect transfer efficiency, C → ∞ in

Equation (3), and focus on the so-called hard encounter events, that

is, those instances when animals reach a relative distance b. By

integrating over all possible angles and separation up to radius b in

Equations (4) and (5), following Kenkre and Sugaya (Sugaya and

Kenkre, 2018), one obtains
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m(t) = 1 − Q1(
F (r0, f0, t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dh(t)
p ,

bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dh(t)

p ) (18)

and

n(t) = 1 −
1

pb2

Z b

0
dr0r0

Z 2p

0
df0Q1(

F (r0, f0, t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dh(t)

p ,
bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Dh(t)
p ), (19)

where F 2(r, f, t) = 2rH cos  (f − w) − H2 − e−2g t ½2rH cos  (f −

w) −H2 − r2�, with H and w , respectively, being the distance

and relative angle between the home range centers, where h(t) =

½1 − exp( − 2g t)�(2g )−1, and where Q1(s1, s2) = 1 −
Z s2

0
dz z exp  

½−(z2 + s21)=2�I0(s1z) is the Marcum Q-function of order 1. Given

that m(t) is a spatial integration of the (time-dependent) joint

occupation probability over the relative distance b, we refer to it

in the following as the distance threshold probability.

Equation (18), with a rate constant multiplying it, has been

called the mean encounter rate (Equation (14) in ref Martinez-

Garcia et al., 2020) and has been proposed to explore how the

interplay between the scale of perception and home-range size

affects encounter rates. Although the discrepancy with Equation (3)

when C → ∞ is self-evident, it is instructive to rewrite Equation (3)

in that limit as ~E(ϵ)~v(ϵ) = ~m(ϵ), renaming first transmission as first

encounter, T (t) →
C→∞E(t), and through a Laplace inversion obtain

m(t) =
Z t

0
ds E(t − s)n(s) : (20)

Equation (20) shows the relation between the first-encounter

probability, E(t), and the distance threshold probability, and

its structure is quite revealing. It represents a generalization of the

well-known renewal equation for Markov processes (Redner, 2001),

Px0 (x, t) =
Z t

0
ds Fx0→x(t − s)Px(x, s), that relates the occupation

probability Px0 (x, t) to be at x at time t starting at x0 with the first-

passage or first-hitting probability, Fx0→x(t), to reach x from x0. While

it may seem always possible to write an equation such as Equation (20),

with m(t) and n(t) representing a spatially integrated version, or more

precisely integration over a given range, of Px0 (x, t) and Px(x, t),

respectively, it turns out to be true only when
Z 

dr+

Z 0

dr−P(r+,

r
0

+, r−, r
0

−, t) is independent of r
0
+, something that occurs only when

certain spatial symmetries are present. While it is difficult to visualize

the geometry of these special cases with animals moving in two and

three dimensions, given that the set of locations where encounters may

occur are part of a four- or six-dimensional space, it may help to think

about a one-dimensional encounter problem. The simplest scenario is

that of two Brownian walkers that diffuse without any spatial constraint

on a line and come into “contact” once they are at a distance b. Their

encounter dynamics can be mapped onto the search dynamics of a

two-dimensional Brownian walker that hits for the first time a radial

target of radius b centered around the origin. The associated Equation

(20) becomes equivalent to an effective one-dimensional renewal

equation since a first hitting event is controlled only by the radial

coordinate of the Brownian walker being equal to b. More intuitively,
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whenever a set of interaction locations are arranged spatially as a single

big target, then one may potentially write equations such as Equations

(3) and (20) where m(t) and n(t) are spatially integrated representation
of the animals’ occupation probability in the absence of any interaction.

