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Anthropogenically-induced range 
expansion as an invasion front in 
native species: An example in 
North American flying squirrels
Corinne A. Diggins *

Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States

Biological invasions are typically framed as non-native species impacting the 
populations of native species or ecosystems. However, in a changing world, 
taxonomically similar native species that were previously parapatric or allopatric 
may become increasingly sympatric over short time periods (<100 years). In the 
context of climate change in the Northern Hemisphere, this may have a negative 
impact on northern species whose ranges are being invaded by southern species. 
To highlight factors that may influence invasion fronts in native species, I use 
two species of North American flying squirrels, small-bodied nocturnal arboreal 
Sciurids, as an example. I discuss what factors may enable or limit the expansion 
of southern flying squirrels (SFS; Glaucomys fuscus) into northern flying squirrel 
(NFS; Glaucomys sabrinus) habitat and potential impacts that anthropogenically-
induced factors have on range shift dynamics. The range expansion of SFS may 
impact NFS via resource competition, hybridization, and parasite-mediation. 
Factors potentially enabling the expansion of SFS into NFS habitat include 
anthropogenic habitat disturbance and climate change, wherein historical land-
use (i.e., logging) alters forest composition increasing habitat suitability for SFS 
and a warming climate allows SFS to expanded their ranges northward into 
colder regions. Shifts in forest species composition from historical logging may 
interact with a warming climate to enable SFS to quickly expand their range. 
Factors limiting SFS expansion include thermoregulation limitations and absence 
of potential food and denning resources. The factors influencing the dynamics 
between these two species may be  applicable to the shifting ranges of other 
taxonomically and functionally similar native species in the context of a rapidly 
changing world in the Anthropocene.
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1. Introduction

Biological invasions are considered one of the greatest threats impacting biodiversity 
worldwide, wherein anthropogenically introduced invasive species are causing native species 
declines (Bellard et al., 2016) and negatively impacting ecosystem functions (Fleming et al., 
2013; Zipkin et al., 2020). Typically, the focus of biological invasions is on species introduced 
between continents, such as eastern grey squirrels (Sciurus carolinensis) from North America to 
Europe (Gurnell et al., 2004; Bertolino et al., 2014) or European rabbits (Oryctolagus cuniculus) 
to Australia (Mutze et al., 2016; Roy-Dufresne et al., 2019). However, shifting ranges of native 
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species due to anthropogenic activities and climate change over short 
time periods (e.g., <100 years) may have negative effects on resident 
native species whose ranges are being invaded by creating 
non-analogue conditions (e.g., novel conditions that different from the 
baseline conditions; Peel et al., 2017; Wallingford et al., 2020).

Since biological invasions are characterized by their celerity 
compared to shifts in species’ ranges over longer biological timescales 
(Valéry et al., 2008), there is increasing support to view some species 
with anthropogenically-induced range expansion as invasive and to 
understand the mechanisms that allow them to displace other native 
species (Valéry et  al., 2009; Wallingford et  al., 2020). Although 
classifying a native species as invasive is a debated topic in the field of 
invasion biology (Essl et al., 2019; Urban, 1988), native species can 
negatively impact other native species or ecosystems via 
anthropogenically-induced range expansions into new systems, 
causing resident species declines or trophic cascades (Newsome and 
Ripple, 2014; Holm et al., 2016). Native species taking advantage of 
human-modified environments to expand their ranges and establish 
in novel areas without direct human interference (e.g., intentional 
introductions) are called “neonatives” (Essl et al., 2019).

Neonatives can negatively impact the distribution and populations 
of native resident species, especially where species were previously 
parapatric (Kelly et al., 2003; Elmhagen et al., 2017). For taxonomically 
similar species, hybridization within a newly established sympatric 
zone may have conservation implications for resident species (Mank 
et  al., 2004; Gómez et  al., 2015), particularly for endangered 
subpopulations or if resident species have highly fragmented 
distributions. Anthropogenically-induced range shifts that lead to 
novel sympatry may also increase rates of hybridization (Stronen 
et al., 2012).

Recent climate-related range expansions and extirpations are 
already occurring in mammal species (Chin et al., 2011; Wiens, 2016). 
Elevational and latitudinal shifts in small mammal ranges have 
occurred over the last century in North America (Mortiz et al., 2008; 
Myers et al., 2009; Rowe et al., 2009). Factors influencing potential 
range shifts tend to consist of abiotic and biotic factors which interact 
to impede or facilitate changes in a species’ distribution (Sexton et al., 
2009; HillRisLambers et al., 2013; Miller et al., 2020).

Although climate change is linked to range shifts, other factors 
such as anthropogenic land use (e.g., habitat conversion to agriculture, 
fire regime shifts, logging) have also influenced shifts in species 
distributions (Rowe et al., 2009; Rowe and Terry, 2014; Kelt et al., 
2017). Little attention has been given to how anthropogenic habitat 
alteration may allow native species to naturally disperse and colonize 
areas they were unable to colonize previously (Essl et  al., 2019). 
Anthropogenic alterations to habitat may also interact with climate 
change to influence species range shifts (Rowe, 2007; Wan et al., 2022), 
particularly at the most southern or northern distributions of their 
ranges (McCain and King, 2014; Essl et al., 2019). Some species with 
range contractions may be  tracking climate change, but range 
contractions could also be due to competition with a novel native 
competitor with a recently expanded range.

In North America, range shifts and hybridization of two species 
of flying squirrel (Glaucomys spp.) has occurred. In recent decades, 
there has been rapid range expansions of southern flying squirrel (SFS; 
G. volans) into northern flying squirrel (NFS; G. sabrinus) habitat 
(Bowman et al., 2005; Myers et al., 2009; Garroway et al., 2011; Lazure 
et  al., 2016). Other observations show the recent sympatry or 

replacement of NFS by SFS at several sites (Myers et al., 2009; Wood 
et al., 2016; Diggins et al., 2020b; O’Brien et al., 2022). Hybridization 
between SFS and NFS has been observed in contact zones (Garroway 
et al., 2010). Since the rapid range expansion of SFS may have negative 
conservation implications for NFS (Weigl, 2007), my objective is to 
discuss SFS as a potential neonative. I discuss the ecology of flying 
squirrels, distribution of both NFS and SFS, and recently observed 
range shifts of SFS to provide context on these species. I then examine 
how interspecific factors that may influence species turnover, as well 
as factors that aid or limit SFS range expansion.

