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Introduction: Promoting the development of digital technology is an important 
step in meeting the challenge of global climate change and achieving carbon 
peaking and carbon neutrality goals.

Methods: Based on panel data of Chinese cities from 2006 to 2020, this paper 
used econometrics to investigate the impact and mechanism of digital technology 
on carbon emissions.

Results: The results showed that digital technology can significantly reduce 
carbon emission intensity and improve carbon emission efficiency. These results 
remained robust after changing the estimation method, adding policy omission 
variables, replacing core variables, and solving the endogeneity problem. 
Digital technology can indirectly reduce carbon emissions by promoting green 
technological innovation and reducing energy intensity, and it plays a significant 
role in the carbon emission reduction practices of carbon emission trading 
policies and comprehensive national big data pilot zones. The replicability, non-
exclusivity, and high mobility of digital technology help to accelerate the spread 
of knowledge and information between different cities, which leads to a spillover 
effect on carbon emission reductions. Our unconditional quantile regression 
model results showed that digital technology’s carbon emission reduction effect 
continuously decreases with increases in carbon dioxide emissions.

Discussion: The results of this paper provide evidence for the potential use of 
digital technology in achieving the goal of carbon neutrality, which is of great 
significance for achieving high-quality innovation and promoting the green 
transformation of the economy and society.
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1. Introduction

Reducing greenhouse gas emissions, curbing global temperature increases, and striving to 
achieve the goal of carbon neutrality are initiatives and shared pursuits of humanity in the face of 
the climate change crisis (Xiao and Peng, 2023). According to the sixth assessment report of the 
IPCC, “Climate Change 2021: Basis of Natural Science,” increases in carbon emissions have led to 
the accelerated warming of the atmosphere, ocean, and land; the frequent occurrence of extreme 
weather events such as heat waves, heavy precipitation, droughts and typhoons; and the degradation 
of nature at an unimaginable speed, posing a significant threat to human survival and the ecological 
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environment. From 2011 to 2020, which is considered the hottest decade 
in Earth’s recent history, the global surface temperature rose by 1.09 
degrees Celsius compared with the global temperature during the 
Industrial Revolution. The fifth assessment report of the United Nations 
Intergovernmental Panel on Climate Change (IPCC) outlined the 
scientific rationality of global warming caused by greenhouse gas 
emissions, among which CO2 comprises the most significant proportion. 
Reducing CO2 emissions will effectively mitigate the problem of global 
warming. Therefore, “carbon control” is a crucial measure taken by all 
countries to mitigate global climate change. Human beings and their 
cities need to face the challenges and opportunities brought by climate 
change, and they need to progress toward low-carbon transformation at 
all levels (Holtz et al., 2018). Climate has typical primary attributes of 
global public goods. In order to deal with the significant global 
environmental problem of climate change and effectively overcome the 
“tragedy of commons,” it is urgent to establish an international 
coordination mechanism for climate change to develop low-carbon 
economies. The international coordination mechanism for climate 
change (represented by the United Nations Framework Convention on 
Climate Change, the Kyoto Protocol, and the Paris Agreement) is based 
on the principle of “common but differentiated responsibilities” for 
developed and developing countries, which determines the emission 
responsibility and emission reduction actions of each country. The 
realization of the low-carbon transformation of economic development 
has increasingly become the consensus of the international community 
to deal with global climate change. As of September 2019, 60 countries 
have pledged to achieve net zero carbon emissions by 2050 according to 
the United Nations Framework Convention on Climate Change 
(UNFCCC).

Carbon emissions mainly come from fossil fuel consumption. 
Under the constraints of technology and energy structures, carbon 
emissions are an inevitable byproduct of economic and social 
development. China is highly dependent on high-carbon fossil energy 
consumption, and the resource and energy utilization efficiency still 
requires improvements (Miao et al., 2019). Statistics from the National 
Bureau of Statistics show that sustained and rapid economic and social 
development in 2021 generated a massive demand for fossil energy. 
The total energy consumption for the year was 5.24 billion tons of 
standard coal, representing a year-on-year increase of 5.2%; coal 
energy consumption accounted for 56%, while clean energy 
consumption such as natural gas, water, electricity, and nuclear power 
only accounted for 25.5%. With the rapid urbanization and 
industrialization processes, the demand for energy has remained large, 
and China has faced severe pressure regarding carbon emission 
reductions (Shi et al., 2018). Since 2006, China has become the world’s 
largest emitter of CO2. In 2019, China’s carbon emissions accounted 
for 28.8% of the world’s total emissions, surpassing the combined 
share of the United States, the European Union, and Japan (Gao et al., 
2019). At the 75th UN General Assembly held in 2020, the Chinese 
government proposed that China will increase its independent 
national contributions, adopt more effective policies and measures to 
peak its CO2 emissions by 2030, and strive to achieve carbon neutrality 
by 2060. China’s “14th Five-Year Plan” also includes a proposal to 
“implement a system with carbon intensity control supplemented by 
total carbon emission control,” aiming to reduce energy consumption 
and CO2 emissions per unit of GDP by 13.5 and 18%, respectively. 
Effectively reducing urban carbon emissions has become an urgent 
practical problem for sustainable economic development.

For a long time, technological progress has been regarded as an 
essential driving force in solving the profound internal contradiction 
between economic growth and carbon emission reductions (Li et al., 
2017; Xie et al., 2021). The Fourth Industrial Revolution, represented 
by digital technology (DT), is accelerating changes in the fundamental 
mode of global economic development and leading to changes in 
production and organization modes. As a strategic technology for 
scientific and technological revolution and industrial transformation, 
DT has and will play a vital role in combating climate change and 
brings significant opportunities for low-carbon development (Haseeb 
et al., 2019; Zhang and Li, 2022). Especially in the recent, critical period 
of rapid economic growth and high-quality development, DT has been 
endowed with higher green expectations (Axon, 2020; Li et al., 2021; 
Yang J. 2021). DT can not only reduce information asymmetry through 
system integration to optimize resource management and decision-
making processes, improve government supervision efficiency and 
reduce supervision costs but also optimize the industrial structure and 
accelerate the GTI of enterprises through dematerialization instead of 
the demand for emission-intensive products, thus providing a driving 
force for carbon emission reductions (Tang et al., 2021). However, DT 
itself is based on electricity, and the development and operation of 
energy-intensive infrastructures such as cloud, blockchain, and data 
centers will lead to more carbon emissions (Yi et al., 2022). With the 
development of DT, the operating power, speed, and network 
bandwidth of computers and servers are constantly improving. This 
will promote the overall digital transformation of society and accelerate 
the growth of carbon emissions in the digital industry. The development 
of DT requires large-scale data generation, transmission, and 
processing, which increases energy consumption in the operation of 
the digital industry while the total amount of carbon emission 
exponentially increases; as such, the carbon emissions of the digital 
industry equal those of the aviation industry (Jones, 2018; Park et al., 
2018; Zhou et al., 2019). The more that energy consumption in a data 
center is optimized, the more energy is consumed. The “Jevons 
paradox” is therefore becoming feasible.

An urgent question: can DT be used as a “Chinese solution” to 
reduce urban carbon emissions? If this logic holds, how does DT 
help reduce carbon emissions? Is there heterogeneity? Clarifying  
the abovementioned issues will help us better understand the 
relationship between DT and the low-carbon economy under 
current conditions. The possible contributions of this paper are as 
follows. First, the study was based on the facts that the industrial 
sector is the primary source of carbon emissions and that the 
manufacturing sector is becoming more automated and intelligent 
across the production process; this paper innovatively used robot 
technology to represent DT, verified its influence on carbon emission 
intensity at the city level, and analyzed whether modern information 
technology provides technical dividends in terms of the ecological 
environment. Secondly, based on mechanisms of green technological 
innovation (GTI) and energy consumption intensity, this paper 
explored the influence of digital empowerment on carbon emission 
performance, which enriches and expands the literature on the 
ecological benefit evaluation of DT. Thirdly, the non-linear influence 
of DT on carbon emissions was tested using an unconditional 
quantile model, and a heterogeneity test was conducted according 
to urban resource endowment and carbon emission control, which 
helps explain the heterogeneity of the influence of DT on carbon 
emissions in different regions. Finally, this study considered the 
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spatial spillover effect of DT in reducing carbon emissions. The 
research conclusions are helpful for the joint actions of 
administrative departments in different regions to achieve peak CO2 
emissions and carbon neutrality as soon as possible.

2. Literature review

As a new economic form, digital economy undoubtedly has 
economic, societal, and environmental impacts, and this study 
considered the influence of DT on carbon emission reductions. In 
order to evaluate recent research progress, we divided the relevant 
literature into the following two categories for review.

