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reveals evidence of ancient
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Mepraia genus (Hemiptera:
Reduviidae: Triatominae)

Tiago Belintani1,2*, Carlos Congrains3,4, Heloisa Pinotti2,
Samira Chahad-Ehlers4, Reinaldo A. de Brito4, Jader Oliveira5,
Daniel Frias-Lasserre6, Felipe Mendes Fontes7

and João Aristeu da Rosa2

1Institute of Biology, Campinas State University (Unicamp), Campinas, SP, Brazil, 2School of
Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, Brazil, 3Department of
Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, HI, United States,
4Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil,
5Laboratory of Entomology in Public Health, Department of Epidemiology, Faculty of Public Health,
University of São Paulo, São Paulo, SP, Brazil, 6Instituto de Entomologia, Univ. Metropolitana de Ciencias
de la Educación, Santiago, Chile, 7Post-Graduation Program in Health and Environment, Tiradentes
University (UNIT), Aracaju, SE, Brazil
Introduction: TheMepraia genus is composed of three endemic species in Chile,

namely Mepraia spinolai, Mepraia gajardoi, and Mepraia parapatrica, all capable

of transmitting the causative agent of Chagas disease. Although species

divergence within this genus is supported by morphological, molecular, and

geological evidence, it has never been validated by genome-wide data.

Methods: In this sense, a pioneering phylogenomic study was conducted using

transcriptome data of the three species, aiming to infer robust phylogenies and

evaluate the impact of interspecific gene flow on the evolution of these insects.

Our transcriptomes were used to robustly infer the phylogenetic relationships,

employing multi-species coalescent and supermatrix approaches, as well as to

investigate the occurrence of introgression.

Results and discussion: The inferred phylogenies support the monophyly of the

three described taxa and infer divergence times, although gene trees display high

levels of discordance. Our results indicate widespread introgression among

Mepraia lineages. Thus, our results support that Mepraia diversification occurred

in a short period resulting in reticulate phylogenies and low genetic diversity.

Additionally, we obtained evidence of introgression suggesting that ancient

hybridization has had a major role in the evolution of the three Mepraia species.

KEYWORDS

interspecific gene flow, multi-species coalescent approach, introgression, ILS,
reticulate phylogenies
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Introduction

The Andes Mountains are a continuous chain of mountains

along the western coast of South America with average altitudes

of ~4,000 meters above sea level, whose formation has had a

profound impact on the geography and climate of this continent

(Hartley, 2003; Moreira-Muñoz, 2011). For instance, in Chile, these

mountains define a unique, long, and narrow coastal environment,

which exhibits a highly diverse climate due to the wide latitudinal

variation (Moreira-Muñoz, 2011). The uplift of the Andes has had a

profound effect on the climate of the Southern Hemisphere,

creating an extensive barrier to atmospheric circulation and

promoting biogeographic changes that have affected the

evolutionary history of local fauna and flora (Pirie et al., 2006;

Antonelli et al., 2009). The uplift of the Andes has exerted a

significant influence on the dispersal and diversification of a

variety of South American organisms, such as plants, mammals,

insects and specifically in triatomines (Mauseth, 1996; Doan, 2003;

Struwe et al., 2009; Monteiro et al., 2018; Pavan et al., 2021).

The genus Mepraia Mazza, Gajardo and Jörg, 1940 is a

Triatominae Jeannel, 1919 endemic to arid and semi-arid regions

(Frıás-Lasserre et al., 2019). This previously considered monotypic

genus (Lent et al., 1994), comprises three distinct species: Mepraia

spinolai (Porter, 1933) Mepraia gajardoi (Frıás-Lasserre et al.,

1998), and Mepraia parapatrica (Frıás-Lasserre, 2010). These

species are of significant public health importance as they are

involved in the sylvatic cycle of the etiologic agent (Chacón et al.,

2016; Lambarri et al., 2018). M. gajardoi depends on seabirds as its

main food source, as well as on lizards that inhabit coastal regions.

M. parapatrica also feeds on these species but has been observed to

include domesticated mammals in its diet when it invades human

settlements (Frıás-Lasserre, 2010). In contrast, M. spinolai prefers

wild and domesticated mammals and exhibits a strong tendency to

invade human habitats in Andean valleys, although it never feeds on

seabirds (Frıás-Lasserre, 2010).

Mepraia has unique attributes among the triatomines, such as

diurnal feeding habits and wing polymorphism (Faúndez and

Carvajal, 2012; Frıás-Lasserre et al., 2019). In summary, all

Mepraia females are micropterous (with reduced wings), which

may be a new or apomorphic characteristic of Triatominae (Frıás-

Lasserre, 2010). On the other hand, all M. gajardoi males are

brachypterous (with short wings) (Frıás-Lasserre et al., 1998), and

although M. parapatrica males are mostly brachypterous, some are

macropterous (with long wings) (Frıás-Lasserre, 2010). In contrast,

M. spinolai has both macropterous and brachypterous males (Frıás-

Lasserre, 2010; Frıás-Lasserre et al., 2019).

The studies on geographical distribution (Campos-Soto et al.,

2020), molecular data (Campos-Soto et al., 2013; Campos-Soto

et al., 2015; Campos-Soto et al., 2022), morphology (Campos-Soto

et al., 2011; Frıás-Lasserre et al., 2018; Frıás-Lasserre et al., 2019),

and cytogenetics (Frıás-Lasserre et al., 1998; Frıás-Lasserre et al.,

2019) provide support for the three species of Mepraia. However,

although phylogenies with few genes support the described taxa

(Calleros et al., 2010; Campos-Soto et al., 2013), there is no

consensus on the genus diversification process.
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Two hypotheses have been proposed to explain the

diversification of Mepraia. The first suggests that the genus has

originated due to a vicariant process followed by dispersion and

isolation, which was potentiated by the arid climate of the region

(Frıás-Lasserre, 2010). This hypothesis is based on morphological

and cytogenetic data which suggest that after the emergence of the

Andes, and their separation from their ancestor, a process of

dispersion and speciation occurred in a North–South direction

(Frıás-Lasserre, 2010). According to this hypothesis, M. gajardoi

is considered the most ancestral species, while M. parapatrica gave

rise toM. spinolai after some cytogenetic alterations (Frıás-Lasserre,

2010). This latter study suggests that the wing morphology supports

the hypothesis that the macropterous wing structure of M. spinolai

is derived fromM. parapatrica andM. gajardoi, which have winged

males with ancestral characteristics (Frıás-Lasserre et al., 1998;

Frıás-Lasserre and Atria, 1998; Frıás-Lasserre, 2010).