2. Ecology of flying squirrels

North American flying squirrels are nocturnal, arboreal Sciurids 
occurring in forested habitats (Figure  1; Hough and Dieter, 2009; 
Diggins et  al., 2017; Dolan and Carter, 1977; Wells-Gosling and 
Heaney, 1984). Associated with boreal and montane conifer forests 
(e.g., Abies spp., Picea spp., Tsuga spp.), mixed forests, and occasionally 
deciduous forests, NFS occur in Canada and the northern United States 
with disjunct populations in the Rocky Mountains, Black Hills, and 
Appalachian Mountains (Hough and Dieter, 2009; Diggins et al., 2017). 
Smaller-bodied than NFS, SFS is associated with temperate to 
sub-tropical deciduous, coniferous (Pinus spp.), and mixedwood 
forests in the eastern half of United States and southeastern Canada 
(Figure 1; Gilmore and Gates, 1985; Taulman and Smith, 2004; Jacques 
et al., 2017), with disjunct populations in montane forests in Mexico 
and Central America (Campuano-Chávez-Peón et al., 2014). Both 
species have varied diets consisting of plant materials (e.g., nuts, seeds, 
berries), fungi, lichen, and carrion (Dolan and Carter, 1977; Wells-
Gosling and Heaney, 1984; Mitchell, 2001), although hard mast (i.e., 
Carya spp. nuts, Quercus spp. acorns, Fagus grandifolia beechnuts) is 
important to SFS during winter and is typically stored in caches (Muul, 
1968; Thomas and Weigl, 1998; Helmick et al., 2014).

Both species are highly social, exhibiting overlapping home ranges 
with conspecifics (Bendel and Gates, 1987; Holloway and Malcolm, 
2007; Jacques et al., 2017; Diggins and Ford, 2021), communal denning 

FIGURE 1

The geographic range of northern flying squirrels (Glaucomys 
sabrinus) and southern flying squirrels (Glaucomys volans) in North 
America.
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(Stihler et al., 1987; Layne and Raymond, 1994; Reynolds et al., 2009), 
and large vocal repertoires for intraspecific communication, including 
alarm and mating calls (Gilley et al., 2019; Diggins, 2021). Denning 
aggregations can occur year-round (Reynolds et al., 2009; Diggins and 
Ford, 2021; Doty et al., 2022), but aggregation size typically increases 
in winter to reduce thermoregulatory costs associated with colder 
months of the year (Muul, 1968; Stapp et al., 1991; Thorington et al., 
2010). Denning aggregations can contain related and unrelated 
individuals (Thorington et al., 2010; Garroway et al., 2013), wherein 
related aggregations in spring and summer are typically natal 
aggregations (i.e., nursing mother and offspring; Doty et al., 2022). 
Average litter size is similar between both species, although SFS litters 
are slightly larger on average (Dolan and Carter, 1977; Wells-Gosling 
and Heaney, 1984). Females typically produce one litter a year, 
although individuals of both species have been observed producing 
two litters a year (Reynolds et al., 2009; Patterson and Patterson, 2010; 
Smith et al., 2011).

3. Geographic range and sympatry

Many small mammal species are habitat specialists and do not 
occur in all habitats within their geographic range. Overlapping ranges 
between taxonomically similar small mammal species are typically 
segregated by habitat type or utilization of different resources allowing 
coexistence within an area (M’Closkey, 1978; Murúa and González, 
1982; McCay et al., 2004). Additionally, behavioral factors, such as 
aggressive interspecific interactions, may partition sympatric sister 
species into certain habitats (Chappell, 1978; Bleich and Price, 1995).

Both NFS and SFS squirrels typically occur in distinct habitats 
across their large geographic ranges. In the eastern part of their range, 
NFS is associated with cooler montane and boreal conifer and 
mixedwood forests, which provide important food sources such as 
hypogeal fungi. Throughout their range, SFS is associated with more 
austral forests, especially woodlands with hard mast trees. Although 
NFS and SFS are mostly allopatric throughout the majority of their 
geographic ranges, these species are parapatric to sympatric along the 
southern peripheries of NFS geographic distribution and the northern 
parts of SFS geographic distribution (Figure 1). Where sympatry does 
occur, it typically is found in mixed hardwood-conifer ecotones and 
forests in the Appalachian Mountains, New England, Great Lakes, and 
the southern portion of the Canadian Shield.

Sympatry between NFS and SFS where their ranges meet or 
overlap is not universal. Some long-term studies (~20 years) around 
the Great Lakes Region show stable zones of local sympatry. But in the 
central and southern Appalachian Mountains, 30+ years of long-term 
nest box monitoring show strong habitat segregation between the 
species and a lack of local sympatry. In some areas sympatry is recent 
(<30 years) and resulted in species turnover (Wood et  al., 2016; 
Diggins et al., 2020b; O’Brien et al., 2022). Although certain sites 
exhibit stable NFS-SFS sympatry in the Great Lakes Region, it is 
unknown if NFS-SFS sympatry occurred historically or if ~20 year of 
monitoring can accurately assess stable sympatry given that species 
turnover may take decades to observe. Unstable sympatry (i.e., where 
sympatry dynamically occurs during certain times of year or during 
good mast years between parapatric populations of NFS and SFS, but 
is not constant) has been observed in the southern Appalachians 
(Weigl et al., 1992; Weigl, 2007). In interspecific interactions, SFS is 

considered more aggressive than NFS and may exclude NFS from nest 
sites (Weigl, 1978). Despite some cooccurrence resulting in unstable 
sympatry within tension zones or localized sympatry within certain 
parts of their range, resource specialization and interspecific 
aggression are considered the two main factors reducing probability 
of sympatry for both species (Muul, 1968; Weigl, 1978).