2.1. The economic effects of digital 
technology

The influence of the digital economy on economic development is 
multi-dimensional. At the micro level, digital transformation can 
significantly improve the information-processing capability of 
enterprises, promote the flow of information elements within enterprises 
(Shen and Yuan, 2020), improve the innovation capability of enterprises 
(Manesh et al., 2020), promote EGS performance (Cheng and Zhang, 
2023; Wang et al., 2023; Zhong et al., 2023), optimize organizational 
structures, and enhance production and operation processes (Hess et al., 
2016). Boland et al. (2007) studied the influence of DT on innovation 
and found that enterprise-distributed technology has strong “technical 
penetration,” which can meet the needs of the complex business–ecology 
relationship. Using empirical research on Chinese A-share data, He and 
Liu (2019) found that the digital transformation of enterprises promoted 
improvements in enterprise performance. At the industry level, some 
scholars have found that digital technologies can not only improve the 
efficiency of traditional industries but also trigger the interactive 
integration and development of multiple industries and lead to new 
industrial changes. Chen and Yang (2021) found that the digital 
economy, as a new force of economic transformation, could improve a 
labor-intensive and heavy industry-based industrial structure to an 
industrial structure with a high technology level and environmental 
friendliness. At the macro level, the iterative application of the new 
generation of information technology helps to optimize ecological 
systems and policy environments, stimulate the vitality of social 
innovation, and improve the efficiency of resource allocation. Zhao et al. 
(2020) found that the digital economy can enhance entrepreneurial 
activity and promote high-quality economic development using 
empirical research on the panel data of 222 cities above the prefecture 
level in China. In addition, several studies have analyzed the impact of 
DT on trade in services (Zhou L. et  al., 2023), total factor energy 
efficiency (Fu et al., 2023; Huang et al., 2023), knowledge innovation 
(Orlando et al., 2020; Wang and Li, 2023), economic growth (Qu et al., 
2017), air pollution (Yang Z. et  al., 2023), and green total factor 
productivity (Guo et al., 2022; Zhao et al., 2022).

2.2. Impact of digital technology on carbon 
emissions

The core connotation of the “science and technology for 
goodness” concept is that science and technology can promote 

economic development and industrial transformation while enabling 
society to achieve sustainable development. DT not only produces 
huge economic benefits but also significantly impacts the current 
“environmental debt” and carbon emissions because the digital 
economy has two primary characteristics. First, the application of DT 
in various economic activities leads to improvements in efficiency. 
Second, DT leads to more energy consumption, especially the 
demand for electricity. The former lowers carbon emissions, while the 
latter increases carbon emissions. Therefore, scholars’ conclusions 
regarding DT’s effects on carbon emissions are not consistent. The 
carbon emission reductions enabled by DT are mainly discussed 
from two angles: optimizing industrial structures and improving 
energy efficiency. In optimizing industrial structures, DT has 
continuously penetrated the service industry, becoming a new engine 
of service trade and promoting the formation of new green industries. 
The integrated development of emerging and traditional industries 
based on data elements and the application and promotion of DT in 
production practice will promote the transformation of industrial 
structures into technology-intensive and environment-friendly forms 
(Zhang and Wang, 2023). Choi (2010) used panel data from 151 
countries to investigate the impact of the Internet on service trade 
and found that the digital economy improved the “non-long-distance 
trade” of traditional services with the help of DT and information 
technology and promoted the rapid development of service trade. 
Furthermore, as an important production factor, data are clean and 
efficient, which can reduce the dependence on and destruction of 
natural resources, as well as promote the digital transformation of 
traditional enterprises. Dong F. et al. (2022) empirically tested the 
panel data of 60 countries and found that the digital economy had 
significantly reduced carbon emission intensities by upgrading 
industrial structures. Technological progress is the main source of 
economic development, and it often leads to improvements in 
resource allocation efficiency and production efficiency (Zhou 
P. et al., 2023). Some studies have also discussed the relationship 
between digital technologies, energy consumption intensity, and total 
factor energy efficiency. The rapid development of the digital 
economy based on digital technologies effectively reduces carbon 
emissions, which aids the promotion energy saving and emission 
reductions across the whole production life cycle and provides a new 
research perspective for our sustainable development and carbon 
emission reductions (Sahoo et al., 2021; Zhao et al., 2021). DT will 
reduce power consumption, especially the energy consumption of 
industrial sectors (Wang J. et al., 2022). Digital transformation is 
essential to improve energy consumption and reduce carbon 
emissions. Other studies have pointed out that digital technologies 
can reduce carbon emissions by promoting manufacturing 
agglomeration (Li X. et al., 2022), ease the financing constraints of 
enterprises (Yang G. et al., 2023), improve public awareness (Wang 
Q. et  al., 2022b), and strengthen environmental regulation (Liu 
et al., 2023).

Zhang et al. (2021) argued that the digital economy has broken the 
restrictions of geography, time, and space while promoting efficiency 
improvements in all aspects from production to sales. Based on the 
panel data of 278 cities in China, Yu et al. (2022) found that when 
green energy efficiency is low, the digital economy promotes carbon 
emissions and that when green energy efficiency is high, the digital 
economy reduces carbon emissions. Green energy efficiency has a 
threshold variable effect in the relationship between the digital 
economy and carbon emissions. However, not all researchers believe 
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that DT has a positive effect on the environment. Dhar (2020) pointed 
out that DT also consumes a large amount of energy, resulting in 
significant electricity costs. Zhang Q. et al. (2022) pointed out that due 
to the rebound effect, the scale expansion of DT will increase energy 
demands and have adverse effects. Hittinger and Jaramillo (2019) 
found that while smart devices bring convenience to life, the large 
amounts of data transmission and remote processing supported by 
data centers consume significant amounts of energy. Sun et al. (2021) 
found that data centers in the United States consume about 2% of the 
country’s electricity. Jiang et al. (2021) used simulations to show that, 
without any policy interventions, the bitcoin industry in China is 
expected to generate 130.5 million tons of carbon emissions in 2024, 
which will become a major obstacle to China’s carbon neutrality goal.

Researchers have explored the digital economy’s economic effects 
and application value from the perspectives of the macro-economy, 
structural transformation, and environmental governance, engaging 
in the valuable exploration of the relationship between information 
and communication technology and carbon emissions. However, the 
existing literature ignores an important question: Can DT improve 
carbon emission performance? If so, what path can be  used to 
implement this impact? In this paper, we attempted to integrate DT 
and carbon emissions into a unified framework, and we studied the 
realization of the strategic goal of carbon emission reductions under 
digital empowerment at the city level.

3. Theoretical analysis and research 
hypothesis

Economic growth is the most important factor of carbon 
emissions, and reducing carbon emissions is the key to achieving 
green growth (Chen and Golley, 2014). On the basis of endogenous 
growth theory, we introduce data, energy input and environmental 
pollution as input elements to conduct mechanism analysis. According 
to the framework of endogenous growth, digital technology has direct 
carbon reduction effect and indirect carbon reduction effect through 
green technological innovation and energy intensity reduction.

3.1. Direct impact of digital technology on 
reducing carbon emissions

DT is defined as a combination of information, computing, 
communications, and connectivity technologies (Bharadwaj et al., 
2013). It converts various kinds of information into binary numbers 
that computers can identify and use to perform operations, processing, 
storage, transmission, dissemination, and restoration.

According to endogenous growth theory, DT can be seen as a new 
type of high-quality capital product of enterprises that has resulted in 
remarkable technological progress by reducing the marginal cost of 
production. As in typical Schumpeterian patterns of technological 
progress, DT can break through the time and space constraints of 
traditional knowledge and technology exchange to a significant extent 
and spawn new technologies, industries, and formats that are closely 
related to energy production and consumption—such as energy 
storage technology, smart grids, new energy industries, intelligent 
transportation, and distributed energy use systems—that affect urban 
energy-use efficiency. The high-efficiency integration of AI, distributed 

energy production and utilization technology, and energy storage 
technology enables the measurement, control, and prediction of 
energy from production and transmission on the supply side to 
consumption and service on the demand side, thus realizing the 
intensification and refinement of the energy supply. Furthermore, DT 
can shorten clean energy’s research and development cycle through 
the accurate three-dimensional modeling of natural and geographical 
conditions to continuously reduce the cost of renewable energy power 
generation. Clean power generation, such as wind and photovoltaics, 
will gradually replace fossil fuels (Schulte et al., 2016).

As capital goods, DT can replace other input factors such as 
energy input, directly reducing the input of high energy consumption 
factors and reducing carbon intensity; DT can also change the 
configuration of the production function ( )F 

, i.e., improve the 
efficiency of resource allocation. DT’s function is to improve the 
information and intelligent operation level of society and the 
allocation efficiency of production factors in the market (Wang et al., 
2021; Wu, 2021). As has been found in some literatures, DT can 
digitally transform the energy production process and improve total 
factor energy efficiency (Xu W. et al., 2022), promoting the transition 
to the green economy.