The second and most recent proposal suggests that the

diversification of Mepraia was also driven by geological changes

and climatic fluctuations over the past 5 million years (Campos-

Soto et al., 2022). In this model, there were two geographically

isolated clades (Campos-Soto et al., 2022). The northern group gave

rise to M. parapatrica, M. gajardoi, and a new lineage, while the

southern group formed M. spinolai. However, this hypothesis is

based only on data from three mtDNA genes (Campos-Soto et al.,

2022), and further studies are needed to confirm its validity.

Although there is still no definitive consensus on the processes

that led to the diversification of Mepraia, recent research indicates

that it likely occurred rapidly (Justi et al., 2016; Campos-Soto et al.,

2020; Campos-Soto et al., 2022). Several lines of evidence, such as

genetic and phenotypic differences between populations,

geographic and reproductive barriers, and molecular dating,

suggest that there was rapid species diversification (Calleros et al.,

2010; Campos-Soto et al., 2022), though, currently, there are only a

few studies that investigate levels of population isolation and gene

flow between them. Resolving the phylogenetic relationships of

groups that diverged recently can be challenging (Seehausen et al.,

2014; Marques et al., 2016; Weng et al., 2020; Congrains et al., 2021)

due to the retention of ancestral polymorphisms causing incomplete

lineage sorting (ILS), introgression, and/or gene duplication

(Mallet, 2005). This scenario can become even more complex if

there has been ancient gene flow, which can produce conflicting

phylogenetic signals throughout the genome (Zhou et al., 2016;

Edelman et al., 2019). Multi-species coalescent methods have been

useful in clarifying evolutionary relationships and mitigating the

impact of deep coalescence (Degnan and Rosenberg, 2009; Young

and Gillung, 2020).The combination of next-generation sequencing

technologies and robust phylogenetic methods has effectively

resolved ambiguous phylogenetic relationships for a variety of

organisms (Rokas et al., 2003; Dunn et al., 2008; Regier et al.,

2010; Irisarri et al., 2017) and may be useful in the study ofMepraia.

This study aimed to investigate phylogenomic relationships in

the Mepraia genus for the first-time using transcriptome data from

the heads and salivary glands of their three species. To do so, we also

evaluated the impact of gene flow on the genus’ speciation by using

different methodological approaches, which increases the reliability
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of the results. Concatenation-based approaches and multispecies

coalescent methods were employed for this purpose, and the study

also assessed the impact of ILS and introgression events on the

inferred phylogenies.
Materials and methods

Sampling

The specimens used for this study were collected from six

localities in Chile (Table 1), being two different localities per taxa

(Figure 1). The specimens were deposited in the Triatominae

Collections of the School of Pharmaceutical Sciences, São Paulo

State University (Unesp), Araraquara, SP, Brazil. The species-level

identification was carried out by Dr. Daniel Frıás-Lasserre based on

morphological characters (Frıás-Lasserre, 2010).
RNA extraction, library preparation,
and sequencing

Head and salivary glands of 5th instar male nymphs of M.

garjadoi (n = 6), M. spinolai (n = 6), and M. parapatrica (n = 6)

were carefully removed to preserve the integrity of the salivary

glands. Total RNA of head and salivary glands of each specimen was

extracted following a Trizol/Chloroform protocol (Chomczynski
Frontiers in Ecology and Evolution 03
and Mackey, 1995). RNA integrity was checked visually on agarose

gel and quantified using Qubit fluorometer, while NanoDrop

measurements ensured the selection of samples with absorbance

indices of 260/230 and 260/280 close to 2.0. In addition, we

obtained the RNA integrity number (RIN) using capillary

electrophoresis on an Agilent 2100 Bioanalyzer System (Agilent

Technologies®, Standard Protocol for RNA). The value obtained

from the RIN was 7.1 ± 0.3 in a sample group of 18. Libraries were

constructed using the TruSeq® RNA Sample Prep kit v2 (Illumina)

following the protocol suggested by the manufacturer and were ran

in an Illumina HiSeq2500 platform with 2 × 100 bp paired-end

reads in the Laboratory for Functional Genomics Applied to

Agriculture and Bioenergy of the Luiz de Queiroz College of

Agriculture (ESALQ) at the University of São Paulo (USP) in Brazil.
De novo transcriptome assembly and
transcript filtering

Raw reads were quality-trimmed using Trimmomatic v.0.39

(Bolger et al., 2014); setting the parameters: LEADING:5

TRAILING:5 SLIDINGWINDOW:5:20 MINLEN:50. All Mepraia

assemblies were performed using a de novo strategy using the

Trinity package v.2.9.1 (Grabherr et al., 2011). To optimize contig

assembly, the filtered reads were normalized using a maximum

depth of 60 using the insilico_read_normalization.pl tool, which is

included in the Trinity v.2.9.1 package (Grabherr et al., 2011),
TABLE 1 Specimens used in the study and SRA accession code on GenBank.