4. Observed range shifts

Recent range shifts have occurred in both SFS and NFS. SFS 
expanded their known range by approximately 200 km in Ontario, 
Canada (Bowman et  al., 2005; Garroway et  al., 2011), 225 km in 
Michigan, USA (Myers et  al., 2009), and 60–150 km in Quebec, 
Canada (Lazure et al., 2016). The establishment of SFS where they 
were once absent or rare has led to the decline or extirpation of NFS 
from some of those areas (Myers et al., 2009; Wood et al., 2016). In 
Pennsylvania, where NFS is a state endangered species, some sites only 
hosted NFS historically, but now NFS are sympatric or have been 
replaced by SFS (Mahan et al., 1999; Diggins et al., 2020b). Shifts in 
ranges may occur rapidly: repeated surveys in Michigan across a 
30-year period showed the northward range expansion of SFS and 
northward range contraction of NFS from the southern to the 
northern part of the state (Myers et al., 2009). Range shifts can also 
be dynamic: SFS expanded their range northward during a 40-year 
period in Ontario, but also showed a partial range collapse in the 
newly expanded area over a short time period (Bowman et al., 2005). 
Species replacement rates have also occurred in less than 20 years 
(Wood et  al., 2016; O’Brien et  al., 2022), possibly leading to the 
extirpation or decline of local populations of NFS over relatively short 
time periods. However, range shifts and species turnover rates may 
be  impacted by multiple interacting factors that are not uniform 
across the contact zone for these species.

5. Interspecific factors influencing 
species turnover

When two taxonomically similar species co-occur sympatrically 
in an area, various factors may influence the coexistence of both 
species or the replace of one species over the other. In the case of NFS 
and SFS, these species tend to be parapatric or sympatric in areas of 
overlap. In parts of their range where NFS and SFS tend to 
be  parapatric (e.g., the southern Appalachians), narrow zones of 
unstable sympatry along conifer-hardwood ecotones are typical 
(Weigl, 2007). I will discuss three factors driven by species interactions 
that may influence NFS replacement by SFS on a local scale: parasite-
mediation, hybridization, and resource competition (Figure 2).

5.1. Parasite-mediated competition

Climate change can exacerbate parasite-mediated competition 
between species by altering the survival, development, and transmission 
of parasites, causing unpredictable ecological impacts (Polley et al., 
2010; Carlson et  al., 2017). Novel interspecific parasite-mediated 
competition may help facilitate an invading species’ replacement of a 
resident species by reducing survival of the resident species (Romeo 
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et al., 2021), especially where invading species are now sympatric with 
endangered resident populations (Mahan and Steele, 2022).

Strongyloides robustus is a nematode parasite that occurs in both 
NFS and SFS, as well as other sympatric squirrel species such as 
eastern grey squirrels (Sciurus carolinensis) and American red 
squirrels (Tamiasciurus hudsonicus; Weigl, 1978; Espenshade and 
Stewart, 2013; O’Brien et al., 2022). S. robustus infections have no 
discernable impacts on SFS, but can be deleterious to NFS leading to 
decreases in body condition and even mortality (Weigl, 1978; O’Brien 
et al., 2022). The nematode causes damage to the lungs and small 
intestines, impacting the nutritional state and health of NFS, causing 
emaciation and increasing the squirrel’s susceptibility to pneumonia 
(Weigl et al., 1992). The range of S. robustus is thought to be limited 
by cold temperatures, which reduce the hatching success of eggs and 
extend the time for larval development compared to warmer 
temperatures (Wetzel and Weigl, 1994). However, S. robustus 
occurrence in Nova Scotia, Canada (Bartlett, 1995) may indicate 
geographic variation in cold tolerance in this species. Climate change 
is predicted to allow the expansion of S. robustus to higher latitudes 
and elevations (Weigl, 2007), potentially leading to persistent 
populations of S. robustus in areas that may have previously been 
unfavorable for establishment due to colder temperatures. Recent 
range expansion of S. robustus into Ontario was associated with 
northward SFS range expansion (Coombs, 2010), indicating climate-
induced range shifts in SFS may facilitate the spread of S. robustus to 
higher latitudes and elevations.

Transmission of nematodes between SFS and NFS may occur at 
shared denning sites or feeding areas (Weigl, 2007), with transmission 
most likely occurring in nests previously occupied by SFS or during 
interspecific nesting aggregations. Nesting material may provide 
suitable microclimates for S. robustus eggs or larvae to survive during 
colder winter months long enough to infect their hosts (Pauli et al., 
2004), especially in nests that contain larger aggregations of flying 
squirrels, such as natal denning aggregations during early spring or 
large winter aggregations (Wetzel and Weigl, 1994). Soil substrates can 

also host S. robustus and allow parasite transmission from SFS to NFS 
in feeding areas shared by both species (Weigl, 2007).

Potential species turnover rates mediated by S. robustus infections 
may be associated with milder winters and population declines could 
occur over short time periods. In North Carolina, USA, NFS and SFS 
had high population numbers within a sympatric zone along the 
northern hardwood-spruce ecotone in the 1980s. S. robustus prevalence 
in NFS increased after two mild winters and was subsequently followed 
by a decline in the NFS population (Weigl et al., 1992), indicating a 
potential parasite-induced population reduction within a short 
timeframe. Anthropogenic modifications to NFS habitat may have 
enabled SFS invasion of higher elevation sites in North Carolina during 
the summer months, facilitating the spread of S. robustus (Weigl, 2007). 
Capture success of NFS was substantially lower in trapping efforts at the 
same sites in the 2010s (Diggins et al., 2017) compared to the 1980s 
(Weigl et  al., 1992) despite similar methodology. Shifts in capture 
success potentially indicate a lack of long-term recovery in NFS 
populations after population declines coincided with the first detections 
of S. robustus in those North Carolina populations. Although a recent 
study in a SFS-NFS hybrid zone across 30 sites in Canada found no 
support for parasite-mediated competition between the two species 
(O’Brien et al., 2022), this study only occurred for one season. Another 
study in a recent hybrid zone in Ontario found S. robustus in NFS was 
most likely caused by interspecies transmission, but prevalence was too 
low to facilitate parasite-mediated competition (Coombs, 2010), 
although this study was also limited to one field season. Additionally, 
O’Brien et al. (2022) found a weak relationship between S. robustus 
prevalence and NFS body condition, but how infection influences body 
condition over time was not explored. Krichbaum et al. (2010) found 
no evidence of negative impacts of S. robustus infection on the body 
condition of wild NFS specimens, but only 4 specimens were examined 
providing limited inference.