An important aspect of carbon emission reductions is the real-
time supervision, disclosure, and control of carbon emissions (Zeng 
et  al., 2021). According to transaction cost theory, in cases of 
information asymmetry, both parties may face high transaction costs 
that will affect the daily business decisions of enterprises. 
Improvements in the digital infrastructure will lower the cost of 
information acquisition and dissemination. The rapid dissemination 
of a large amount of enterprise production and operation data brings 
new opportunities for the development and efficiency improvements 
of various industries, effectively improving resource utilization 
efficiency and reducing carbon emissions (Luo and Yuan, 2023). DT 
comprises real-time data collection technologies such as the Internet 
of Things, intelligent sensors, and edge computing. It can sense, 
analyze, act, and provide feedback on carbon information and is a 
crucial vehicle for improving the disclosure of carbon information 
(Zheng et al., 2021). As transaction costs are reduced, according to 
multi-dimensional sensors, DT enables different enterprise 
departments and production operations to form connections, 
communicate across different networks, and dynamically collect 
various elements, energy, and other information related to enterprise 
sewage discharge activities in real time. The effective monitoring and 
accurate predicting of carbon emissions can be used to reduce the 
costs of monitoring carbon information and improve monitoring 
efficiency to optimize the carbon emission reduction decisions of 
governments and enterprises. DT has also facilitated the public’s 
access to information on environmental pollution and assisted 
government departments in improving environmental governance 
and reducing corporate carbon emissions through informal 
environmental regulation channels. In addition, AI has facilitated the 
sharing of data elements; it can be  used to construct intelligent 
management systems for energy interconnection and global energy 
distribution networks utilizing element circulation and knowledge 
and technology spillovers. Traditional chimney-style independent 
system and island-style management frameworks have evolved into a 
unified framework management, with comprehensive applications 
used to realize the overall planning, coordination, and optimization 
of the whole chain in order to promote the low-carbon development 
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of society and improve energy-use efficiency. Most importantly, 
carbon trading and finance operations must be connected to DT.

A final important step in reducing total carbon emissions is 
accelerating the transformation of the emerging technology, advanced 
manufacturing, and modern service industries (Yang, 2021). Relying 
on “Metcalfe’s Law” of digital networks, DT is reshaping the traditional 
production model and has produced strong economies of scale, scope, 
and long tails. It has achieved good results in cross-industry emission 
reductions (Koomey et  al., 2013; Beier et  al., 2018; Weigel and 
Fischedick, 2019). DT is deeply integrated with key carbon emissions 
areas such as power, industry, transportation, construction, and 
agriculture. With the gradual popularization of digital carbon 
reduction applications in these areas, DT can effectively promote 
energy consumption reductions throughout the life cycle in key 
carbon emission industries and release the carbon reduction potential 
of technology. DT can effectively empower enterprises with intelligent 
green manufacturing and energy management, lead the innovation of 
green processes and services, and further promote the development 
of the industry toward intelligent and green practices while increasing 
the industry’s added value and reducing energy consumption and 
carbon emissions (Lyu and Liu, 2021). For example, in the industrial 
field, DT optimizes production processes, improves production 
efficiency, and saves production costs by enhancing the intelligent 
interconnections of factories, information integration, data-driven 
decision making, and human–computer collaboration. The 
automation of the production process and the intelligence of the 
decision-making process will drive significant changes in the 
manufacturing process, improve the efficiency of the use of resources 
such as energy and capital, realize simultaneous improvements in 
production and carbon efficiency, and significantly reduce the overall 
social energy consumption.

Based on the above analysis, the following two research hypotheses 
are proposed.

H1: DT has emission reduction effects and can significantly 
reduce urban carbon intensity.

H2: DT can reduce carbon emissions by reducing the 
energy intensity.

3.2. Indirect channel of green technogical 
innovation

According to the definition of green growth, economic green 
growth results from technological progress and technological 
efficiency improvements (Chen and Golley, 2014). As a special kind 
of environmentally biased technological progress, GTI is essential to 
reducing energy consumption and controlling carbon emissions (Liu 
et  al., 2020). DT changes A(t) in the production function and 
promotes GTI. DT also has a strong technology spillover effect, which 
drives technological innovation in other industries through the 
change of A(t) to improve the sustainability of green growth.

The three essential ways to promote the peaking of carbon 
emissions and the goal of carbon neutrality are to continuously 
reduce the proportion of fossil energy consumption, improve energy 
efficiency, and develop clean energy, all of which require the support 
of advanced technological progress, especially the development of 

GTI. The low carbonization of industries and consumer terminals 
continuously uses green technologies to transform or replace 
carbon-based energy technologies that result in high levels of energy 
consumption and pollution. GTI promotes the deepening 
adjustment and two-way optimization of energy and industrial 
structures, encourages green product R&D and market competition, 
significantly reduces carbon emissions per unit GDP, and ensures 
economic efficiency improvements and green low-carbon 
transformation in terms of energy conservation and power 
conversion. GTI is also widely used in enterprise production and 
citizens’ lives. It can boost cleaner enterprise production, enhance 
energy efficiency, promote green energy consumption, reduce 
resource consumption from the production and consumption sides, 
spawn new energy consumption patterns, and reduce carbon 
emissions from enterprise production and resident consumption to 
realize the source prevention and control of carbon emissions. The 
use of GTI in the energy field can accelerate the development of 
photovoltaic, wind power, and renewable energy sources and 
effectively promote the transformation of energy consumption 
structures to green, low-carbon, and clean energy structures that can 
directly reduce carbon emissions. Finally, GTI can effectively control 
the cost of decarbonization and provide corresponding technical 
support for the research, development, and large-scale application 
of CO2 utilization, capture, and storage technology, leading to the 
“technology dividend” effect and promoting improvements in 
carbon emission performance.

GTI requires massive R&D investment. R&D innovation activities 
are characterized by high adjustment costs, uncertain results, and 
sunk input, making enterprises less willing to take initiatives to carry 
out GTI. DT can effectively reduce the cost of information search and 
social transaction costs, as well as promote the agglomeration of 
innovation resources, which is conducive to realizing technology 
innovation with high efficiency and low energy consumption (Xing 
et al., 2019). Generally speaking, digital networks not only promote 
the healthy and efficient development of digital industrialization with 
the help of universal and enabling technologies and network 
connection effects but also bring new production factors such as 
information, technology, and data to industrial development. This 
process improves comprehensive technical efficiency and R&D 
innovation efficiency. Digital networks can strengthen the diffusion 
effect of digital low-carbon technologies, help accelerate the efficiency 
of information flow, reduce the cost of knowledge transfer, alleviate 
information asymmetry in the technology market, promote the green 
technology spillover of knowledge to other industries and sectors, and 
facilitate the digital and low-carbon transformation of traditional 
enterprises. With the help of DT, enterprises can quickly shift toward 
intelligent and flexible directions, gradually change their energy 
consumption modes in actual operation, reduce redundancy and 
intermediate consumption in the production process, stimulate the 
vitality of scientific research and innovation, and improve carbon 
emission performance (May et al., 2016). Additionally, DT will force 
enterprises to develop and apply clean technologies and to promote 
the formation of DT-based green raw material procurement strategies, 
low-carbon product production and transformation, intelligent 
logistics warehousing and sales circulation, and carbon 
emission reductions.

Technological progress will also drive “learning by doing.” DT has 
a technology spillover effect on production and innovation activities, 
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therefore optimizing internal production processes and management 
organization forms through learning by doing and reducing some 
variable costs (Zhu et  al., 2022). When DT reduces the cost of 
production, it can compensate for the green production behavior of 
industrial enterprises. Generally speaking, through technical progress 
and learning by doing driven by its technology spillover effect, DT has 
promoted green economic growth.

Based on the above analysis, this paper proposes the third 
research hypothesis.

H3: DT can reduce carbon emissions through the channel 
mechanism that promotes GTI.

4. Research design

4.1. Variables design

4.1.1. Dependent variable
The dependent variable was carbon emissions (CE). Because of 

the lack of CO2 monitoring data at the city level in China, this paper 
used the apparent emission accounting method to measure carbon 
emissions. The carbon emission sources of cities were set as direct and 
indirect energy consumption. Direct energy includes liquefied 
petroleum gas, coal, and natural gas, and indirect energy includes 
electricity and heat (Zha et al., 2022). Carbon emissions from direct 
energy sources were mainly calculated based on the carbon emission 
conversion coefficients of various energy sources published in the 
2006 IPCC Guidelines for National Greenhouse Gas Inventories. 
Indirect energy carbon emissions were mainly calculated using the 
corresponding carbon conversion factor to calculate the carbon 
emissions generated by electricity and heat consumption. It was 
assumed that there is only one carbon emission factor for the same 
local power grid (Glaeser and Kahn, 2010), so the calculation of 
electric energy carbon emissions was mainly based on the baseline 
emission factor and urban electric energy consumption of the six 
major power grids in China. It was also assumed that heat energy is 
generated by different supply modes, mostly the use of raw coal. In 
this paper, referring to Wu and Guo (2016), the thermal efficiency 
value was selected as 70%, the average low calorific value of raw coal 
was selected as 20,908 kJ/kg, and the total amount of heating was 
converted into the required amount of raw coal. Finally, direct energy 
consumption and indirect energy consumption carbon emissions 
were added together to obtain the total carbon emissions of each city.