Species IDs Data Region of Chile Habitat Coordinates Elevation Accession code*

M. spinolai M. spinolai1 03/12/18 Metropolitan wild S 33° 05.279’ W 070 40.800’ 755 m SRR23005999

M. spinolai M. spinolai2 03/12/18 Metropolitan wild S 33° 05.279’ W 070 40.800’ 755 m SRR23005996

M. spinolai M. spinolai3 03/14/18 Atacama peridomicile S 26° 48.159’ W 069 57.040’ 1916 m SRR23006000

M. spinolai M. spinolai4 03/14/18 Atacama peridomicile S 26° 48.159’ W 069 57.040’ 1916 m SRR23005995

M. spinolai M. spinolai5 03/14/18 Atacama peridomicile S 26° 48.159’ W 069 57.040’ 1916 m SRR23006001

M. spinolai M. spinolai6 03/14/18 Atacama peridomicile S 26° 48.159’ W 069 57.040’ 1916 m SRR23005994

M. gajardoi M. gajardoi7 03/14/18 Tarapacá peridomicile S 26° 48.159’ W 069 57.040’ 1916 m SRR23006003

M. gajardoi M. gajardoi8 03/18/18 Tarapacá wild S 21° 08. 004’ W 070° 07.606’ 29 m SRR23006002

M. gajardoi M. gajardoi9 03/18/18 Tarapacá wild S 21° 08. 004’ W 070° 07.606’ 29 m SRR23005988

M. gajardoi M. gajardoi10 03/18/18 Tarapacá wild S 21° 00. 535’ W 070° 10. 104’ 23 m SRR23005990

M. gajardoi M. gajardoi11 03/18/18 Tarapacá wild S 21° 00. 535’ W 070° 10. 104’ 23 m SRR23005988

M. gajardoi M. gajardoi12 03/18/18 Tarapacá wild S 21° 00. 535’ W 070° 10. 104’ 23 m SRR23005991

M. parapatrica M. parapatrica13 03/20/18 Antofagasta peridomicile S 24° 53. 571’ W 070° 31. 506’ 14 m SRR23005987

M. parapatrica M. parapatrica14 03/20/18 Antofagasta peridomicile S 24° 53. 571’ W 070° 31. 506’ 14 m SRR23005992

M. parapatrica M. parapatrica15 03/20/18 Antofagasta peridomicile S 24° 53. 571’ W 070° 31. 506’ 14 m SRR23005986

M. parapatrica M. parapatrica16 03/20/18 Antofagasta wild S 24° 50. 062’ W 070° 32. 447’ 7 m SRR23005993

M. parapatrica M. parapatrica17 03/22/18 Antofagasta wild S 24° 50. 062’ W 070° 32. 447’ 7 m SRR23005998

M. parapatrica M. parapatrica18 03/22/18 Antofagasta wild S 24° 50. 062’ W 070° 32. 447’ 7 m SRR23005997
*Accession Code GenBank/Bioproject PRJNA91646.
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retaining only contigs with minimum size of 200 bp. Assembly

statistics were computed using the TrinityStats.pl Perl script

contained in the Trinity package. To mitigate the likelihood of

including false and redundant transcripts, only the most expressed

isoform per Trinity cluster was retained using the perl script

align_and_estimate_abundance.pl available in Trinity. Redundant

transcripts with ≥95% of identity was filtered out using CD-HIT-

EST v. 4.7 (Fu et al., 2012). The filtered transcriptomes were used

for downstream analyses. The completeness of the transcriptome

assembly was assessed using BUSCO v. 4.0.2 (Simão et al., 2015)

which was used to estimate the proportion of all single copy,
Frontiers in Ecology and Evolution 04
duplicate and missing orthologs that are represented in the

arthropod dataset (Kriventseva et al., 2019).
Prediction of coding sequences

We used the software Transdecoder 5.5.0 (Haas et al., 2013)

to identi fy putat ive coding sequences (CDSs) . First ,

TransDecoder.LongOrfs was used to retain CDSs encoding

peptides greater than 100aa. In the next step, inferred peptides

were submitted to the tool HMMER 3.1b2 package (Eddy, 2011) to
FIGURE 1

Map of Chile showing triatomine collection localities of M. gajardoi, M. parapatrica, and M. spinolai. The images of the specimens on the map do not
represent the actual size proportion of the insect.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1215319
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Belintani et al. 10.3389/fevo.2023.1215319
search for conserved domains using PFAM-A (Mistry et al., 2021)

database. We also aligned the putative peptides against the

GenBank non-redundant (nr) protein database using BLAST+

2.10.1 (Camacho et al., 2009). The TransDecoder.Predict utility

fetched information generated in previous steps to predict CDSs.
Functional annotation

We used BLASTp (2.10.1) (Camacho et al., 2009) to search for

regions with significant similarity to the putative CDSs against the

Genbank (nr) Arthropoda v5 non-redundant protein database. Hits

with e-value lower than 10−6 were considered significant. Putative

CDSs were also scanned for the presence of conserved protein

domains using InterProScan v. 5.24 (Jones et al., 2014). Blast2GO

program (Conesa et al., 2005) was used to associate each CDS with

gene ontology (GO) terms (Harris et al., 2004). We used the WEGO

tool (Ye et al., 2006; 2018) to plot mapped GO terms.
Phylogenetic analyses

Coalescent-based species tree inference with
SNP data

We estimated a species-level phylogenetic analysis using SNP

data under the coalescent framework model with three species of

Mepraia and T. infestans as an outgroup. T. infestans is the closest

species toMepraia for which there are large-scale data available. For

this, inferred CDSs from each sample were mapped against the

genome of T. infestans (GCA_011037195.1) using the –nofw and

–very-sensitive options in Bowtie2 (Langmead and Salzberg, 2012).

Duplicate PCR reads were removed using MarkDuplicates in the

Picard tools available in https://broadinstitute.github.io/picard/.

SNP calling was performed using the mpileup tool from the

Samtools package (Li et al., 2009) and mpileup2snp from

VarScan2 (Koboldt et al., 2009), using the following parameters

for the latter: a mapping quality of 20 and average Phred quality of

30, minimum coverage of 6 and strand filter (removed variants with

more than 90% supported by only one strand). We also applied a

high-filtered approach in SNPs to retain only the most suitable for

phylogenetic analysis using Bcftools 1.9 (Danecek et al., 2021). For

that, we excluded sites where no alternative alleles were called in one

of the samples, all sites where only alternative alleles are called, and

sites where the proportion of missing data is greater than 20%

(“F_MISSING > 0.2”). We also ensured the presence of only biallelic

SNPs in the dataset using the -m and -M commands in Bcftools 1.9

(Danecek et al., 2021).

The unlinked biallelic SNPs detected in all samples (excluding

sites with missing data) were used to construct an extensive matrix

of SNPs (60,685 characters), which was used to infer species trees

using SVDquartets (Chifman and Kubatko, 2015) and SNAPP

(Bryant et al., 2012). Using both SVDquartets and SNAPP

techniques can improve the accuracy of inferring phylogenetic

trees from biallelic SNPs by overcoming the limitation of few

SNPs and providing a more complex evolutionary model to

consider mutation and recombination rates.
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The species tree inferred on SVDquartets (Chifman and

Kubatko, 2015) was implemented in PAUP* (Phylogenetic

Analysis Using Parsimony) (Swofford, 2002). We evaluated all

possible quartets, both with and without prior assignment using

non-parametric methods generated from 100,000 quartets and

1,000 bootstrap replicates. In the Bayesian coalescent multispecies

analysis in SNAPP (Bryant et al., 2012), implemented in BEAST2.5

(Bouckaert et al., 2019), we performed two independent runs with a

chain length of 109 generations, sampling every 1,000 generations.