The impact of S. robustus infection may be difficult to detect in the 
field, especially if individual recapture rates are low, reducing the 
ability to track infection rates and body condition over time. Infection 
rates may vary seasonally, where the lowest prevalence of S. robustus 
occurs in winter and highest in summer and early fall (Weigl et al., 
1992). Moreover, a study on the impacts of S. robustus on European 
red squirrel (S. vulgaris) survival in Italy required 9 continuous years 
of monitoring data to be able to detect the parasite’s impact on squirrel 
populations (Romeo et al., 2021). Therefore, long-term monitoring 
may be  required to determine which factors aid in the spread of 
S. robustus and how this parasite may help facilitate species turnover 
at a site across time.

High prevalence of S. robustus in sympatric squirrels indicates 
other potential reservoirs besides SFS (Espenshade and Stewart, 2013; 
O’Brien et  al., 2022). Interactions between diurnal eastern grey 
squirrels and American red squirrels with nocturnal flying squirrels 
may be  limited due to differences in their activity patterns. For 
example, NFS only exhibited S. robustus infections when sympatric 
with SFS, but not in parts of its range where it was sympatric with red 
squirrels and SFS did not occur (Krichbaum et al., 2010). However, 
the transmission of S. robustus could still occur due to heterospecific 
space use (e.g., use of the same nest sites).

The prevalence of S. robustus varies geographically between 
species, wherein prevalence within new zones of sympatry at northern 
latitudes may be lower than areas where sympatry has occurred for 
longer periods of time (Wetzel and Weigl, 1994; Pauli et al., 2004; 

FIGURE 2

Southern flying squirrels (SFS; Glaucomys volans) and northern flying 
squirrels (NFS; Glaucomys sabrinus) exhibit geographic range overlap 
in the Appalachians, New England, and the Great Lakes Region in 
North America. Anthropogenically-induced range shifts due to 
historical land use and climate change have caused the range 
expansion of SFS and range contraction of NFS to higher latitudes 
and elevations. In zones of sympatry, hybridization, parasite 
mediation via the nematode Strongyloides robustus, and 
competition for resources such as nest trees, may be factors 
contributing the displacement of NFS by SFS. This figure was made 
with BioRender (www.biorender.com) and edited in Microsoft Paint.
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Coombs, 2010; Krichbaum et al., 2010; Espenshade and Stewart, 2013; 
O’Brien et al., 2022). However, the establishment of S. robustus in 
novel areas and subsequent effects on NFS populations can happen 
quickly. For example, Weigl et al. (1992) did not detect S. robustus in 
NFS in the southern Appalachians until the 1980s, despite all SFS 
populations examined in the region hosting the nematode during 
surveys in the 1960s, indicating a recent spillover from SFS to NFS 
within a 20-year period. The spillover event coincided with a 
population decline in NFS at one site that has not recovered.

5.2. Hybridization

As species ranges shift due to climate change and anthropogenic 
land use, interspecific reproduction barriers in novel contact zones 
may not have been reinforced through evolutionary selection against 
heterospecifics, increasing the probability that hybridization between 
formerly parapatric species may occur (Lamont et al., 2003; Chunco, 
2014). Hybridization could contribute to reduced fitness and increased 
extinction probability (Muhlfeld et al., 2009; Kleindorfer et al., 2014), 
especially of endangered NFS subspecies which already face multiple 
stressors impacting their populations. Hybridization between resident 
species and neonatives may help facilitate range expansion of the latter 
(Pfenning et al., 2016). Understanding hybrid zones between NFS and 
SFS could help determine the impact of expanding SFS distribution 
on NFS persistence (Taylor et al., 2015).

Hybridization has been observed between NFS and SFS in 
Pennsylvania, USA and Ontario (Garroway et al., 2010). Both of the 
areas with documented hybridization are where SFS has expanded its 
range due to anthropogenically-induced forest composition change or 
climate change, (Bowman et al., 2005; Mahan et al., 2010). However, 
no hybridization events have been documented in the high-elevation 
spruce-fir southern Appalachian Mountain sky islands. The lack of 
hybridization events between NFS and SFS in the southern 
Appalachians may indicate tension zones in areas where parapatric 
populations have unstable sympatric zones (see Tension zones and 
habitat permeability section), whereas newly invaded areas with novel 
sympatry may lead to a higher probability of hybridization events, 
although further research is needed to confirm this.

Both species prefer conspecific den mates, however, heterospecific 
denning aggregations have occurred in captivity (Weigl, 1978; Olson 
et al., 2018) and in the wild (Coombs, 2010). In the recently colonized 
northern expanses of SFS range, heterospecific denning may increase 
winter survival of individual SFS, especially since densities of SFS and 
potential opportunities for conspecific denning aggregations may 
be lower in newly invaded areas (Garroway et al., 2010; Olson et al., 
2018). Since mating in both NFS and SFS occurs in the late winter and 
spring (Dolan and Carter, 1977; Wells-Gosling and Heaney, 1984) 
when both species form the largest nesting aggregations, interspecific 
den sharing may facilitate hybridization.

5.3. Resource competition

In areas of sympatry, competition for resources may lead to 
aggressive interspecific interactions between flying squirrels, 
potentially influencing species survival or reproductive success. 
Resource overlap between NFS and SFS is most likely limited to 

denning sites since both species consume varied diets and overlap in 
major food resources is relatively minimal (Dolan and Carter, 1977; 
Mitchell, 2001). Certain factors may influence availability of den 
resources, which might result in competition for this resource in areas 
where SFS are newly sympatric with NFS.

Cavities used by both flying squirrel species are usually found in 
hardwoods or snags, whereas dreys (i.e., leaf nests) typically occur in 
conifers (Holloway and Malcolm, 2007; Diggins et al., 2017; O’Brien 
et al., 2021). Although NFS exhibits flexible use of den sites, including 
the use of dreys and subterranean dens (e.g., Carey et al., 1997; Diggins 
et al., 2015), NFS are considered dependent on tree cavities for natal 
dens as insecure den sites (e.g., subterranean dens) may limit 
reproductive success (Carey et al., 1997; Smith, 2007). Pregnant female 
flying squirrels defend natal den trees from conspecifics (Muul, 1968; 
Smith et  al., 2011) and natal dens in nest boxes only contain the 
mother and her offspring (Weigl et al., 1992; Reynolds et al., 2009). 
Cavities buffer colder temperatures better compared to dreys (O’Brien 
et al., 2021) and cavities in live trees buffer colder temperatures better 
than cavities in snags (Coombs et al., 2010). In the early spring when 
females establish natal dens, cavities may afford a better thermal buffer 
from cold temperatures compared to dreys and provide better 
protection from terrestrial predators than subterranean dens, which 
could impact the survival of a mother and her dependent young in 
colder climates, although limited research has focused on denning 
selection of reproductive females.