4.1.2. Core explanatory variable
The core explanatory variable of this study was digital technology 

(DT). Industry results in high energy consumption and emission 
levels, and it is the main source of greenhouse gases (Dong M. et al., 
2012). According to the International Energy Agency, the Chinese 
industrial sector’s share of carbon emissions from all sources rose 
from 71% in 1990 to 83% in 2018, and according to the Cady 
research report, China’s industrial sector accounts for about 70% of 
all industrial emissions in the country. Given the industry’s high 
energy and high emission characteristics, this paper mainly 
considered the impact of the introduction of DT to the industrial 
sector on carbon emissions. With the successive proposal and 

deepening of “Industry 4.0” and “Made in China 2025,” the global 
industrial system is developing toward automation, integration, 
intelligence, and green practices. In the field of intelligent 
manufacturing, industrial robots (as a kind of automation equipment 
that integrates a variety of advanced technologies) reflect the 
characteristics of modern industrial technology, such as high 
efficiency and the combination of software and hardware, and have 
become essential parts of modern manufacturing systems such as 
flexible manufacturing systems, automated factories, and intelligent 
factories. Robots are known as a priority of manufacturing. 
Therefore, this study used the density of industrial robot installations 
in each city to represent DT.

Acemoglu and Restrepo (2020) constructed an index of robot 
density at the regional level in the United States based on the idea of 
the “Bartik instrumental variable” when studying the impact of robot 
applications on the labor market in the United States. This method has 
been widely used in subsequent studies on the social effects of robots 
(Paul et al., 2020). Based on the common practice of the literature 
(Wang and Dong, 2020; Dauth et  al., 2021; Chen et  al., 2022; Xu 
J. et al., 2022; Ge and Zhao, 2023; Yang and Shen, 2023), this paper 
constructed a robot density index at the level of prefecture-level cities 
in China. First, International Federation of Robotics (IFR) industry 
classification data were matched with 14 two-digit industries in the 
industry classification of China’s national economy. Then, based on 
each industry’s robot and employment data, this paper calculated the 
industrial robot density index at the industry level. Finally, this paper 
selected the initial year of the statistical sample as the benchmark year 
to calculate the weight of robot density in each industry in each city 
in China. The specific calculation formula is
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In Eq. (1), DT represents digital technology, Robotst  represents 
the number of industrial robots installed in industry’s in year t, 
employs i t, , =2006  represents the number of people employed in 
industry s in City i  in 2006, employi t, =2006  represents the total 
number of people employed in City i in 2006, and employs t, =2006  
represents the total number of jobs in industry s in 2006.

4.1.3. Mechanism variable
The mechanism variable of this study was green technology 

innovation (GTI). The quantity and quality of green technology 
patents can significantly reflect the level of green technology in a 
region (Zhang and Bai, 2022). In 2010, the World Intellectual Property 
Organization (WIPO) developed the IPC Green Inventory based on 
the UNFCCC guidelines linked to the existing IPC classification 
system and divided green technologies into seven specific areas. This 
paper used the number of green invention patents to measure 
GTI. We  established the patent type, IPC classification number, 
announcement date, and application address from the website of 
China Patent Publication and Announcement of the State Intellectual 
Property Office through advanced inquiry, and we considered this 
information along with the patent database of listed companies in 
China to identify the number of green invention patents authorized 
by each city in each year.
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4.1.4. Control variables
In order to alleviate the endogeneity problem caused by the 

omission of important variables to the model as much as possible and 
to obtain more accurate estimation results, this paper selected six 
control variables according to the existing literature on the 
influencing factors of carbon emissions (Lenonard, 1984; Valérie, 
1999; Dong B. et al., 2012; Bernauer and Koubi, 2013; Danlami et al., 
2017; Sapkota and Bastola, 2017; Sheraz et  al., 2022). Population 
density was measured as the ratio of urban area to the resident 
population at the end of the year, the level of economic development 
was measured as GDP per capita, financial support was measured as 
loan balance per capita, industrial structure was measured as the ratio 
of the secondary industry’s added value to GDP, foreign direct 
investment was measured as the amount of foreign direct investment 
utilized by each city, and the intensity of fiscal expenditure was 
measured as the ratio of government public general budget 
expenditure to GDP measures.

4.2. Econometric model

To test the impact of DT on carbon emissions, we constructed the 
following econometric model.

 
0 1 2 3 4
5 6 7

it it it it it
it it it t i it

CE DT PD LED FS
IS FDI FEI

θ α α α α
α α α ν λ ε

= + + + +
+ + + + + +  (2)

In Eq. (2), i  and t represent city and time, respectively; εit  
represents the random disturbance term subject to the white noise 
process; θ0  represents the constant term; α  represents the regression 
coefficient; λi  represents the individual fixed effect; and ν t  represents 
the time fixed effect.

In order to alleviate the endogeneity of the channel test and the 
defects of the mediating effect test as much as possible, this paper 
focused on explaining the influence mechanism of GTI on carbon 
emissions as part of theoretical analysis and research hypothesis by 
referring to the idea of the mediating test proposed by Jiang (2022); 
as such, only the influence of DT on GTI was tested here, and a 
significantly positive DT regression parameter on GTI indicates 
that DT can reduce carbon emissions through the channel 

mechanism of promoting GTI. Classical panel data models only 
consider individual fixed effects and point-in-time fixed effects to 
reveal time differences that do not vary across individuals and 
individual differences that do not vary over time in a sample. 
Considering the impact of various uncertain factors on entire 
economies, there is heterogeneity in the response of different 
individuals to these shocks. In order to overcome the endogeneity 
and inherent defects of the mediation test method as much as 
possible, this paper expanded the traditional two-way fixed effect 
model into an interactive fixed model to establish a mediating effect 
test equation because an interactive fixed effect model could better 
fit the data (Bai, 2009). The equations expressing the influence of 
DT on GTI are

 GTI DI Control Fit it it t i i t it= + + + + + +′θ β β ν λ δ ε0 1 2  (3)

 EI DI Control Fit it it t i i t it= + + + + + +′θ β β ν λ δ ε0 1 2  (4)

In Eqs. (3) and (4), the meaning of each code symbol is consistent 
with that for Eq. (2). Control represents the information set for the 
control variable, β  is the regression coefficient, δi tF′  represents 
interactive fixed effects (which can be  regarded as the product of 
multidimensional individual effects and multidimensional time 
effects), Ft  is the common factor, and δi  is the factor load.

4.3. Data sources and descriptive statistics 
of variables

Following the principle of data availability, this paper used the 
panel data of 269 Chinese cities from 2006 to 2020 as statistical 
samples. The original data of the relevant variables involved in the 
econometric model were mainly sourced from the China Statistical 
Yearbook, China City Statistical Yearbook, China Energy Statistical 
Yearbook, China Electric Power Yearbook, National Intellectual 
Property Office, National Bureau of Statistics, International Federation 
of Robotics and EPS Database. For very few missing values, we used 
an interpolation method. The descriptive statistical analysis of each 
variable is shown in Table 1.

TABLE 1 Descriptive statistics of variables.

Variables Code Standard error Mean Min Max

Digital technology DT 1.2774 0.3821 0.0001 21.6515

Carbon emission CE 1.1448 6.0509 2.0189 9.5846

Green technology innovation GTI 1.6087 9.9619 4.2047 15.5293

Population density PD 0.8815 5.8079 1.5476 7.9155

Level of economic development LED 0.7055 10.4686 4.5951 13.0557

Financial support FS 1.1129 10.2185 7.5835 13.8749

Industrial structure IS 0.2521 3.8248 2.3684 4.4502

Foreign direct investment FDI 1.8439 9.9179 1.0986 14.9413

Financial expenditure intensity FEI 0.9361 14.5539 11.72107 18.24054

Energy intensity EI −9.6284 0.5735 −11.2660 −7.5322
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5. Empirical analysis

5.1. Baseline regression analysis

Commonly used fitting models for panel data include the Pooled 
OLS (POLS), fixed effects (FE), and random effects (RE) models; 
deciding which method was most suitable for sample data in this 
study required further testing. As seen in Table 2, the results of the 
F-test rejected the original hypothesis at the level of 1%, indicating 
that the FE model was better than the POLS model. Furthermore, the 
results of the Hausman test rejected the original hypothesis at the level 
of 1%, indicating that the FE model was superior to the RE model. 
Therefore, this paper mainly analyzed how DT affects carbon 
emissions according to the regression results of the FE model. As 
Ozokcu and Ozdemir (2017) stated that Pesaran cross-sectional 
dependence (Pesaran CD) test is be used here in order to test whether 
residuals are correlated across countries or not. A Wooldridge test is 
used to detect serial correlation in panel data. As can be seen from 
Table 2, the serial correlation and cross-sectional dependence of panel 
data needed to be alert. Hoechle (2007) stated that it is better to use 
Driscoll-Kraay (DK) standard errors, if the model is heteroskedastic, 
autocorrelated, and cross-sectionally dependent. Therefore, 
considering that there may be  heteroscedasticity, cross-section 
correlation, and sequence correlation in panel data estimation, this 
paper uses DK standard error for correction by referring to the ideas 
of existing literature (Driscoll and Kraay, 1998; Dabbous and Tarhini, 
2021; Zakari et al., 2022).