In general, in all scenarios that lack high spatial symmetries, the

interaction locations have a complicated geometry and

parameterizing the resulting shape with multiple variables

becomes a complicated task. In addition, when a first-hitting

event requires to specify the threshold value of many variables,

one needs to construct splitting probabilities, practically separating

the space into multiple areas. In these situations, identifying these

separate areas where interactions may occur is easily met by

mapping the dynamics into discrete space and studying the first

transmission to a set of multiple targets on a lattice, which is the

subject of the next subsections.
3.2 First-encounter probability with
overlapping home ranges in one dimension

Having formally shown in the example studied in Section 3.1

the relation between E(t) and m(t), we now proceed to quantify their

difference with the discrete formalism. For simplicity and

computational convenience, we start by considering animals

living in one-dimensional domain bounded by reflecting

boundaries, as depicted in the left panel of Figure 2. Past analyses

to determine the transmission dynamics in this one-dimensional

problem has led to analytic expressions only for the mean

transmission time (Giuggioli et al., 2013), whereas we are now

able to capture the exact dynamics for the entire transmission

probability T n0 (t). We consider two different home range overlaps

with the two animals starting, respectively, at c1 and c2, and use

standard inversion routines (i.e., a one dimensional integration) for

generating functions (Abate and Whitt, 1992; Abate et al., 1999) to

plot the first-encounter probability in the right panel of Figure 2.

As a comparison, we plot the discrete analog of the function

m(t), namely, Equation (9). While T n0 (t) decays to zero at long

times, m(t) reaches a finite non-zero value, making it evident why

the former is a normalized probability function, while the latter is

not. The long time saturation value of m(t) indicates that once the
memory of the initial placement vanishes, the chance that two

individuals are found in any of the possible co-locations is constant

and equals the integral over the interaction region of the steady-

state joint occupation probability.
3.3 First-encounter probability with one-
dimensional resetting dynamics

We take the so-called resetting random walker as another

representation of an animal that moves within a home range. As

the walker resets at random times to a focal point in space, the range

of movement is effectively bounded, with the resetting sites

representing the den or burrow where animals tend to return to.

At long times, the spatial occupation probability is in fact equivalent
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to a steady-state probability if the walker were to move with a

constant bias towards the resetting location (Giuggioli et al., 2019).

For computational convenience, we take a periodic spatial domain

for both walkers.

Even though the movement of the walkers is effectively

bounded, and differently from the reflected walker case above, we

need to specify a finite numberM of interacting locations given that

the discrete formalism requires to evaluate a determinant of sizeM.

With the appropriate choice of the movement model parameters

and the placement and number of interacting locations around the

home range centers, we ensure that the probability of transmission

at the sites excluded from the M selected is negligible.

We consider perfect transfer efficiency and compare the first-

encounter probability, T n0 (t) with r = 1, to m(t) in Figure 3.

Compared to the previous case with reflecting walkers, one can

see that the dynamics is relatively quicker. The first-encounter

mode is reached after 10 and 12 steps when, respectively, H = 5

and H = 8 in Figure 2, while it is reached after 3 steps when H = 2

and after 8 steps when H = 4 in Figure 3. This faster time

dependence can be explained by the choice of the parameters of

the problem. In the resetting case at each time step, the chance of a

walker to move can be shown to be 3/10 relative to the reflecting

walkers. This fast dynamics is also noticeable in m(t), when

compared to Figure 2.
3.4 Mean first-transmission times
between animals diffusing in
two-dimensional home ranges

As mentioned earlier, the reaction diffusion approach allows

one to map the first-transmission problem with transfer efficiency r
to a first-absorption problem with multiple static partially

absorbing targets located at Si (i = 1,…,M) in a spatial domain of
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double the original dimensions. Since it is now theoretically possible

to predict exactly the mean first-absorption time to any of a set of

partially absorbing targets (Giuggioli and Sarvaharman, 2022), we

exploit here that advance for our transmission problem. We

examine the case of two reflected lattice walkers moving in two

dimensions in partially overlapping home ranges (see the top panel

of Figure 4). If we call F n0 the mean transmission time to a set ofM

co-location sites starting from a site n0, we have (Giuggioli and

Sarvaharman, 2022)

F n0 =
det   (T0)

det   (T1) − det   (T)
, (21)

where the elements of the matrix T are expressed exactly in

terms of mean first-passage times T , mean return times R, and the

transfer efficiency r. More specifically, we have Tij = TSj→Si

(j, i = 1,…,M, with i≠j), while the diagonal elements are given by

Tii =
r−1
r RSi , whereRSi is the mean return time to site Si. The other

two matrices are obtained from T as follows: T0ij = Tij − Tn0→Si 

and T1ij = Tij − 1.