We checked for convergence (ESS>200) and determined the burnin

(10%) using TRACER v1.6 (Rambaut and Drummond, 2007). A

maximum clade credibility (MCC) tree was summarized with

TreeAnnotator and visualized in FigTree. Additionally, we

generated a density tree using Densitree (Bouckaert, 2010) to

describe alternative topologies.

Ortholog inference, supermatrix approach, and
coalescent-based species tree inference

To predict orthologs from transcriptomes of non-model

organisms, we used a pipeline developed by Yang and Smith

(2014) using the inferred CDS sequences as input. This analysis

was performed on the 18 transcriptome assemblies produced in this

study, along with T. infestans (Accession code: SRR4427079) as an

outgroup. The SRR442779 data was processed along with the samples

collected in this study as described above. The CDSs predicted from

the 19 transcriptomes were submitted to all-by-all BLAST using

BLASTn (2.12.0) (Camacho et al., 2009) setting relaxed parameters

(hit_fraction_cutoff = 0.4, inflation = 1.4) and filtered by the MLC

program (Van Dongen, 2008). Clusters were used to estimate trees of

putative homologs as described in Yang and Smith (2014). We used

the script python “filter_1to1_orthologs” described by Yang and

Smith (2014) to retain only putative orthologs to infer phylogenetic

relationships, as described below. We combined putative orthologs in

a supermatrix, which were aligned with MAFFT v.7.305 (Katoh and

Toh, 2008). Phyutility v.2.2.6 (Smith and Dunn, 2008) was used to

trim the aligned ortholog clusters, with a configuration of 0.3 for

MIN_COLUMN_OCCUPANCY. The al ignments were

concatenated using the python scripty “concatenate_matrices”

(Yang and Smith, 2014) and trimmed using trimAl v.1.2 (Capella-

Gutiérrez et al., 2009). The orthologous inference resulted in a total of

3,245 orthologous cluster that were used in the downstream analyses.

We constructed a supermatrix with 3,245 regions aligned orthologs to

infer phylogenetic relationships using maximum likelihood (ML) in

RAxML v.8.2.9 (Stamatakis, 2006). Evolutionary models for each

orthologous cluster partition were evaluated independently under the

GTRCAT model with sampling of 200 bootstrap replicates. The tree

obtained was visualized in FigTree.

We used the 3,245 gene trees estimated in RaxML as input to

estimate species trees in ASTRAL-III 5.7.8 (Zhang et al., 2018).

ASTRAL-III 5.7.8 uses the quartet trees of the maximum likelihood

phylogenies of each gene to produce the species tree topology and

calculates the quartet support, which is the percentage of quartets

that agree on a specific branch in the species tree. Our focus is on

Mepraia species, so we inferred the coalescent tree of species in this

group with T. infestans as an outgroup. The inferred species tree in

newick format was visualized in FigTree (Rambaut, 2014).
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We used SODA (Rabiee and Mirarab, 2021) implemented in

ASTRAL-III 5.7.8 to narrow down candidate putative species for

testing hybridization in a downstream analysis. SODA uses quartet

topology frequencies to determine whether each branch in a guide

tree inferred from gene trees is likely to have a positive length and

uses the results to infer a new species tree that defines species

boundaries. The analysis was performed with a cut-off p-value of

0.001. We used the species tree obtained by ASTRAL-III 5.7.8 and

the 3,245 gene trees obtained by RAxML to characterize the

potential conflict between the gene trees using PhyParts (Smith

et al., 2015). A bipartition analysis was performed using the default

bootstrap filter, ignoring edges with bootstrap values < 50% (Smith

et al., 2015).
mtDNA-based phylogeny

The phylogenetic relationship amongMepraia was also inferred

using COI mtDNA. For this, we accessed Mepraia sequences

available on the GenBank (Table S5). We accessed data of T.

breyeri (Del Ponte, 1929) and T. eratyrusiformis (Del Ponte,

1929), which were used as outgroups because of their

phylogenetic proximity to the Mepraia genus (Hypsǎ et al., 2002;

Justi et al., 2014). Triatoma is a paraphyletic genus of Triatominae,

which makes some of their species phylogenetically closer to

Mepraia than others (Justi et al., 2014). BLASTn (Camacho et al.,

2009) was used to compare the set of transcriptomes against

Mepraia COI sequences. The COI sequences were aligned using

MAFFT v.7.305 (Katoh and Toh, 2008) and manually trimmed.

Phylogenetic trees were inferred by Bayesian inference using

MrBayes v3.2.6 (Ronquist et al., 2012) and the most likely

evolutionary models selected by jModelTest2 (Darriba et al.,

2012). In MrBayes v3.2.6 Markov chain Monte Carlo (MCMC)

was used to approximate the posterior probability (Metropolis et al.,

1953) with two independent runs of four MCMC chains for 1 x 107

generations performed with sampling of every 5,000 generations.

Phylogenetic tree parameters reached stationarity after a burning

period of 250,000 generations. Optimal trees were then sampled

every 1,000 generations to obtain the final consensus tree and

associated subsequent probabilities, which was visualized in

FigTree (Rambaut, 2014). The COI sequences were used to

estimate genetic distances, according to the Kimura 2-parameter

model (Kimura, 1980) using MEGAX 10.2.6 (Kumar et al., 2018).
FBD-based divergence dating

We used 3,245 concatenated orthologs to estimate the

divergence time. For this, we used a stochastic branching process

and relaxed clock model in a Bayesian framework using BEAST

v2.6.1 (Bouckaert et al., 2019) under the Fossilized Birth-Death

(FBD model) (Heath et al., 2014). The FBD model has become the

most appropriate way to calibrate divergence time estimates when

calibration dates represent fossil occurrence times (Heath et al.,

2014). Thus, the time of occurrence of the fossil triatomine

Panstrogylus hispaniolae (Ponair, 2013) was integrated, which is
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dated between ~20–15 million years ago (Mya). We integrated the

species T. infestans with dates between 10 and 2 Mya to represent

the uplift of the Andes (5 to 2 Mya) that supports the separation of

Mepraia from other Argentine triatomines (Justi et al., 2016;