In Table 2, column (1) shows the results of not adding any control 
variables, column (2) shows the results of adding all control variables 
and not adding individual fixed and time fixed effects, column (3) 
shows the results of adding individual fixed and time fixed effects but 
not adding control variables, column (4) shows the results of 
including all control variables and fixed effects, but the common 
standard error is used, and column (5) reports the result of DK 
standard error. The results without individual and time effects 
showed that the impact of DT on carbon emissions was significantly 

positive; that is, the digital transformation of enterprises and the use 
of modern DT may increase carbon emissions. However, the POLS 
model was the result of uncontrolled factors that change with time, 
and the reliability of its regression results was low. The results of the 
two-way fixed effect model in columns (3) and (4) show that the DT 
regression parameters on carbon emissions were −0.0081 and 
−0.0102, respectively, and both of them were significant at the level 
of 1%; these results indicated that DT can reduce carbon emissions, 
which preliminarily confirmed the research hypothesis 1. In addition, 
to test whether DT can improve carbon emission efficiency while 
reducing carbon emissions, this paper replaced carbon emission 
intensity in formula (2) with carbon emissions per unit of gross 
domestic product. The results in column (5) of Table 2 show that the 
DT regression coefficient of carbon emission efficiency was −0.0301, 
which was significant at the level of 1%; these results indicated that 
DT can not only reduce carbon emission intensity but also reduce 
CO2 emissions per unit of GDP and improve carbon emission 
efficiency, so DT is essential in dealing with climate change and 
promoting carbon emission reductions. The main role of DT in 
emission and carbon reductions is to provide real-time carbon 
information, and the deep application of DT in the carbon footprint 
and carbon sink fields can aid the promotion of the digital 
monitoring, accurate emission measurement and prediction, 
planning, and implementation efficiency of the energy industry, thus 
significantly improving energy-use efficiency and directly or 
indirectly reducing the carbon emissions. Additionally, the DT 
embedded in the production and development of energy can promote 
the transformation of energy and the transformation of the energy 
industry, thus constantly promoting the development of renewable 
energy, accelerating the substitution of traditional fossil energy 
consumption, enabling the optimization and upgrading of energy 
production and consumption structures, and significantly reducing 
the total amount of urban carbon emissions. Finally, DT can improve 
traditional industries by reducing their carbon emissions and 
improving their carbon emission efficiency through technology and 
management innovation.

TABLE 2 Baseline regression results.

Variables (1) (2) (3) (4) (5) (6)

DT 0.3256*** (11.25) 0.0227*** (2.83) −0.0081* (−1.67) −0.0102*** (−2.07) −0.0102*** (−10.18) −0.0301*** (−8.43)

LED −0.0291 (−0.68) 0 0.0845*** (3.72) 0.0845*** (2.97) −0.1450* (−2.06)

PD 0.2061*** (13.02) 0.7716*** (5.65) 0.7716*** (7.54) 0.5267*** (7.03)

FS 0.4968*** (19.39) 0.0597** (2.32) 0.0597* (1.88) −0.0131 (−0.32)

IS 0.3940*** (6.24) 0.1559*** (3.11) 0.1559 (1.65) −0.2947*** (−5.21)

FDI 0.1373*** (14.54) 0.0054 (0.92) 0.0055 (0.72) −0.0095 (−0.87)

FEI 0.1097*** (4.99) 0.1550*** (4.13) 0.1550*** (3.26) −0.1196** (−2.60)

Individual effect No No Yes Yes Yes Yes

Time effect No No Yes Yes Yes Yes

R-squared 0.1320 0.5868 0.3665 0.3906 0.3906 0.4512

Hausman test Prob>chi2 = 0.000

F-test Prob > F = 0.000

Pesaran CD test 49.772***

Wooldridge test 189.95***

***, **, and * indicate significance at 1, 5, and 10%, respectively; t-statistics are reported in parentheses.
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5.2. Robustness test

The benchmark regression results shown in Table 2 demonstrate 
that the impact of DT on carbon emissions was found to 
be  significantly negative, which initially confirmed the research 
hypothesis that DT can reduce carbon emissions. In order to verify the 
robustness of this conclusion, we used four methods. We first used the 
robust regression of the S-estimation method to deal with outliers. 
There may be a small number of outliers in a conventional dataset, and 
the fair value obtained by FE estimation is not an unbiased estimator. 
Robust regression modifies the objective function in ordinary least 
squares regression to fit most data structures while also identifying 
potential outliers, strong influence points, or structures that deviate 
from the model assumptions. We secondly increased the number of 
policy omission variables because the impact of DT on carbon 
emission is affected by policies related to carbon emission management 
and digital infrastructures. During the sample period, Chinese 
government implemented a carbon emission trading policy and a 
national comprehensive big data experimental zone policy in 2011 and 
2016, respectively. The former quantifies and capitalizes carbon 
emissions, endows them with the attributes of carbon-emitting 
commodities, and guides enterprises to control and reduce greenhouse 
gas emissions using market mechanisms. The latter is used to carry 
out systematic experiments in areas with relatively complete digital 
infrastructures, focusing on tasks such as data resource management 
and sharing, data center integration, data resource applications, and 
big data industry agglomeration. By constantly summing up practical 
experiences that can be used for reference, replicated, and popularized, 
the radiation-driven and demonstration-leading effect of the 
experimental area could finally be formed; considering the importance 
of policy variables in China’s economic operation, this paper 
incorporated two policies into its model. We  thirdly replaced the 
number of explanatory variables. It takes some time for industrial 
robots to be installed and constructed over introduction, installation, 
and production to large-scale application, and the optimization of 
industrial technology and production processes also needs practical 
exploration. The influence of DT on carbon emissions may have a 
specific time lag. This paper used the time lag of DT to replace the 
original variable. Finally, feasible generalized least squares (FGLS) 
substitutes the residual vector of each cross-section individual into the 
covariance matrix of cross-section heteroscedasticity, and the 
generalized least squares (GLS) method is used to decompose the 
population variance matrix, and the regression residuals are 
transformed into residuals satisfying the classical assumptions, and 
then the ordinary least squares (OLS) method is used for regression. 
FGLS can correct heteroscedasticity, cross-sectional dependence, and 
serial correlation caused by panel data and improve the consistency 
and effectiveness of parameter estimation.

According to the robustness test results shown in Table 3, the DT 
fitting coefficients of carbon emissions of the four tested methods were 
−0.0101, −0.0099, −0.0109, and −0.2228, respectively. All of them 
passed the significance test, indicating that the conclusion that DT 
reduces carbon emissions was still valid in all models. This, in turn, 
proved that the benchmark regression results were robust and H1 
was valid.

5.3. Endogenous test

Although more control variables were added to the model to 
alleviate the endogenous problem of missing variables, the endogenous 
problem caused by measurement errors and reverse causality was still 
an unavoidable obstacle for causal inference in this paper. For 
example, in the process of improving the new digital infrastructure, 
information technologies such as big data, 5G communication, and 
AI are constantly developing, the public’s attention to environmental 
pollution and greenhouse gases is constantly increasing, and the cost 
of obtaining environmental information is gradually decreasing, 
which will make local governments pay more attention to the 
ecological environments of cities, strictly regulate high-energy-
consuming enterprises, and urge enterprises to pay attention to 
improvements in cleaner production technology for a long time with 
the help of administrative powers. At the same time, the level of 
mature intelligence and DT is constantly increasing and the 
sustainable development and application of clean technologies and 
industries will eventually produce carbon emission reduction effects. 
Accordingly, extensive economic development modes are dominant 
in areas with high carbon emission levels even though technical levels 
and total productivity are still relatively low. Furthermore, the GDP 
assessment mechanism forces administrative departments to pay 
more attention to economic growth and pay less attention to ecological 
environments. The path of DT in promoting technological innovation 
and industrial structure upgrading is challenging, and the digital 
infrastructure in these areas may need to be revised.

This paper used two-stage least squares (2SLS) regression to 
eliminate endogenous problems. Regarding the setting of tool 
variables, this paper continued to refer to Bartik’s concepts and used 
the interaction of the first-order lag and difference terms of DT as the 
first tool variables. In order to prevent the problem of weak tool 
variables, this paper used the lagging second order of DT as the 
second tool variable. According to the endogenous test results shown 
in Table  4, the DT regression parameters of the two kinds of 
instrumental variables were −0.1115 and 1.4820, respectively, and 
both of them passed the significance test, which indicated that the 
influence of instrumental variables on DT was significant and met the 
principle of correlation. The instrumental variable validity test results 

TABLE 3 Results of robust test.