We use Equations (16) and (17) to build the elements of the

matrices in Equation (21), and in Figure 4, we plot F n0 , the mean

transmission time, as a function of r for different diffusion

constants in the bottom left panel, and the mean encounter time

(r = 1) as a function of the diffusion constant, expressed via the

(dimensionless) diffusivity parameters qix and qiy . As r approaches

1, the dynamics become motion limited, because the slowest

process, the time to reach the targets in this case, governs the

time scale of the interaction. From Equation (21), one can extract a

perturbation expansion in 1=r − 1 (Giuggioli and Sarvaharman,

2022), and the shape of the slowing down in the decrease of F n0 in

the left panel can be quantitatively explained as the first-order

correction to the zeroth order (motion limited) term. The plot in the

right panel shows that the encounter rate is mainly linearly

proportional to the animal diffusion constant (Bénichou and
FIGURE 2

Schematics of two animals roaming within separate one-dimensional home ranges with partial overlap (left panel) and their first-encounter
probability (right panel). On the left panel, the circle displays an animal while the arrows indicate the movement probability at each time step: the left
and right horizontal arrows represent the probability to move, respectively, left and right, while the bent arrow is the probability of remaining at the
same site. Although not shown in the schematics, the movement rules at the boundary sites are slightly different with the probability of staying
modified to 1 − qm=2, while the probability to move outside of the domain is suppressed. The size of the two home ranges is equal to N = 11. The
first walker diffuses within a domain centered at c1 = 6, is limited by reflecting boundaries at sites 1 and 11, and starts from n10 = 6, while for the

second walker, there are two cases: the allowed range is either (i) [6,16] or (ii) [9,19], and in both cases with reflecting boundaries at the end sites.
The two animals may encounter each other when they simultaneously occupy a site in the overlap region, made up of a total of M sites. In case (i),
the distance between the two home range centers is H = 5 and the second walker starts from n20 = 11 , while in case (ii), we have H = 8 and n20 =

14. The quantities T n0
(t) (in the legend, we have omitted the subscript n0 for clarity), from Equation (7), and m(t), from Equation (9), are shown by the

continuous and dotted lines [in red for case (i) and in blue for case (ii)], respectively. For both walkers, we take diffusivity q1 = q2 = 0:4.
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Voituriez, 2014). While such dependence is somewhat expected,

what is unexpected is the very limited deviation from an inverse q

dependence of F n0 , because one can show that for any element

T(n1,n2)→(m1,m2) = q−1g(n1, n2,m1,m2, q). The right panel thus points

to a negligible dependence of the function g(n1, n2,m1,m2, q) on q.
4 Summary and discussion

The ability to track simultaneously with high resolution a large

number of animals both in laboratory settings and in the field

demands the development of modeling approaches to predict when,

where, and how animals interact. As some of the theoretical

challenges to represent animal interactions have already been

tackled in analyzing physical and chemical systems, our aim here

has been to make the movement ecology community profit from

insights already gained in other fields. To do so, we have opened up

the modeling literature from statistical physics, both past and

present, on reaction diffusion processes and we have studied the

transmission and encounter problem between two animals leaving

within separate home ranges.

We have presented the mathematical details that allow to

predict over time first-transmission and first-encounter

probability in both continuous and discrete variables. With

continuous variables, we have considered two Brownian walkers

that may interact with an information transfer rate C when within a

threshold distance b and have modeled their motion via a Ornstein–

Uhlenbeck process. With discrete variables, we have instead

considered that interactions may occur with probability r upon
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co-location and have taken reflected and resetting lattice random

walkers to represent animals that roam within distinct home ranges.