Anthropogenic activities, such as forest harvesting, remove larger 
diameter trees and snags that may serve as cavity trees (Holloway 
et al., 2007; Vaillancourt et al., 2008), highlighting how land use may 
limit a resource that historically may have been more common. Areas 
with lower availability of cavity trees due to land use may lead to 
increased competition for den sites during certain times of the year. 
Aggressive competition from SFS could directly impact the success of 
NFS natal nests, wherein NFS may experience reduced availability of 
suitable cavities for natal nests, driving them to utilize dreys or 
subterranean nests instead. Limited cavities in younger forests may 
also moderate SFS establishment by reducing reproductive success or 
overwinter survival since SFS are less cold tolerant than NFS (see 
Thermal Tolerances section). Competition for cavities may also 
increase interspecific overlap use in nest sites or interspecific nest 
sharing, which could facilitate S. robustus transmission or 
hybridization. However, resource competition is difficult to determine 
in the field, since spatial networks of flying squirrels are most likely 
complex, flying squirrels use multiple den sites, and nest sharing can 
be  difficult to ascertain unless a large number of individuals or 
squirrels from nesting aggregations are radio-collared or PIT-tagged 
(Carey et al., 1997; Garroway et al., 2013; Diggins and Ford, 2021).

6. Factors aiding SFS range expansion

6.1. Anthropogenic alteration of habitat

Within eastern North America, Euro-American (i.e., European 
colonists that settled in the Americas) activities (i.e., exploitative forest 
harvesting, shifts in fire regimes) have altered the composition, 
structure, and distribution of current forests (Foster et  al., 1998; 
Nowacki and Abrams, 2008; Boucher et al., 2009; Danneyrolles et al., 
2016). Montane and boreal coniferous species, such as red spruce (Picea 
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rubens), are slow-growing compared to many northern hardwood 
species. During the industrial clearcut logging period (i.e., 1880s–
1940s), hardwood species outcompeted montane conifers in cutover 
areas, effectively displacing them or causing shifts in overstory 
dominance at lower elevations and latitudes (Korstian, 1937; Hayes 
et al., 2007; Boucher et al., 2009). For example, industrial logging in the 
central Appalachians of West Virginia caused the reduction of red 
spruce dominant forests from ~600,000 ha prior to logging to 
~10,000 ha today (Hopkins, 1899; Griffith and Widmann, 2003). In 
Quebec, one site showed 56% of coniferous forest was convert to mixed 
or deciduous forest due to >70 years of logging activities (Boucher et al., 
2006), whereas spruce-fir-birch forests dominated the Saguenay River 
region, but are now confined to high-elevations and steep slopes 
(Dupuis et  al., 2020). Even Great Lakes Region forests that were 
historically mixedwoods saw significant decreases in conifers like 
balsam fir (Abies balsamea), eastern white cedar (Thuja occidentalis), 
and eastern larch (Larix laricina), and increases deciduous species such 
as maples (Acer spp.) and poplars (Populus spp.) due to logging (Jackson 
et al., 2000; Schulte et al., 2007; Pinto et al., 2008). This large-scale 
conversion of conifer-dominant forests and reduction of importance of 
conifers in mixedwood forests could have led to habitat loss for NFS 
and increased habitat for SFS across the landscape, allowing SFS to 
expand their distribution to higher elevations and latitudes.

Forest harvesting may have also increased the permeability of 
habitat for SFS by aiding in compositional shifts in forests and 
alteration of habitat patches, wherein forest species composition and 
distribution was previously driven by elevation, topography, natural 
disturbance regimes, or climatic factors. While montane and boreal 
coniferous species associated with NFS habitat are projected to 
be  sensitive to climate change (see Climate Change section), 
anthropogenic disturbances may accelerate species transitions of 
conifer-dominant forests to hardwood-dominant forests (Korstian, 
1937; Brice et al., 2019). Logging or other types of anthropogenic land 
use (e.g., roads) may fragment the landscape (Smith and Person, 
2007), creating stepping stones or corridors of suitable habitat allowing 
for SFS to invade NFS habitat at higher elevations or latitudes 
(Weigl, 2007).

Forest structure can also be impacted by anthropogenic activities 
(Sturtevant et  al., 1997; Ziegler, 2004; Cyr et  al., 2009), reducing 
potential cavity nesting sites via loss of snags or large trees (Carey, 
1995). Although cavities used by flying squirrels can occur in 
hardwood and conifer species, conifers typically need to be larger and 
older compared to hardwoods before sufficient heart rot can develop 
natural cavities or facilitate excavation by primary cavity nesters 
(Bunnell et al., 2002). Density of flying squirrels are typically lower in 
harvested versus old-growth stands (Taulman et al., 1998; Herbers and 
Klenner, 2010; Holloway and Smith, 2011), possibly due to reduced 
denning and altered food resources, although this can vary depending 
on harvest method used (e.g., clearcut vs. single-tree selection). A 
reduction in resource availability could increase species competition 
for these resources, potentially aiding in species turnover.

6.2. Climate-change

Shifts in temperature regimes due to climate change are expected 
to alter the distributions of species (Chin et al., 2011; Wiens, 2016). 
Climate change is already associated with range expansion of SFS and 

range contraction of NFS to more northern latitudes (Myers et al., 
2009; Wood et al., 2016). Shifts at the northern edge of SFS geographic 
range have previously been observed with subsequent contractions or 
local extirpations of NFS (see Observed Range Shifts section). 
Increasingly milder winters due to climate change may amplify 
parasite-mediated competition between NFS and SFS, with negative 
impacts on the former (see Parasite-Mediation section). Milder 
winters may also help SFS establish in novel areas, increasing 
interactions with NFS, heightening the probability of hybridization 
events and increasing competition for limited resources, such as natal 
cavity trees.