Variable Method 1 Method 2 Method 3 Method 4

DT −0.0101* (−1.69) −0.0099*** (−8.93) −0.0109*** (−6.06) −0.2228** (−2.31)

Control variable Yes Yes Yes Yes

Individual effect Yes Yes Yes Yes

Time effect Yes Yes Yes Yes

*** and * indicate significance at 1 and 10%, respectively; t-statistics are reported in parentheses.
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showed that the LM statistic rejected the unidentifiable original 
hypothesis at the 1% level; the F-statistic was 6353.94, much larger 
than 19.93 of the 10% critical value, indicating that there was no weak 
tool variable problem. According to the second stage results, the DT 
regression coefficient of carbon emissions was −0.0015, and it passed 
the 5% significance test. In addition, in order to further reflect the 
rigor of the causal inference relationship in this paper, we also convert 
the static panel data model into a dynamic panel model, and then use 
the generalzed method of moments (GMM) to eliminate the 
endogeneity. By introducing the lag term with two or more lag periods 
as the instrumental variable and satisfying all the moment conditions 
as far as possible, the GMM estimation method obtains a better 
estimator. In essence, GMM is also an instrumental variable method. 
Traditional econometrics estimation methods, such as the ordinary 
least square method, instrumental variable method, and maximum 
likelihood method, have their own limitations. That is, its parameter 
estimator can only be reliable when it satisfies some assumptions, such 
as when the random error term of the model follows normal 
distribution or a known distribution. However, GMM does not need 
to know the accurate distribution information of the random error 
term, allowing the random error term to exist in heteroscedasticity 
and sequence correlation, so the obtained parameter estimator is more 
effective than other parameter estimation methods. The estimation 
methods of the dynamic panel data model include differential GMM 
and system GMM. Since the former will generate errors under the 
influence of weak instrumental variables in the estimation process, 
while the latter has the advantages of solving the unrecognized 
individual differences, the influence of variables not taken into 
account, and the correlation between variables and random items in 
the estimation, we use system GMM for empirical analysis. According 
to the results of SYS-GMM in Table 4, the regression coefficient of 
digital technology is 0.0109 and significant at the 1% level. Meanwhile, 
the results of AR (1) and AR (2) show that there is no sequence 
correlation, and the results of the Sargan test show that there is no 
overidentified problem. These results show that the SYS-GMM model 
constructed in this paper is effective, and the conclusion that digital 
technology can reduce carbon emissions is still valid.

To sum up, the results showed that DT’s carbon emission 
reduction effect was still valid after eliminating endogenous problems.

5.4. Mechanism analysis

In order to reveal DT’s carbon emission reduction mechanism 
according to the intermediary effect test equation constructed for 
research hypotheses 2 and 3, this paper used the interactive fixed effect 
model for regression calculation.

According to the mechanism analysis test results shown in Table 5, 
the DT regression coefficients of energy intensity and GTI were 
−0.0243 and 0.0699, respectively, and both were significant at the 1% 
level, indicating that DT can promote carbon emission reductions 
through the channel mechanisms of promoting GTI and reducing 
energy intensity. H2 and H3 were therefore verified. Under the 
background of increasingly scarce raw materials (represented here by 
energy) and worsening environmental pollution, GTI can improve 
production efficiency, promote sustainable growth, and be a critical 
link in reducing carbon intensity and carbon emissions, which mainly 
come from burning fossil energy in high-carbon-emission industries. 
Therefore, GTI will improve the total factor energy efficiency while 
promoting the transformation and upgrading of high-energy-
consuming enterprises and indirectly affect urban carbon emissions. 
DT has a strong technology spillover effect that can strengthen the 
diffusion range, degree, and speed of advanced energy-saving and 
emission reduction technologies in the field of cleaner production, 
promote the rapid popularization and application of advanced 
technologies, further bring about iterative innovation of energy-saving 
and emission reduction technologies, promote smart industrial 
clusters, and expand the ecological scene of cleaner industry 
application, thus reducing carbon emissions. Digital networks, which 
rely on the Internet, can significantly reduce the social transaction and 
information search costs, effectively reduce barriers to the flow of 
production factors between regions, and therefore accelerate the flow 
of factors, which is conducive to enterprises’ access to innovative 
resources in the value network, thus promoting the overall GTI 
capability of a city. The development of DT enables enterprises to 
analyze users’ environmental protection needs in real time, which 
helps enterprises to arrange innovation and production activities 
according to users’ differentiated and dispersed needs (Peng and Tao, 
2022). Therefore, DT can reduce carbon emissions through the 
channel mechanism of promoting GTI.

5.5. Heterogeneity tests

Our benchmark regression results showed that the development 
of the DT is generally conducive to reducing regional carbon emission 
intensity. So, does this carbon emission reduction effect have a general 
rule in different regions? In order to test the heterogeneous regional 
effect of DT on carbon emissions, this paper classified urban samples 
according to the classification standard of carbon emission regulation 
intensity and the development degree of DT facilities. For robustness, 
this paper added carbon emission trading and comprehensive big data 
experimental zone policies to control the impact of carbon emission 
control and digital infrastructure perfection on carbon emissions. 
Pilot cities and non-pilot cities were divided into two categories by 
using the pilot status of the two policies in cities. According to the 
regression results of the carbon emissions trading pilot and 
comprehensive big data experimental zone policies shown in Table 5, 
the DT pilot city regression parameters of the two types of policies 

TABLE 4 Results of endogenous tests.

Variable First stage
Second 
stage

SYS-GMM

DT −0.0115** 

(−2.05)

−0.0109*** 

(−3.00)

IV 1 −0.1115* (−1.71)

IV 2 1.4820*** (112.37)

Control variable Yes Yes Yes

Individual effect Yes Yes Yes

Time effect Yes Yes Yes

F-test 6353.943

AR(1) 0.000

AR(2) 0.696

Sargan test 0.397

***, **, and * indicate significance at 1, 5, and 10%, respectively.
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were −0.0217 and −0.0265, respectively, and both of them passed the 
significance test of 1%. However, the DT regression parameters in 
non-pilot cities were 0.0189 and 0.0193, respectively, and both of them 
passed the significance test. The results showed that DT can 
significantly reduce the total carbon emissions in pilot cities but 
significantly increase the carbon emissions in non-pilot cities. A 
possible reason is that the economic development model of non-pilot 
cities mainly depends on energy-intensive industries that are more 
dependent on natural resources, so the pace of industrial structure 
upgrading lags. The characteristics of industrial structure also have an 
important influence on the pressure of the urban ecological 
environment (Zhang B. et al., 2022). For example, in a non-pilot city 
with a carbon emissions trading policy, the economic development 
process has not been affected by the carbon market price and the 
intervention of administrative forces. The primary characteristics of 
such a city are a high industrial proportion, low total factor energy 
efficiency, and low level of green technology, and it still faces high 
pressure regarding carbon emission reduction. Furthermore, 
non-pilot cities are mainly areas with low economic development 
levels in the central and western regions; these areas have gradually 
become “pollution shelters” for transferring energy-intensive 
industries to developed regions in recent years. The path dependence 
caused by the “resource curse” makes it difficult for DT and 
environmental policies to quickly and significantly change the original 
industrial structure (Li and Zhan, 2022). The dependence on 
production technology also prevents these areas from adopting 
cleaner production technology in a short time, and the use of DT is 
often accompanied by specific energy consumption and carbon 
emission trends that lead to the significant positive impact of DT on 
carbon emissions in non-pilot cities (Shi and Li, 2020).

5.6. Non-linearity test

Considering that quantile regression can be used to eliminate 
extreme interference and describe a conditional distribution in an 

overall way (Han et al., 2021), five representative quantiles (10, 25, 50, 
75, and 90%) were selected to correspond to regions with different 
carbon emission levels in order to investigate the nonlinear influence 
of DT on regional carbon emission levels. Table 6 shows that the DT 
regression parameters from the 10 to 75% quantiles were all 
significantly negative and that the fitting parameters showed a 
downward trend, indicating that the emission reduction effect of DT 
continued to decline with the increase in carbon concentration. In 
particular, at the 90% sub-site, we  found that the DT regression 
parameter was 0.0618, and it passed the significance test at the level of 
1%, indicating that DT does not reduce carbon emissions at this 
subsite but increase the carbon emissions of similar cities.

Regions with higher concentrations of CO2 use more energy, and 
economic development is more dependent on high-carbon natural 
resources. These regions often have a single industrial structure, and 
resource-intensive industries dominate. Therefore, it is challenging for 
DT to generate technology dividends in these regions, and it even 
generates carbon emissions due to excessive electricity consumption. 
In 2010, the eastern coastal areas of China launched a policy to 
transfer energy-intensive industries to developed areas. The economic 
development model of the eastern coastal areas has achieved a 
qualitative leap through the industrial gradient transfer, and the 
high-end manufacturing and modern service industries have rapidly 
developed; this has lowered the carbon emission concentrations in 
regions with higher economic development levels. Following these 
developments, DT can play a better primary role in economic 
production and a more significant role in carbon emission reductions.