With perfect transfer efficiency (C → ∞ or r → 1), the

interaction events reduce to encounter events. In this case, we

have compared the continuous formulation to study first-encounter

probability to the one proposed recently in the literature using a

distance threshold probability and we have been able to derive a

mathematical equation that connects the two quantities. To

quantify the difference in the two probabilities, we have used

discrete variables and looked at the dynamics of two animals

living in separate home ranges and moving and interacting on

constrained one-dimensional lattices. That comparison allows us to

visualize why one is a normalized probability function with all finite

moment, while the other is not normalized and possesses

infinite moments.

We recognize that the first-encounter probability and the

distance threshold probability capture different aspects of the

animal dynamics, and we thus believe that there should be scope

for employing both, or either, especially in light of the various

mechanisms with which animals may interact in an ecological

setting. If an encounter event affects detectable characteristics of

the animals, then clearly the first instance when that happens is the

relevant observable. Examples include the transfer of an infectious

pathogen or a parasite, a predator capturing a prey, or an animal

passing knowledge about food sources by being observed or smelled

by a nearby conspecific. In all these circumstances, the first-

transmission probability is a necessary tool to predict the

dynamics based on the interplay between the transfer efficiency

and the rate of movement. If, on the other hand, information
FIGURE 3

Schematics of two resetting random walkers (top panel) and their first-encounter probability (bottom panel). Compared to Figure 2, the movement
rules are modified by the fact that at each time step the animal may reset its location to its own home range center, indicated in the schematics by
the long arrows with probability r1 and r2. To mimic unbounded space the boundary conditions are periodic and the domain size (N = 19), diffusivity
(q1 = q2 = 0:4), and resetting probability (r1 = r2 = 0:4) are chosen to ensure that the contributions to the encounters of those trajectories that
exploit the lattice periodicity are negligible. For two cases analyzed, the home range centers are located at (c1, c2) = (9, 11) and (c1, c2) = (8, 12),
giving, respectively, a relative distance H between their home range center of 2 and 4. We have used Equation (13) to construct T n0

(t) in Equation (7)
and m(t) in Equation (9), and display them with the continuous and dotted lines [in red for case (i) and in blue for case (ii)], respectively. In both cases,
the walkers start from their corresponding home range centers (c1, c2) and interact when they simultaneously occupy a site within the domain [7,13],
consisting of M = 7 sites.
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transfer upon interaction is not binary (presence/absence) or it is

hard to detect, then knowledge of when animals are within a given

distance becomes useful, as shown in the very recent developments

(Albery et al., 2021; Noonan et al., 2021; Yang et al., 2023) following

ref (Martinez-Garcia et al., 2020).

While we have focused here on destructive searches, this does

not preclude the use of the reaction formalism in non-destructive

studies, and more specifically the one with discrete space–time

variables. In non-destructive scenarios, as the evaluation of the

forager efficiency is based on the cumulative encounter of targets,

the quantity of interest becomes the (multiple) visitation statistics to

any of the lattice sites where targets are located, coupled with a

resetting of the walker to a neighboring site upon a target capture.

Such dynamics can be studied analytically with the discrete

formalism, which has general validity for any Markov movement

process and irrespective of the choice of spatial constraint or

boundary conditions or the presence of spatial heterogeneities. It

could be exploited to provide some useful insights into some of the

ongoing debate about the efficiency of stochastic searches when

targets get replenished and walkers move as Lévy walkers

(Viswanathan et al., 1999; Benhamou, 2007; Reynolds, 2008;

Levernier et al., 2020; Buldyrev et al., 2021) and to explore the
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dependence on the density (James et al., 2008), boundary conditions