Although factors, such as microclimate and cloud immersion, 
may allow the persistence of some montane conifer forests within the 
southern proportions of NFS range in the Appalachian Mountains, the 
complete loss of montane conifer habitat due to climate change are 
projected to occur in some regions within the next century (Burns 
et al., 2003; Koo et al., 2015). However, anthropogenic disturbance-
mediated shifts in warm-climate tree species to higher latitudinal and 
elevational sites may be  amplified by climate change, increasing 
hardwood species and causing declines in cold-adapted montane and 
boreal conifers (Iverson et al., 2008; Brice et al., 2019; Boulanger and 
Puigdevall, 2021). Therefore, a combination of milder winters and 
vegetation shifts induced by climate change may help SFS 
establishment farther north, leading to NFS extirpation in the 
southern latitudes of their range, although the importance of these 
two factors and how they interact may vary regionally.

7. Factors limiting SFS range expansion

7.1. Thermal tolerances

Flying squirrels have small body sizes and high body temperatures, 
which may impact their ability to survive cold winters. Although NFS 
is adapted to colder boreal climates, extremely cold temperatures in 
the higher latitudes of SFS’s geographic distribution is thought to limit 
its northern distribution as winter is considered the most critical 
season to SFS survival (Muul, 1968; Stapp et al., 1991; Thomas and 
Weigl, 1998). Comparatively, SFS has a higher surface area-to-volume 
ratio and thinner pelage than NFS (Merritt et al., 2001; Olson et al., 
2018), which may influence cold susceptibility between the species 
(Olson et al., 2017).

Behavioral strategies to deal with colder temperatures include 
forming winter denning aggregations, reducing foraging time, and 
torpor (Muul, 1968; Thomas and Weigl, 1998; Nelson and Sagot, 
2018). Although flying squirrel exhibit increased body mass during 
the winter (Stapp, 1992; Weigl et  al., 1992; Merritt et  al., 2001), 
extremely cold winter temperatures can cause decreased body weight 
in individuals (Thomas and Weigl, 1998), indicating availability of 
particular food resources is needed to survive colder temperatures 
(see Absence of Resources section). Observations of range expansion 
in Ontario coincided with warmer winters (Bowman et al., 2005), 
demonstrating that a warming climate may facilitate range expansions 
to higher latitudes and elevations.

Social thermoregulation during cold weather may help SFS persist 
in colder climates. Denning aggregations reduce heat loss during the 
colder months of the year (Stapp et al., 1991; Merritt et al., 2001). 
Aggregation size can vary by season with larger non-natal aggregations 
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of individuals typically occurring during the winter months (Stapp 
et al., 1991; Reynolds et al., 2009; Doty et al., 2022). Pregnant females 
tend to leave non-natal nesting aggregations in the late winter-early 
spring and den alone at a new nest site to raise their young (Stapp 
et  al., 1991), so cavity availability for pregnant females may be  a 
limiting factor for successful reproduction in colder regions (see 
Resource Competition section).

Torpor and reduced activity could help SFS deal with colder 
temperatures. Torpor is an adaptive behavior used to conserve energy 
during colder periods (Lyman et al., 1982). Some anecdotal evidence 
of torpor has occurred in field observations for SFS (Muul, 1968), but 
only limited evidence of torpor was observed for both species in 
laboratory settings (Olson et al., 2017). Activity of radio-collared NFS 
have occurred during subfreezing winter temperatures (Cotton and 
Parker, 2000; Ford et al., 2014), highlighting their adaptation to very 
cold temperatures. Although SFS are known to reduce foraging 
activities during cold temperatures (Thomas and Weigl, 1998), there 
are no studies that describe SFS winter activity patterns associated 
with temperature in the northern limits of their range. Colder 
temperatures at the northern reaches of SFS geographic range may 
hinder winter activity patterns, including suitable conditions for 
foraging, although this needs to be further explored.

Whereas colder temperatures are limiting factors for SFS, higher 
temperatures are not limiting factors for NFS, indicating that warmer 
temperatures at the southern extremes of their range may not drive 
range contractions in this species (Gudde, 2022). Other factors, such 
as shifts in the distribution of NFS preferred habitat to higher 
elevations and latitudes, may have narrowed the thermal envelopes 
where we currently observe NFS occurring as this species previously 
experienced contractions in some parts of their range unrelated to 
climate change. However, shifts in habitat may have also expanded the 
thermal envelope where SFS are found via land use shifts of suitable 
SFS habitat to higher elevations and latitudes (see Tension Zones and 
Habitat Permeability section). This would indicate that species 
turnover in areas of sympatry may not solely be driven by the direct 
effects of a warming climate, but the effects of a warming climate 
interacting with anthropogenic alterations of available resources. 
However, in some areas, such as Ontario, pre-industrial forests may 
have been suitable habitat for SFS, but thermal conditions may have 
restricted SFS from expanding into these sites until more recently. 
Therefore, climatic warming could explain why SFS has exhibited large 
latitudinal range shifts over short periods of time in this region as well 
as the partial range collapses of the SFS invasion front due to the 
impacts of cold winters (Bowman et al., 2005).

7.2. Absence of resources

The distribution of SFS may be limited by resource requirements 
(Weigl, 1978). Reduced thermal tolerance by SFS in colder climates 
could partially depend on the availability of resources in the northern 
parts of their range. Resources utilized by SFS to deal with colder 
winters include caching nuts and preferential use of cavities over dreys 
(Muul, 1968; Thomas and Weigl, 1998; O’Brien et al., 2021).

Hard mast is an important high-energy winter food source that 
SFS store in caches and access throughout the winter (Thomas and 
Weigl, 1998; Helmick et  al., 2014). For example, hickory nuts are 
considered an important winter food for SFS (Muul, 1968; Thomas 

and Weigl, 1998). However, most hickory species do not occur in the 
northern limits of SFS range, including areas with recent range 
expansions. New records indicating SFS range expansion or species 
turnover were observed in deciduous or mixedwood forests (Bowman 
et al., 2005; Lazure et al., 2016; Wood et al., 2016), implying suitable 
habitat is most likely still needed to meet food requirements. With 
climate change, oaks, hickories, and American beech are predicted to 
expand their ranges >100–250 km northward depending on the 
species, although it may take centuries for these shifts to occur 
(Iverson and Prasad, 1998). The presence of American beech may 
be especially important for SFS in areas where oaks and hickories do 
not occur (i.e., northern latitudes, higher elevations), potentially 
influencing expansion into new areas (Garroway et al., 2011).