5.7. Empirical analysis of the spatial effect

With its technical advantages of network distribution and 
decentralization, DT breaks geographical space and time constraints 
and deepens the correlation degree of economic activities between 
regions. If the spatial correlation between economic variables is 
ignored, estimation results will be biased. According to the first law of 

TABLE 5 Mechanism and heterogeneity test results.

Variable

Mechanism test
Carbon emission trading 

policy
Comprehensive big data 
experimental zone policy

EI GTI Pilot cities
Non-pilot 

cities
Pilot cities

Non-pilot 
cities

DT −0.0243*** (−4.31) 0.0699*** (4.06) −0.0217*** (−7.96) 0.0189* (2.10) −0.0265*** (−7.49) 0.0193*** (2.78)

Control variable Yes Yes Yes Yes Yes Yes

Individual effect Yes Yes Yes Yes Yes Yes

Time effect Yes Yes Yes Yes Yes Yes

N 4,035 4,035 1,365 2,670 1,005 3,030

*** and * indicate significance at 1 and 10%, respectively; t-statistics are reported in parentheses.

TABLE 6 Regression results of unconditional quantile model.

Variable 10% 25% 50% 75% 90%

DT −0.0811*** (−3.46) −0.0524*** (−3.54) −0.0394*** (−3.41) −0.0211* (−1.79) 0.0618*** (3.50)

Control variable Yes Yes Yes Yes Yes

Individual effect Yes Yes Yes Yes Yes

Time effect Yes Yes Yes Yes Yes

*** and * indicate significance at 1 and 10%, respectively; t-statistics are reported in parentheses.
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TABLE 8 Spatial effect decomposition of SDM.

Variable Economic distance Economic and geographical distance

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

DT −0.0011** (−2.04) −0.0012* (−1.74) −0.0112** (−2.04) −0.0098** (−2.01) −0.0011* (−1.70) −0.0109** (−2.01)

Control variable Yes Yes Yes Yes Yes Yes

Individual effect Yes Yes Yes Yes Yes Yes

Time effect Yes Yes Yes Yes Yes Yes

** and * are significant at the 5 and 10% levels, respectively. z-statistics are reported in parentheses.

geography, the correlation between regions is related to distance; the 
farther the distance, the less the correlation. Since geographic distance 
factors, regional economic development levels, and other 
non-geographic factors may affect DT’s spillover effect, this paper 
adopted the weight matrix of economic and geographic distance to 
depict spatial correlations. As seen in Table 7, the global Moran index 
(Moran’s I) results based on the weighted matrix of economic distance 
and geographical distance showed that the coefficient of carbon 
emission and DT was significantly positive, indicating a positive 
spatial correlation. In order to verify whether the impact of DT on 
carbon emissions has a spatial spillover effect, this study incorporated 
a standard two-dimensional panel econometrics model into the spatial 
location information for verification. However, the regression 
coefficient value of the spatial econometric model cannot directly 
reflect the spatial spillover of DT, so this paper adopted the spatial 
regression with partial differential method to decompose the spatial 
spillover effect of DT on carbon emissions. The results of correlation 
diagnostic tests showed that the optimal model of sample data in this 
study was a two-way fixed effect spatial autoregressive (SAR) model.

Due to the strong dependence of the spatial econometric model 
on the weight matrix, this paper also calculated the economic distance 
weight matrix results for the sake of robustness. Table 8 shows the total 
effect decomposition results of the SAR. The effect decomposition 
results show that under the two cases of economic distance, the 
economic and geographic nested matrix, the direct spillover effect, 
and the total effect of DT on carbon emissions passed the significance 
level test; furthermore, the influence coefficients were negative, 
indicating that the estimated results were robust. The results in Table 8 
show that carbon reductions in a given region can be achieved with 
local DT and surrounding cities’ DT. In other words, DT has a positive 
spatial spillover effect on carbon reduction. A possible reason for the 
spatial spillover effect of DT in reducing carbon emissions is that the 
rapid development of DT has realized the cross-regional integration 
and synergistic effect of resources. An essential feature of modern DT 
is that it weakens the physical space–time distances and enhances the 
relevance and permeability of regional economic activities using 
efficient information transmission (Huang et  al., 2023). Digital 

technologies have accelerated the free flow of labor, capital, and 
knowledge factors of production. Through digital networks, the 
business, logistics, and capital flow of enterprises operate at high 
speeds, promoting the innovation of relevant technical knowledge and 
the adjustment of industrial layouts and bringing digital dividends to 
realize carbon emission reductions in different regions. At the same 
time, surrounding cities can take the application of DT as the starting 
point, the development of a low-carbon economy as the entry point, 
green and low-carbon industrial clusters as the approach, and local 
digital infrastructure and resource endowment as the basis to form a 
green digital economy development mode with the close division of 
labor, high-efficiency and energy-saving practices, and carbon 
emission reductions. Therefore, the high-speed transmission of digital 
information can be  used to realize the mutual sharing of carbon 
emission monitoring data between regions and help the joint 
prevention and control of carbon emissions between regions.

6. Conclusions and policy implications

6.1. Conclusions

The Index Climate Action Roadmap released by the Global 
Climate Action Summit in 2020 states that DT solutions in the fields 
of energy, manufacturing, agriculture, land, construction, services, 
transportation, and traffic management can help the world reduce 
carbon emissions by 15%. DT has profoundly changed the habits and 
motivations of producers, consumers, and investors, and it has 
provided technical support for enterprises in digital production 
sectors to reduce emissions and consumption and for non-digital 
sectors to reduce emissions. This research focused on the digital and 
intelligent transformation of the manufacturing industry. It 
innovatively used industrial robots as a proxy variable of DT to 
investigate its impact on carbon emissions. This paper also evaluated 
the role of digital infrastructure and carbon emission control systems 
in the DT process to reduce carbon emissions. Unlike previous 
nonlinear studies, this paper used unconditional quantiles to test the 

TABLE 7 Moran’s I of DT and CE.

Year DT CE Year DT CE

2006 0.283*** (8.827) 0.415*** (12.50) 2014 0.163*** (5.34) 0.460*** (13.84)

2008 0.327*** (10.30) 0.409*** (12.27) 2016 0.231*** (7.30) 0.472*** (14.17)

2010 0.307*** (9.58) 0.435*** (13.09) 2018 0.241*** (7.65) 0.455*** (13.67)

2012 0.183*** (6.12) 0.439*** (13.20) 2020 0.241*** (7.65) 0.429*** (12.91)

*** denotes significance at the 1% level. z-statistics are reported in parentheses.
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nonlinear relationship between DT and carbon emissions to make the 
regression results more consistent with objective reality. Finally, this 
study used SAR to verify the spatial spillover effects of digital 
technologies to reduce carbon emissions. Considering the rapid 
development of DT in China, the urgent task of carbon emission 
reductions, and the data of 269 cities in China from 2006 to 2020, this 
paper used the installation density of robots to represent DT according 
to robot technology use information in the industrial production 
sector. The influence mechanism of DT development on regional 
carbon emissions and its heterogeneous effects were empirically tested 
in multiple dimensions. The major conclusions of this study are 
as follows.

 1. The real-time monitoring provided by digital technologies can 
significantly reduce urban CO2 intensity while improving 
carbon emission efficiency. In other words, DT can significantly 
reduce carbon emissions. This conclusion was still found to 
be valid after changing the estimation method, adding policy 
omission variables, substituting variables, and solving the 
endogeneity problem, which had strong robustness.

 2. The results of the channel test showed that DT reduces the 
defects of risk uncertainty, limited technical conditions, and 
asymmetric market information in the process of R&D 
innovation; stimulates the willingness and ability of enterprises 
to engage with GTI; and can effectively reduce CO2 emission 
intensity. That is, DT can promote carbon emission reductions 
through the channel mechanism of promoting enterprises’ 
GTI. In addition, digital technologies can enable the digital 
transformation of energy management and improve overall 
energy efficiency. In other words, DT can achieve energy 
conservation and emission reductions.

 3. The impact of DT on carbon emissions is characterized by 
heterogeneity. The carbon emission reduction effect of DT 
was found to be more significant in regions with solid carbon 
emission control and better DT facilities. In regions without 
carbon trading policies and weak DT facilities, DT increases 
carbon emissions and does not pay technological dividends. 
Our unconditional quantile regression results showed that 
DT has had a significantly positive impact on carbon 
emissions at 90% of the studied loci, which means that DT 
cannot reduce carbon emission in areas with high CO2 
concentrations. The spatial econometrics model results 
showed that DT has a spatial spillover effect on carbon 
emission reductions. That is, the carbon emission of a certain 
region will be affected by not only the local DT but also the 
DT of the surrounding cities.