Campos-Soto et al., 2022). Independent analyses of MCMC were

performed with sampling every 5,000 generations. The convergence

(ESS >200) evaluated by Tracer v1.7 (Rambaut et al., 2018) occurred

after 5x109 generations. The first 50% tree topologies sampled were

discarded as burn-in and the remaining trees were summarized in

TreeAnnotator v2.5 (Bouckaert et al., 2019). The generated trees

and the credibility intervals were visualized in FigTree

(Rambaut, 2014).
Introgression detection

ABBA-BABA tests were conducted (Patterson et al., 2012) to

investigate potential introgression between Mepraia species. All

reads were merged with the SamTools “merge” option (Li et al.,

2009). The tests were performed using the Abbababa script

implemented by ANGSD (Korneliussen et al., 2014). For this, the

T. infestans transcriptome (GenBank: SRR4427079) was used as an

outgroup and a reference for mapping. The ABBA-BABA test

compares the segregation of the biallelic polymorphism of four

samples (H1, H2, H3 and H4), where H1, H2 and H3 represent the

inner group and H4 the outer group. Introgression was estimated

using the D statistics, which is calculated from the deviations in the

proportions of alleles shared between H2 and H3 (ABBA) and H1

and H2 (BABA). A jack-knife approach was also used to calculate

the D corrected for bias, standard error D-statistics and Z-test

(Soraggi et al., 2017).

HyDe (Blischak et al., 2018) was also used to detect

introgression using the supermatrix with 3,245 aligned

orthologous clusters of Mepraia. To detect phylogenetic

invariants, HyDe uses a rooted network of four taxa, one of

which is the outgroup and three triplets (two possible progenitors

and one hybrid). For all analyses, we incorporated a Bonferroni

correction and considered significance at a <0.05, with g estimates

between 0 and 1. Z-scores greater than 3 were interpreted as

evidence of introgression.

As we found evidence of gene flow betweenMepraia species, we

inferred phylogenetic networks to detect hybridization events,

visualized as reticulations in the network (Huson and

Scornavacca, 2011), inferred from 3,245 clusters of Mepraia

orthologs using pseudo-maximum likelihood approach (Yu and

Nakhleh, 2015) implemented in PhyloNet v. 3.6.1 (Than et al.,

2008). PhyloNet estimates the topology of the network and the

probability of inheritance (g) which is the probability of

hybridization considering the population of two parents (Yu

et al., 2012). We built four networks varying the reticulation

number from 0 to 4 and defining taxa groups corresponding to

each clade of the species-tree. The optimal network for each run was

selected based on the highest log probability after 500 searches. The

probability of the best network for each run was also compared to

choosing the optimal number of crosslinks reticulations in

the network.
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We examined estimated coalescent branch lengths using

ASTRAL III v. 5.7.3 to quantify the expectations of incomplete

lineage sorting (ILS) along the tree. For the incomplete lineage

sorting (ILS) test with the best ML nuclear gene trees from RAxML

and 200 bootstraps (BS), we used ASTRAL III v 5.7.3. We also

applied the JML test (Joly, 2012) with all 3,245 orthologous clusters

concatenated as input to test introgression based on genetic

distances (Joly, 2012). The input posterior distributions of the

species trees were generated with *BEAST (Heled and

Drummond, 2010) implemented in BEAST v.2.5 (Bouckaert et al.,

2019) for 5 × 109 generations of tree sampling, which were tested

with JML.
Results

De novo transcriptome assembly and
quality assessment

The 18 RNA libraries from head and salivary glands of the three

Mepraia species generated a total of 267,766,381 reads of length of

100 bp, with an average of 15 million reads per library. The six

libraries per species generated 83,257,292, 91,093,659 and

93,415,430 reads for M. gajardoi, M. parapatrica, and M. spinolai,

respectively (Table S1). After trimming, a total of 239,843,935 reads

were obtained, with an average of 14 million reads per library (Table

S1). After trimming, libraries by species retained approximately 83,

81 and 73 million reads of M. gajardoi, M. parapatrica, and M.

spinolai, respectively (Table S1). Transcriptome assemblies had an

average of 49,925 unigenes for M. spinolai, 54,553 for M. garjadoi

and 50,975 for M. parapatrica (Table S2). The BUSCO tool

indicated that these unigenes were composed of 71–92% complete

orthologs and 2–7% of fragmented groups for M. gajardoi, 88–

91.9% and 3–4% for M. parapatrica, and 83.4–90.1% and 2–8% for

M. spinolai, respectively (Table S3). All assemblies had an average of

10% of missing orthologs.
Identification of coding regions and
functional annotation

The CDS predictions resulted in an average of 22,955, 22,028

and 20,785 CDS in the transcriptomes of M. gajardoi, M.

parapatrica, and M. spinolai, respectively (Table S4). The search

against the NCBI’s non-redundant protein database using BLASTP

resulted in between 9–17 thousand matches with the M. spinolai

data, from 7 to 19 thousand with M. garjadoi and from 13 to 17

thousand with the M. parapatrica data (Table S4). We found on

average 14,145, 12,885 and 12,038 proteins with InterPro signatures

in the transcriptomes of M. garjadoi, M. spinolai and M.

parapatrica, respectively (Table S4). The functional annotation

through Blast2GO retrieved an average of 10,200 annotated genes

in the 18 transcriptome assemblies. On average, we found 8,684 GO

terms related to Molecular Function, 5,139 GO terms for Biological

Process terms and 2,736 GO terms for Cellular Component (Table

S4). WEGO predictions in this study were distributed into 45
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ontological categories from the three classes: Biological Process

(n=16), Molecular Function (n=14), and Cellular Component

(n=15) (Figure S1).
Phylogenomic analyses

Coalescent-based species tree inference with
SNP data

The SNP calling performed on the dataset containing 19

samples, including six samples from each Mepraia species and

one external group, resulted in the identification of 60,085 biallelic

unlinked SNPs. The SNP matrix analyzed under the SVD quartet

method resulted in a phylogeny with local posterior probability with

robust support (LPP ≥ 1) (Figure 2A). The consensus tree generated

by the SNAPP coalescent model is consistent with the quartet

results, both inferences recovering M. gajardoi and M. parapatrica

as sister species, and M. spinolai separated from the other species.

On the other hand, density trees illustrate a high number of

alternative topologies (Figure 2B). The agreement between the

SVDquartets results and other methods reinforces confidence in

the most supported topology. However, the presence of many

alternative topologies in density trees suggests that some regions

of the genome may have conflicting signals or incomplete

lineage sorting.