Despite their large geographic ranges, NFS and SFS may 
be considered habitat specialists since specific resources associated 
with their habitats allow for their persistence (Weigl, 2007). 
Observations of range expansion and establishment of SFS typically 
occur with high mast years coinciding with warm winters (Bowman 
et al., 2005; Wood et al., 2016). Even if climate change increases the 
occurrence of mild winters, a lack of mast availability in an area newly 
invaded by SFS might still hinder their winter survival and 
establishment at those sites. For example, the range expansion of SFS 
in Ontario linked to warmer winters was followed by a subsequent 
range contraction of 240 km associated with a mast crop failure 
directly followed by a colder winter (Bowman et al., 2005). This event 
indicates the availability of hard mast may be  important to the 
persistence of SFS in newly colonized areas during latitudinal shifts in 
the northern parts of its range. However, seasonal shifts to higher 
elevations in the Appalachians may occur dynamically without range 
shifts of mast-producing tree species, since SFS can retreat a couple 
hundred meters downhill to access those resources. Until climate 
change causes shifts in forest species composition, wherein southern 
mast tree species expand their ranges to more northern latitudes, SFS 
may lack food resources to successfully establish populations at 
northern latitudes where hard mast species do not occur, although this 
will probably vary regionally.

Denning resources have been hypothesized to be  a limiting 
factor for flying squirrels (Carey et al., 1997), although this may only 
be true in certain parts of a species’ range or where forest structure 
has been drastically altered (i.e., logged forests vs. old-growth). Both 
species exhibit flexibility in utilization of denning resources, using 
tree cavities, dreys, and subterranean dens (Muul, 1968; Campuano-
Chávez-Peón et al., 2014; Diggins et al., 2015). However, SFS are 
thought to be more limited in their den selection compared to NFS, 
although this may be geographically dependent with SFS exhibiting 
a higher reliance on cavities in more northern parts of their range 
(O’Brien et al., 2021) and more denning flexibility in southern parts 
of their range (Campuano-Chávez-Peón et al., 2014). Since cavities 
in live trees buffer cold temperatures better than dreys or cavities in 
snags (Coombs et al., 2010; O’Brien et al., 2021) and larger cavity 
trees influence winter nesting aggregation formation because large 
diameter trees tend to have cavities compared to small diameter 
trees (Bunnell et al., 2002; Jacques et al., 2017), presence of large 
cavity trees and snags may be important for SFS winter survival. The 
logging history of a stand may influence the availability of these 
cavity trees (Holloway et al., 2007; Vaillancourt et al., 2008), making 
den tree availability a factor in the successful expansion of 
SFS’s range.
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7.3. Tension zones and habitat permeability

Areas where parapatric species may be more resilient to invasions 
are tension zones. In hybridization areas, tension zones are considered 
areas that are perpetuated by an equilibrium between dispersal of and 
selection against hybrids (Barton and Hewitt, 1989). The concept of a 
tension zone can be more widely applied to encompass factors that 
influence that equilibrium, including resources and interspecific 
interactions. In areas of historically unstable sympatry, tension zones 
may help prevent the expansion of a neonative, especially in areas 
where interspecific interactions are not novel. For example, in the 
southern Appalachians, the spruce-northern hardwood ecotone acts as 
a tension zone where unstable sympatry between lower elevation 
populations of SFS and higher elevation populations of NFS occur 
(Weigl et al., 1992). This tension zone is relatively narrow (50–250 m 
wide) and habitat attributes suitable to both species occur in this zone. 
However, SFS lack suitable resources above the tension zone, whereas 
NFS lack suitable resources below it. For example, summer observations 
of SFS have occasionally occurred in red spruce forests near the spruce-
northern hardwood ecotone (Urban, 1988), but SFS do not persist in 
these forests due to lack of food resources. Therefore, tension zones may 
allow more resistance to hybridization and have more restricted 
invasion fronts compared to novel zones of sympatry where 
interspecific interactions between SFS and NFS do not have precedence.

Species extirpations may be lower along elevational vs. latitudinal 
gradients (Wiens, 2016). Eastern hemlock (Tsuga canadensis)-
dominated stands preferred by NFS in Pennsylvania are small and 
extremely fragmented due to historic logging and forest declines via 
hemlock woolly adelgid (Adelges tsugae). NFS habitat in Pennsylvania 
occurs across similar elevational gradients as SFS habitat in the state 
(Mahan et al., 2010), whereas habitat in the southern Appalachians is 
higher quality and strongly elevationally segregated across steep 
mountainous terrain (Ford et  al., 2015; Diggins et  al., 2017). 
Observations during long-term nest box monitoring and acoustic 
surveys only show SFS detected in hardwood-dominant forests or 
right along the northern hardwood-spruce ecotone, but SFS detections 
in the montane spruce-fir forests are extremely rare and typically only 
observed during the warmer months (Diggins et al., 2020a). However, 
SFS is present at many sites with NFS in Pennsylvania, and historic 
NFS sites exhibited species turnover in hemlock and mixedwood 
stands (Mahan et  al., 1999; Diggins et  al., 2020b). The lack of 
elevational segregation of NFS habitat from SFS habitat may make 
habitat permeability (i.e., the ability of neonatives to disperse into a 
novel habitat) greater in Pennsylvania than North Carolina, despite 
the latter sites occurring 700 km south of Pennsylvania.