Our study using panel data of Chinese cities showed that DT has 
a carbon reduction effect, which is consistent with the conclusions of 
some studies that use provincial-level data from China, such as Meng 
et al. (2022) and Wang Q. et al. (2022a). Of course, our results are also 
consistent with some conclusions using transnational panel data 
analysis, such as Choi (2010), Dong F. et al. (2022), Li Y. et al. (2022). 
According to endogenous growth theory, DT is a creative destructive 
force (Aghion and Howitt, 1992). Therefore, according to the theory, 
we identified mechanisms of promoting GTI and reducing energy 
intensity, which extends the discussion on carbon reduction 
mechanism of DT in the existing literature.

Of course, our results are different from those of Dhar (2020), 
Noussan and Tagliapietra (2020), Dong K. et al. (2022), and others 
who think that the impact of DT on the environment will be intensified 
with the expansion of DT scale. The difference in the existing research 
conclusions is due to differential proxy variables selected for 
measuring DT and the different measuring of carbon emissions. 
Unlike Stanford H A I (2019), who built the index system of DT in 
terms of R&D, technical performance and industrial development, 
we use industrial robots as a proxy variable of DT, because industrial 
robots directly reflect the development degree of DT. In China, R&D 
spending on DT is difficult to clarify. Using industrial robots as proxy 
variables also reduces the problem caused by the linearity of the index. 
We use the carbon emission coefficient method to calculate the carbon 
emission level at the city level, which is more scientific than the input–
output method. Because China compiles an input–output table every 
5 years, the input–output method is difficult to reflect the real impact 
of DT on CO2, especially in recent years, DT has shown explosive 
growth. In addition, the conclusion of the study may also be influenced 
by regional heterogeneity. For example, estimates based on developed 
countries may differ from estimates based on emerging countries, 
where DT is still in rapid development (Dong K. et  al., 2022); In 
regions with environmental incentives, DT is more likely to promote 
GTI, and the estimated value should be different (Aghion et al., 2021). 
DT in China is in the stage of rapid development, and the creative 
destruction of DT has improved the traditional energy-dependent 
industrial structure and technological innovation path. At the same 
time, China is also actively responding to the global climate change 
mitigation action and reducing carbon emissions in many cities. This 
is also in accordance with the results of nonlinear analysis in our 
paper, that is, DT, as a general-purpose technology, is in a rapid 
development stage. It can promote the innovation of manufacturing 
production processes and stimulate the second innovation. Under the 
regulation of green development policies such as the government’s 
carbon trading policy, it will exert the carbon reduction effect.

6.2. Policy implications

Based on the above research conclusions, this paper proposes the 
following policy recommendations.

 1. The development of DT and boost the transformation of 
low-carbon cities should be accelerated. Administration should 
vigorously promote the construction of digital technologies 
such as 5G, cloud computing, the Internet of Things, and 
related digital infrastructure, as well as guide social and 
democratic capital to invest in the high-quality development of 
the digital industry. Relevant administrative departments can 
guide the in-depth integration and innovative application of 
digital technologies such as blockchains, industrial robots, and 
AI with the energy and environment fields and traditional 
departments through the promulgation of laws and regulations 
or incentive measures, and they can promote the continuous 
emergence of new technologies, industries and formats related 
to low-carbon fields. These practices will accelerate the 
transformation and upgrading of DT-enabled energy industry 
departments, optimize the allocation of energy resources, and 
promote the large-scale utilization of clean energy and 
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improvements in energy efficiency. Enterprises should pay 
attention to the technical dividend of digital development, 
speed up digital investments, actively use DT to optimize 
resource allocation and management change, improve energy 
utilization efficiency and reduce carbon emissions. Finally, 
relevant authorities should promote the transformation of 
traditional industries toward digitalization and intelligence. 
With the help of DT, the development potential of urban green 
transformation should be improved and the role of advanced 
technology in reducing carbon emissions and improving 
carbon performance should be given full play.

 2. Authorities should correctly handle the relationship between DT 
and carbon emission by implementing DT according to local 
conditions to promote carbon emission reduction strategies. In 
areas with inadequate digital infrastructures and a strong 
dependence on natural resources, the development of DT may 
increase carbon emissions. However, the role of DT in energy 
saving and emission reduction cannot be denied. Developing DT 
requires an excellent digital infrastructure and more application 
scenarios. Administrative departments should speed up the 
digital transformation of industrial bases and resource-based 
cities according to their resource endowment and economic 
development advantages, relying on regional resource 
endowment and industrial development realities. Cities with 
poor economic development should establish digital industries 
according to their development characteristics, as well as make 
full use of DT to transform traditional industries in an overall 
and whole-chain way while enhancing the suitability of DT to 
urban industrial structure adjustment with different industrial 
attributes and resource endowments. Based on new digital 
technologies, urban development should accelerate the 
cultivation of new business forms and models and speed up the 
technological progress and GTI of enterprises. We  should 
strengthen low-carbon technological innovation and digital 
transformation in resource-based industries, break the curse of 
structural energy and resources, and constantly unleash the 
vitality of low-carbon transformation in cities empowered by 
digital construction. In regions with vital digital infrastructure 
and carbon emission control, it is necessary to continuously 
optimize the industrial structure, continuously promote the 
high-quality integration of DT and the real economy, constantly 
realize the convergence and multiplier effects of digitalization 
and industrialization, improve energy efficiency, and stimulate 
the carbon emission reduction effect of DT.

 3. As digital and real integration enters the deep-water zone, 
because of the mismatch between the skills of current digital 
talents and the needs of industrial enterprises, digital talents 
with high levels of integration and strong professionalism 
should be actively cultivated. It is necessary to cultivate not 
only senior professional talents who focus on DT development 
and digital enterprise operation but also first-line technical 
talents who operate and maintain digital production lines. 
We should build a digital talent training system that combines 
academic education, vocational education, and vocational 
practice, and we should forge a “main force” of multi-level and 
overall digital transformation. Furthermore, in view of the lack 
of confidence and capital shortage of enterprises in digital 
transformation, it is necessary to build a policy system of 

digital–real integration that conforms to the actual situation 
and facilitates development and to propose practical measures 
to support the R&D and introduction of DT to help enterprises 
overcome difficulties and overcome risks in the process of 
digital transformation.

 4. New infrastructure should be the strategic resource and base for 
economic and social development. With the acceleration of 
digital transformation, DT and critical industries are constantly 
infiltrating and merging. Although the energy consumption and 
carbon emissions of communication networks and data centers 
continue to increase, these organizations can promote economic 
growth and carbon emission reductions of society to a 
significant extent and promote the low-carbon and harmonious 
development of the digital economy of society as a whole. 
We should accelerate digital transformation; constantly carry 
out technological innovation and industrial structure 
optimization; promote the development of communication 
infrastructure toward low-carbonization, digitalization, and 
intelligence; and promote the coordinated development of DT 
and “double-carbon” strategy in the communication industry. 
We  should make use of its network advantages, increase 
cooperation and integration among industries, promote 
reductions in energy consumption, slow down the growth rate 
of carbon emissions, and realize the win–win cooperation of 
leading development and the goal of “double carbon.”

6.3. Limitations

 1. Measuring the level of digital development in cities can 
be challenging. In future studies, based on the pilot list of 
smart manufacturing demonstration factories and digital 
economy industrial parks, it will be helpful to use regression 
discontinuity design (RDD), difference-in-differences (DID), 
and synthetic difference-in-differences (SDID) for the policy 
evaluation of carbon reduction effects of digital technologies. 
Similarly, how to accurately measure urban carbon emissions 
remains a challenging task. Although the study included as 
many sources of urban carbon emissions as possible, it still 
faced the problem of inaccurate measurement of carbon 
emissions. In future studies, it is necessary to consider more 
carbon sources in assessing carbon emissions. It will 
be beneficial to use remote sensing data of luminous lamps 
and GDP data to correct carbon emissions in cities with 
remote sensing data repeatedly.

 2. An essential feature of DT is that it is not constrained by spatial 
distance. The spatial econometric models used in this study 
were not cutting edge. In future studies, a semi-parametric 
spatial model and geographically and temporally weighted 
regression can be used to estimate the spatial effect.

 3. As a typical large-sample research paradigm, this paper reveals 
the impact of DT on carbon emissions, which can provide a 
more reliable theoretical basis for policymaking. However, this 
paper cannot provide detailed guidance for enterprises to 
introduce and install industrial robots to reduce carbon 
emissions and environmental pollutants, and relevant case 
studies must be urgently supplemented.
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 4. This paper mainly used two variables to explain the channel 
mechanism of DT to reduce carbon emissions: energy intensity 
and GTI. Because DT is extensive and inclusive, future research 
can further elaborate the relationship of DT and carbon 
emissions from cities through the channels of virtual industrial 
agglomeration, factor price distortion, and supply chain effect.
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