(Buldyrev et al., 2001; James et al., 2010), and the spatial

distribution of the resources (Humphries and Sims, 2014) without

using time-consuming stochastic simulations. As the discrete

formalism allows one to include any type of heterogeneities, it

could also bring insights into the timely studies about species

survival following habitat fragmentation and habitat loss as a

function of the animal foraging statistics (Wosniack et al., 2014;

Niebuhr et al., 2015). Another advantage of the discrete spatial

formalism in comparison to the diffusion equation is also worth

mentioning. With the latter, it is well known that one describes an

ensemble of spatiotemporal trajectories that include (with some

exponentially small probability) those that move infinitely fast from

a localized initial condition. This limitation, on the other hand, is

not present when using random walks on a lattice.

Despite the limitation of our Markov assumption, which considers

the movement to be diffusive, extensions of encounter estimations to

situations where the assumption about persistence is relaxed are

possible. The effects of correlations in the movement steps, also

called motion coherence, can be incorporated in a general reaction-

motion formalism using the so-called generalized master equation

(Kenkre et al., 1973; Kenkre, 1977), which possesses a non-local
FIGURE 4

Schematics of two animals roaming within separate two-dimensional home ranges with partial overlap along one direction (top panel) and their mean first-
transmission time (bottom panel). On the top panel, the circle displays an animal while the arrows indicate the movement probability at each time step: the
left, right, up, and down arrows represent the probability to move, respectively, left, right, up, and down. Although not shown by an arrow, the ith animal
while not at any of the boundaries can stay at the same site with probability   1 − qix=2 − qiy=2, where qix and qiy denote the diffusivities in the x- and

y-directions, respectively. The probability of staying at sites (except four corners) on boundaries along the x- and y-directions is 1 − qix=4 − qiy=2 and 1 −

qix=2 − qiy=4, respectively, while at the four corners, it is 1 − qix=4 − qiy=4. The size of the two home ranges is equal to N�N with N = 11 and N = 5. The

first walker diffuses within a domain centered at c1 = (6, 3) is limited by reflecting boundaries at sites 1 and 11 in the x-direction and at sites 1 and 5 in the y-
direction, and it starts from n10 = (6, 3). For the second walker, the allowed range is [9,19] in the x-direction and [1,5] in the y-direction, and in both cases
with reflecting boundaries at the end sites. Hence, the domain for the second walker is centered at c2 = (6, 3), which is also its starting point, i.e., n20 = (14, 3)
. The distance between the two home range centers is H = jc2 − c1j = 8. The two animals may encounter each other when they simultaneously occupy a
site in the overlap region, made up of a total of M sites. The quantity Fn0

from Equation (21) is shown on the panels at the bottom. The bottom left panel
shows Fn0

as a function of r for the same diffusivities for both walkers in both directions. The bottom right panel shows the mean encounter time
Fn0

(r = 1) as a function of diffusivity q such that q = q1x = q1y = q2x = q2y .
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memory kernel with one extreme (never decaying memory) reducing

to a wave equation, that is, to ballistic motion, and the other extreme to

an infinitely fast decaying memory, that is, diffusive motion. The

intermediate situation, with an exponentially decaying memory,

represents coherent motion at short times, and incoherent motion at

long times, and was shown to be identical to the telegraphers’ equation

in one dimension (Kenkre, 1977). In the context of exciton

annihilation, an example of how motion coherence has been

included using a generalized master equation can be found in ref

(Gülen et al., 1988).

Accounting for correlations in the discrete formalism is also

possible and can be accomplished by representing a movement

process with t correlated steps as a vectorial Markov process with t
components (see, e.g., Ernst, 1988). The formal difference from the

cases analyzed here consists of the need to deal with larger matrices

since the set of M interaction locations would become tM possible

interaction sites in the higher-dimensional space.

Overall, while there is still much development to be done, an

important contribution of our study is that, using a reaction motion

formalism, it is possible to predict time-dependent first-

transmission and, in the limit, first-encounter probability in terms

of the animal movement statistics and the geometric constraints of

the space.
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