Ortholog inference, supermatrix approach, and
coalescent-based species tree inference

The study resulted in the identification of 3,245 putative

orthologous clusters which were used for downstream analyses.

The orthologs were concatenated to generate a matrix with 19 taxa,

4,105,693 characters and 72% occupation with approximately 28%

of missing data. The concatenated-based phylogenetic inference

using Maximum Likelihood resulted in three well-supported clades

that separated the species of the genus, with the speciesM. gajardoi

and M. parapatrica as sister taxa (Figure S2).

The species tree estimated by the coalescent model

implemented in ASTRAL-III 5.7.8 with 3,245 gene trees generated

2,903,954 quartets, of which 72% are congruent with the main

topology (Figure S3). The greedy consensus of the 100 bootstrap

replicates of the phylogenetic trees provided strong support for

species delimitation, showing that M. gajardoi and M. parapatrica

are phylogenetically close, while M. spinolai is divergent in relation

to these two species (Figure S3). The contrasting analysis of the

results of the concatenated data was useful to show that a high

percentage of gene trees have incongruent topologies with the

inferred species tree for Mepraia (Figure 3A). SODA species

delimitation analysis supports three monophyletic lineages

consistent with the three described taxa (Figure 3A).

Despite the high support for branching species in our analyses,

the support values for quartets reveal a high level of discordance

among gene trees. With PhyParts it was possible to analyze the

3,245 trees for the presence of conflict, agreement, and gene

duplications in individual homologs throughout the phylogeny.

The bipartition analyses were performed on modified

phylogenetic trees that retained only branches with at least 50%
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bootstrap support. Although we inferred a dominant topology for

the 3,245 orthologs clusters, our results indicate widespread

discordance among gene trees (Figure 3B). However, the

proportion of concordant trees shows little conflict with the

dominant topology (Figure 3B), and the small proportion of

conflicting bipartitions (green slice) supports a low number of

alternative topologies. We also observe a high number of low-

frequency topologies (red slice).
mtDNA-based phylogeny

Based on mtDNA and Bayesian theory, the phylogeny inferred

by Bayesian inference (BI) of the mitochondrial COI gene (57 taxa,

509 bp) identified three clades with high support (BPP 100), which

are congruent with the Mepraia species (Figure S3). This analysis

also supported the monophyly of the genus Mepraia and indicated

M. garjadoi andM. parapatrica as sister species (BPP 0.97) separated

from M. spinolai (BPP 100) (Figure S3). The sequences obtained

from the transcriptomes of this study were also grouped into clades

consistent with the species tree of the genus (Figure S3). Our values

estimated under the Kimura 2-parameter model (K2P) suggest a low

to moderate divergence between the compared species (Table S6).
FBD-based divergence dating

The FBD-based divergence dating analysis estimated the origin

ofMepraia to be between 1.21 and 2.31 Mya, with 2.31 being that of

the stem group and 1.21 being the most recent possible (95% HPD,
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PP=1.0) (Figure 4). The analysis indicates that the separation of M.

spinolai and the ancestor of the two other species happened between

0.07 and 1.61 Mya (PP=1.0), whereas the clades for the other taxa

have more recent estimated dates, of 0.05 and 1.18 Mya for M.

parapatrica (PP=1.0) and 0.04–0.36 Mya for M. gajardoi

(PP=1.0) (Figure 4).
Introgression detection

The ABBA-BABA test showed significant signs of introgression

between M. parapatrica and M. spinolai (Table S7) (D-statistics =

0.158, Z-score 4.43 (Figure 5). The HyDe analysis also showed signs

of significant hybridization for the M. parapatrica clade treated as

for all triplets evaluated as species and individual (Tables S7–S11).

The maximum pseudo-likelihood Inference (MPL) model

implemented in PhyloNet provided support for introgression

among Mepraia species (Figure 6). We tested up to four

reticulation events and the plateau was reached after two

reticulations (Figure S4). The network with zero reticulations was

consistent with the phylogenies inferred through different

methodologies in this study, and the network with the highest

probability showed introgression between the ancestral of M.

parapatrica and M. gajardoi (Figure S5).

ASTRAL-III showed that short branches were recovered for

both main clades (Figure S5), indicating the presence of high levels

of gene tree discordance that may be explained by ILS. However, the

JML analysis using our cluster of 3,245 orthologs indicated that all

comparisons were significant (p < 0.1) and provide evidence of

hybridization between the compared sequences (Table S12).
B

A

FIGURE 2

Inferred species trees with over 60,685 unliked biallelic SNPs under two different coalescent models. T. infestans species was used as an outgroup.
(A) Overlapping species tree and density inferred from SNPs data in the SNAPP. The clade’s maximum credibility tree is in black, and alternative
topologies are drawn in different colors, where blue represents the most favorable, followed by red and green. (B) Species tree inferred with SNPs
with SVDquartets.
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Discussion

This study contributed important genetic resources for the

subfamily Triatominae, generating transcriptome of heads and

salivary glands of M. gajardoi, M. parapatrica and M. spinolai.

These species have epidemiological importance, as they are part of

the wild cycle of T. cruzi in Chile (Campos-Soto et al., 2016). The 18

RNA libraries (six samples per species) generated transcriptome

assemblies with similar quality metrics to other available

Triatominae transcriptomes (Assumpção et al., 2011; Marchant

et al., 2015; Carvalho et al., 2017; Brito et al., 2019).

Transcriptome assemblies from the three species of Mepraia
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showed similar metrics, with N50 on average of 1,300 bp, which

is in the range of N50 metrics of other available. Completeness and

redundancy metrics are crucial for genomic studies, and in addition

to N50, we used the BUSCO tool to estimate completeness using the

Arthropoda database. Our transcriptomes contained between 71%

and 90% complete orthologs, indicating a high percentage of

complete copies for most predicted genes. The number of

duplications and CDS annotations in downstream analysis

correlated with the transcriptome quality.