Historic species distribution prior to industrial logging is also 
important to note when considering factors influencing range 
expansion and potential tension zones. With projected climate change, 
future habitat suitability and resiliency is underestimated if historical 
distribution data is ignored since current species distributions may 
represent more narrow bioclimatic envelopes than distributions that 
existed prior to Euro-American disturbance (Andrews et al., 2022). 
For example, in the southern Appalachians, exploitative harvesting led 
to an uphill contraction of spruce-fir forests by approximately a 
minimum of 200 m (Hayes et  al., 2007) due to the competitive 
advantage faster-growing northern hardwood species had over slow-
growing red spruce in clearcut stands (Korstian, 1937; Pyle and 
Schafale, 1988). It is reasonable to postulate if red spruce occurred at 

lower elevations, then NFS dependent on these forests (Ford et al., 
2015; Diggins et al., 2017) may also have experienced upward range 
contractions after the industrial logging period. Therefore, the thermal 
tolerances of NFS in the southern Appalachians may be wider than 
their current distribution suggests. On the other hand, SFS 
experienced an upward range expansion as a result of landscape 
disturbance, potentially placing them closer to their thermal limits 
within the southern Appalachians. The anthropogenically-induced 
upward contraction of habitat and strong elevational segregation of 
NFS and SFS habitat could explain why there have been no 
observations of SFS invading NFS habitat and establishing year-round 
residency at the higher elevations despite long-term nest box 
monitoring occurring across in the southern Appalachians since the 
1980s–1990s. In some forests around the Great Lakes Region, past 
logging increased deciduous species and reduced coniferous species 
(Jackson et al., 2000; Schulte et al., 2007; Pinto et al., 2008), potentially 
providing more suitable habitat for SFS. However, many forests in the 
western Great Lakes were historically mixedwood (Jackson et  al., 
2000; Pinto et al., 2008), so the impact of historical logging on habitat 
suitability for SFS may have been minimal compared to the 
Appalachians and eastern Canada. Additionally, recent observations 
of range expansions of SFS in the region may highlight that despite 
available habitat, thermal intolerances may have limited SFS expansion 
to those areas until the last several decades, indicating climate change 
is most likely responsible for range shifts in mixedwood forests around 
the Great Lakes Region. Since the northern range extent of SFS prior 
to historical logging is unknown, assumptions that areas of sympatry 
between SFS and NFS as long-term and stable could be misleading.

8. Conclusion

Species ranges are naturally dynamic and shift depending on 
environmental conditions over time. Overlaps between the ranges of 
sister species are also dynamic and natural disturbance events (e.g., 
stand-replacing fire, insect outbreaks) may potentially lead to shifts in 
secondary contact zones at smaller scales. However, historical logging 
and other anthropogenic activities (i.e., fire suppression) within North 
American occurred over large scales, most forests have been 
historically logged causing local to regional shifts in tree community 
composition and structure, and the majority of forests are second-
growth stands <80 years old (Thomas et al., 1988; Davis et al., 1996; 
Noss et al., 2006; Nowacki and Abrams, 2008; DellaSala et al., 2022). 
Anthropogenic-induced shifts in wildlife species ranges due to 
interactions between land-use alterations in forest composition and 
climate change present a conservation challenge for species that are 
taxonomically similar, but may have had limited sympatry due to 
habitat specialization. Although these range shifts could be potential 
conservation concerns (Essl et al., 2019), they are rarely assessed as 
possible invasion fronts. Additionally, factors influencing species 
range shifts are usually thought to be associated with climatic changes 
and not historical land use, although the interaction of both likely 
contribute to species range shifts in most cases (e.g., Rowe, 2007; Wan 
et al., 2022). Since historical land use may restrict or provide resources 
that enable SFS to invade and maintain newly expanded parts of their 
range in a warming climate, understanding how land use interacts 
with climate change in influencing SFS range shifts is important for 
predicting effects on NFS.
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Factors aiding and mitigating SFS invasion of NFS habitat are 
dynamic and interacting. Range shifts will most likely not 
be homogeneous across geographic gradients of a species even at 
range edges, especially when factors (e.g., historic land use, invasive 
forest pests) interact with temperature, producing a range of potential 
conditions that drive variation in species distribution shifts (Peel et al., 
2017). Within areas of sympatry, hybridization, parasite-mediation, 
and resource competition may contribute to species turnover from 
NFS to SFS, although how long species turnover may take to occur 
may be dependent on factors at local or regional scales. Some areas 
could also result in stable sympatry between the species, although 
long-term research over multiple decades would be  needed to 
evaluate this.

Anthropogenic land use and climate change are two major factors 
that may aid in the range expansion of SFS, which can influence local 
or regional dynamics affecting species turnover. Factors that could 
limit SFS range expansion include cold tolerance limits of SFS, absence 
of denning and food resources that improve survival in colder 
climates, and tension zones that stall SFS range expansion. While 
climate change is predicted to expand the range of SFS to higher 
elevations and latitudes, the interaction between past land use and 
availability of resources may be critical to the long-term establishment 
of SFS. Additionally, areas with recent establishment of SFS may have 
had suitable habitat prior to industrial logging or due to logging-
induced forest composition shifts, but previous SFS establishment was 
probably hindered until climatic conditions became more suitable in 
more recent decades.

Although species turnover can happen in relatively short time 
periods in novel areas of sympatry (Myers et al., 2009; Wood et al., 
2016; O’Brien et al., 2022), SFS persistence at a site may be important 
to facilitate that turnover. Invasion fronts can be dynamic and not all 
peripheral parts of a resident species’ range will face the same 
vulnerability of invasion depending on factors influencing tension 
zones between neonative and resident species. In the case of NFS, 
disjunct populations at the most southern Appalachians may be less 
susceptible to SFS invasion compared to populations in northern 
Appalachians and Great Lakes Region due to previous logging-
induced elevational habitat shifts and the presence of more contiguous 
habitat patches in the southern Appalachians which limit further SFS 
expansion uphill, as well as current land management practices (i.e., 
lack of logging, active spruce restoration).

In areas where SFS range expansion may drive extirpation of NFS, 
especially of endangered subspecies, land management and ecological 
restoration may halt or weaken the SFS invasion front. For example, red 
spruce restoration in the central and southern Appalachians aims to 

increase the historic extent of spruce-fir forests by increasing conifer-
dominant stands and promoting old-growth structure and decadence 
that could improve resource availability for NFS (Rentch et al., 2007, 
2016). Restoration efforts aim to increase resilience of montane conifer 
forests to climate change and provide long-term habitat for endangered 
subspecies of NFS. Further work is needed to understand which NFS 
populations are vulnerable to SFS range expansion, which could help 
prioritize restoration efforts in these areas.
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