Our transcriptomes provided a vast amount of data that allowed

us to investigate the phylogenetic relationships of Mepraia. To

identify strictly orthologous nuclear gene clusters, we employed the
B

A

FIGURE 3

(A) Species tree generated using ASTRAL-III based on 3,245 single copy gene trees and delimitation species with SODA. Values above branches (in
black) are branch support values obtained by ML with RAxML with 200 bootstrapping analysis and below branches (in red) are local posterior
probabilities values for ASTRAL-III 5.7.8 with best maximum probability trees, respectively. The delimitation of species obtained with SODA is
represented by the letters: A: M. parapatrica, B: M. gajardoi, C: M. spinolai and D: T. infestans. (B) Astral species tree based on 3,245 gene trees with
a summary of conflict and concordant homologs. For each branch, the number of homologs concordant (top) or in conflict (bottom) with the
species tree at each node is indicated. Blue: support the shown topology, Green: conflict with the shown topology (most common conflicting
bipartition), Red: conflict with the shown topology (all other supported conflicting bipartitions), and have no support for conflicting bipartition).
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FIGURE 5

Results of the four-taxa ABBA-BABA test used to detect introgression among three species of Mepraia. The topology shows two possible discordant
gene tree patterns, ABBA, and BABA, which normally occur in equal proportions under incomplete lineage classification, with A and B denoting the
ancestral and derived allele states, respectively.
FIGURE 4

Phylogenetic tree base on Fossilized Birth-Death process representing the divergence time estimates of Mepraia species. The phylogeny was
generated with a set of 3,245 orthologs. The calibration used the estimated date for dating the triatomine fossil Panstrongylus hispaniolae (~20–15
Mya). The horizontal blue bars at the nodes represent the 95% highest posterior density (HPD) intervals of the estimated node ages. The numbers on
the main nodes represent ages of lineage divergence as well as the confidence intervals.
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strategy described by Yang and Smith (2014) for non-model

organisms, resulting in a total of 3,245 gene clusters. Our

supermatrix has an overall occupancy of 72%, with about 28% of

data missing from the matrix. Although the occupancy rate varied

for each taxon, with some having a higher occupancy rate than

others, there are an average of 3,200 loci per sample. The maximum

likelihood (ML) tree inferred from the supermatrix produced a well-

resolved topology with high support (bootstrap values >90), which

is consistent with other studies (Justi et al., 2014; Campos-Soto

et al., 2015; Campos-Soto et al., 2020), and corroborates the three

lineages described in Mepraia, as well as infers M. gajardoi and M.

parapatrica as sister groups and M. spinolai as more distant.

Based on mitochondrial genes, Bayesian analysis, and the

Kimura two-parameter (K2P) model, we found low intra- and

interspecific variability among the sequences, which was expected

due to the close relationships among the species. The average

genetic diversity rate for the 57 sequences was 0.20. It is worth

noting that mitochondrial genes, such as COI, are widely used for

species delimitation in triatomines (Hypsǎ et al., 2002; Monteiro

et al., 2003; Justi et al., 2014). However, some species, such as

Triatoma maculata (Erichson, 1848), exhibit high levels of genetic

distance, as evidenced by the CytB and ND4 genes (Gómez-Palacio

et al., 2022). On the other hand, our findings are consistent with the

low genetic distance observed in mtDNA between closely related

species of the T. sordida subcomplex, as reported by Belintani

et al. (2020).

The FBD method to estimate diversification time showed that

the genus underwent recent divergence 2.3–1.2 Mya. Although the

lack of morphological data on the fossil species P. hispaniolae used

for calibration may have influenced our analysis, our findings are

consistent with other available dating methods (Campos-Soto et al.,

2020; Campos-Soto et al., 2022). Our dating also supports the

hypothesis that Mepraia diverged from its Triatoma ancestors
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after the uprisal of the Andes mountains, which was estimated to

have occurred around 5–2 Mya (Gregory-Wodzicki, 2000; Frıás-

Lasserre, 2010). The rise of the Andes and the resulting changes in

climate have been identified as crucial factors that contributed to

the diversification of the Triatomini and Rhodniini tribes in South

America (Justi et al., 2016), which may have also influenced the

diversification of Mepraia.

The phylogenetic analysis of Mepraia based on over 60,000

unlinked biallelic SNPs produced consistent phylogenies. Both

support the relationships among species, with M. garjadoi and M.

parapatrica inferred as sister taxa and M. spinolai as more distantly

related. Although the phylogeny constructed with the quartet model

has robust support, the Bayesian method used in the SNAPP

software revealed a significant number of alternative topologies.

The inferred alternative topologies may indicate that the

evolutionary relationships between the species in question are

uncertain or that there is a complex evolutionary history for these

species that cannot be fully resolved with the available data set

(Leaché and Oaks, 2017; McLean et al., 2022).

The coalescent-based species tree inferred using quartet

inference in ASTRAL-III resulted in a topology consistent with

the one produced by the concatenation method, as well as to that

produced by mtDNA. However, despite the high bootstrap support

values across the inferred tree, the normalized quartet scores were

relatively low. The exact threshold for robust quartet support may

vary depending on the study and the objectives of the analysis

(Whidden and Burch, 2015). In general, quartet scores above 0.5 are

considered to provide moderate support, while scores above 0.7

provide strong support for the topology. In our analysis, the

inferred clades in the species tree have quartet values ranging

from 43% to 56%, which prompted us to perform exploratory

analyses to assess the potential conflict among gene trees across the

Mepraia phylogeny.
FIGURE 6

Pseudo-maximum-likelihood species networks of lineages showing signs of reticulation in Mepraia. Networks were inferred using a set of 3,245
orthologs. The network with the optimum number of reticulations is shown. Inheritance probabilities (g) are shown in blue. .
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A bipartition analysis of trees among different parts of the

genome using PhyParts showed strong support for the general

topology of species trees, while still indicating alternative topologies.

This analysis is especially valuable as it offers a counterpoint to tree

species, revealing that while we can identify a major topology, we

can also clearly infer the existence of a significant number of

incongruent topologies. Is worth noting that high posterior

probability values obtained in ASTRAL-III can be misleading

when evaluated alone and may obscure the underlying

phylogenetic signal (Maddison and Knowles, 2006; Zhou

et al., 2016).

Our results suggest that there are only a small number of

concordant trees, indicating that several alternative topologies are

being supported. This pattern is expected, as gene trees are rarely

entirely concordant with species trees (Vargas et al., 2019; Meng

et al., 2021; Xiao et al., 2022), especially in recently diverged taxa.

Incongruence in the phylogenetic signal across distinct parts of the

genome can be the result of various evolutionary phenomena,

including incomplete lineage sorting, gene flow, hybridization,

lateral gene transfer, recent divergence, convergent evolution,

different evolutionary rates, or loss of information during

evolution (Betancur et al., 2019). These phenomena shape the

relationships among species, which, depending on the degree of

conflict, can make phylogenetic inferences incredibly challenging.

The conflict between the inferred species tree and the underlying

gene trees indicates that some of the above-mentioned processes

could have influenced the differentiation of Mepraia, especially

incomplete lineage sorting and/or introgression.

Although phylogenies based on coalescent models at the species

and gene level have produced similar relationship among Mepraia

species, our data suggest a reticulated evolutionary history. As

indicated above, several factors, especially ILS and introgression,

can produce reticulate phylogenies, although distinguishing

between the latter two can be challenging (Schumer et al., 2014;

Wang et al., 2022). As ILS can occur even in the absence of

introgression events, it is important to include it as null

hypotheses when testing for introgression to properly investigate

the causes of reticulate phylogenies (Mendes and Hahn, 2018;

Hibbins and Hahn, 2022), which we did using different strategies.

Our study provides robust evidence of introgression between

Mepraia species using four different methods. Firstly, an ABBA-

BABA test considering only the most likely topology estimated a

significant value of the D statistic (D = 0.158, Z-score 4.43),

indicating introgression. Secondly, the HyDe test also revealed

significant introgression between the three species, providing

further support for introgression. Additionally, PhyloNet analyses

showed strong evidence that M. parapatrica may result from

introgression between M. gajardoi and M. spinolai. Finally, the

JML test allowed identification of hybridization events in all

comparisons (p-value <0.1).

Knowledge of current gene flow between Mepraia species is

limited (Campos-Soto et al., 2013). Although hybridization has

been observed in other Triatominae species (Panzera et al., 2021),

there is still much to be discovered about the extent and effects of

hybridization in Triatominae (Costa et al., 2009; Panzera et al.,

2021; Pavan et al., 2021; Pinotti et al., 2021). To date, the only study
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that has investigated inter-specific crossing ability in the Mepraia

genus, particularly between M. gajardoi and M. spinolai, found

evidence of hybrid incompatibilities in their second backcross

(Campos-Soto et al., 2016). Hybrid speciation involves the mixing

of different lineages and gene flow through hybridization and

backcrossing, resulting in the formation of a new species (Mallet,

2005; Mallet, 2007; Abbott et al., 2013). This process was previously

thought to be rare in animals, but recent methodological and

technical advances in the study of introgression (Guo et al., 2018;

Lamichhaney et al., 2018) have shown its importance in evolution

and prevalence in closely related species of several different

organisms, such as plants, birds, fishes, and butterflies (Schwarz

et al., 2005; Lamichhaney et al., 2018; Zhang et al., 2019).

The parapatric evolution model proposed for Mepraia suggests

that cytogenetic changes were responsible for the emergence of M.

parapatrica and later M. spinolai from the ancestral M. gajardoi

(Frıás-Lasserre, 2010). According to this hypothesis, character

displacement among the three species in tension zones indicates

absence of gene flow (Frıás-Lasserre, 2010). However, the more

recent speciation proposal by Campos-Soto et al. (2022) advocates a

speciation model that involves two geographically distinct groups:

the North, composed of M. garjadoi and M. parapatrica, and the

South, composed of M. spinolai. The data presented in that study

suggests an alternative model that may be compatible with ancient

hybridization events or continued gene flow. In this sense, it is

important to consider that the evolution of these species may not

have occurred in a linear and bifurcating manner, and that the

phylogenetic relationships between the species may not be

described in a simplified way, but rather by diversification

patterns that have been shaped by historical events of

hybridization and geographic segmentation. This broader view of

evolution may help to better understand the complexity of

evolutionary processes and to reconstruct the evolutionary history

of species more accurately.

Hybridization occurs when certain conditions are met,

including the mixing of two parental lines, followed by

reproductive isolation and a viable, genetically distinct hybrid line

(Schumer et al., 2014). Based on our data and the current

knowledge about Triatominae speciation (Pavan et al., 2021), we

can speculate that incongruity patterns in gene trees cannot be

explained only by incomplete lineage classification and

stochasticity. Rather, to some extent, it may have been modulated

by introgression, potentially due to ancestral or continuous gene

flow. As discussed earlier, geoclimatic changes in Chile over the past

5 million years may have been crucial for the evolution of these

Triatomine bugs (Campos-Soto et al., 2022). Similar diversification

events have been observed in North American Drosophila (Campo

et al., 2013), Anolis lizards on Caribbean islands (Mahler et al.,

2010), and the Heliconius butterfly genus (Mavárez et al., 2006;

Jiggins et al., 2008). In the Andean region of Chile, it is known that

the Bombus dahlbomii bumblebee hybridized with other Bombus

bee species in Chile (Arbetman et al., 2013).

This study successfully obtained and analyzed the

transcriptomes of the head and salivary glands of three species of

Mepraia, shedding new light on the relationships between M.

gajardoi, M. parapatrica, and M. spinolai. Analyses of a large
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transcriptome dataset provided valuable information about the

evolutionary history of the genus. We showed that while all

methods produced concurrent phylogenetic relationships among

species of the genus, a considerable level of incongruence is

observed across gene trees. We demonstrated through several

tests that such incongruence is not compatible only with ILS,

rather, is an indication of introgression between lineages due to

past hybridization events. Therefore, our data suggests that the

diversification of Mepraia occurred recently and was significantly

influenced by interspecific gene flow during its early stages of

divergence. This study highlights the importance of considering

introgression and hybridization in the evolution of organisms,

especially in Chagas disease vector triatomines.
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Frıás-Lasserre, D. (2010). A new species and karyotype variation in the bordering-
distribution ofMepraia spinolai (Porter) and Mepraia gajardoi frıás et al., (Hemiptera:
Reduviidae: Triatominae) in Chile and its parapatric model of speciation. Neo. Entom.
39 (4), 572–583.

Frıás-Lasserre, D., and Atria, J. (1998). Chromosomal variation, macroevolution and
possible parapatric speciation in Mepraia spinolai (Porter) (Hemiptera: Reduviidae).
Genet. Mol. Biol. 21, (2). doi: 10.1590/S1415-47571998000200002

Frıás-Lasserre, D. F., de Oliveira, J., Pinotti, H., and da Rosa, J. A. (2019).
Morphological description of Mepraia spp. females (Hemiptera: Reduviidae,
Triatominae). Acta Trop. 190, 389–394. doi: 10.1016/J.ACTATROPICA.2018.11.028
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