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As biodiversity loss continues, there is an urgent need to develop efficient 
conservation measures to protect diversity with limited conservation resources. 
Conservation targets have generally been selected based on their population size, 
but more detailed assessments clarifying the phylogenetic genetic status, history, 
and phylogenetic uniqueness of rare species is crucial to set more appropriate and 
effective conservation measures. In Japan, the Act on Conservation of Endangered 
Species of Wild Fauna and Flora designated endangered plants with high conservation 
priority, but >40% of these species also grow overseas. We conducted comparative 
analyses based on ddRADseq and MIG-seq to evaluate the population conservation 
status and value of Vaccinium emarginatum and Elatostema platyphyllum which are 
growing across national borders at the eastern edge of their species distribution range. 
The analyses revealed contrasting conservation status between the two species; the 
Japanese population of V. emarginatum had lower genetic diversity at the individual 
level and phylogenetically differentiated from Taiwanese populations, while that of 
E. platyphyllum had higher diversity at the individual level and is a relatively recent 
migrant with little phylogenetical differentiation from Taiwanese populations. The 
two species, which share the common feature of being critically rare in Japan, 
showed contrasting genetic/phylogenetic characteristics. This study provided useful 
information for appropriate conservation measures based on species’ phylogenetic 
traits and genetic diversity.
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1. Introduction

Despite intensive efforts, biodiversity continues to decline (Rands 
et al., 2010). The Red List criteria at regional levels developed by the 
World Conservation Union (IUCN) relates primarily to distribution 
range, population size, and its fluctuations (Gärdenfors et al., 2001). 
Although many species at risk are recognized that need to be conserved 
according to the criteria, conservation resources are limited. Therefore, 
not only evaluating species at risk based on distribution range or 
population size, but also clarifying the phylogenetic genetic status, 
history, and phylogenetic uniqueness of rare species is crucial to its 
success (Vane-wright et al., 1991).

Decisions on biological conservation are made in administrative 
areas, while the distribution of species and the ecological and evolutional 
processes are independent of such areas (Moilanen and Arponen, 2011). 
Based on the Act on Conservation of Endangered Species of Wild Fauna 
and Flora, taxa considered endangered due to human impact are 
designated as “nationally rare species of wild fauna/flora” in Japan. As of 
January 2022, 198 species of vascular plants were included as targets of 
this Act (Ministry of the Environment, 2022), and 98 out of the 198 
species are non-endemic and grow outside of Japan. Social and political 
borders may result in significant additional costs to the effective 
management of natural ecosystems, although local governments and 
organizations involved in conservation are only responsible for the 
organisms that grow within their boundaries. The conservation value of 
rare species that grow within an area under their responsibility depends 
on the abundance and phylogenetic properties of the same taxa that 
grow outside the area. If the genetic traits of the targeted populations are 
unique to the area, conservation efforts should be directed to them. If, 
however, they do not differ from those outside the area, then 
conservation resources do not need to be devoted to them as much. 
Consequently, in such cases, conservation requires information on the 
genetic and phylogenetic uniqueness of the target population to 
prioritize in the selection of the target species.

As a case study, we selected two species, Vaccinium emarginatum 
and Elatostema platyphyllum, which are rare in Japan occurring at the 
eastern edge of the species distribution, and analyzed their genetic 
diversity and intraspecific phylogenetic relationships. The results 
revealed that the two species, both of which have small populations in 
Japan, were characterized by contrasting genetic/phylogenetic traits.

The first species, Vaccinium emarginatum Hayata (Ericaceae), is an 
evergreen epiphytic shrub, and the plant height is 20–60 cm. This species 
is found in Taiwan and Amami Island of Japan. In Japan, this species is 
sometimes distinguished from the Taiwanese one (Iokawa et al., 2017), 
called Vaccinium amamianum Hatusima. V. amamianum was first 
discovered on Amami Island in 1959 and described as a new species in 
1962 based on its shorter, dense hairs on the branches, smaller leaves, 
and terminal recemose inflorescence (Hatusima, 1962). However, 
Iokawa et  al. (2017) considered that the morphological differences 
between V. emarginatum and V. amamianum were not significant and 
they should be considered the same species; in addition, molecular 
phylogenetic analysis indicated that V. amamianum is synonymous with 
V. emarginatum (Tsutsumi, 2011). In this study, we treat the two taxa 
identically and refer to V. emarginatum. In 2000, V. emarginatum was 
listed as a target of the Act on Conservation of Endangered Species of 
Wild Fauna and Flora of Japan (Ministry of the Environment, 2022), and 
classified as “Critically Endangered (CR)” in the latest Red List (Ministry 
of the Environment, 2020). This species grows on the trunks of large 
trees such as Castanopsis sieboldii (Makino) Hatus., but the number of 

host trees has decreased due to forest logging, limiting its habitat 
(Niihara, 2000). The Ministry of Environment of Japan conducted an 
exhaustive field survey in 2007 and found that only a few individuals 
grow in a limited area, and the situation was recognized as similar in 
2014 (Ministry of the Environment, 2014). On the other hand, it is not 
threatened with extinction in Taiwan (Taiwan Endemic Species Research 
Institute, 2021).

The second species, Elatostema platyphyllum Wedd. (Urticaceae), is 
an evergreen perennial herb that grows on rocks and cliffs along 
mountain streams. The stem base is woody, and the plant height is 
50–100 cm. The species is found in the Himalayas, southern China, 
Taiwan, and Japan. In Japan, the species grows only on Iriomote Island 
(Shih et al., 1995), the northeast limit of its distribution range. It is an 
evergreen perennial plant that reproduces vegetatively through the 
rhizome. It is also listed as “Endangered (EN)” in the Red List of Japan 
(Ministry of the Environment, 2020). On the other hand, it is not 
threatened with extinction in Taiwan (Kokubugata and Kato, 2015).

This study aimed to investigate the genetic/phylogenetic status and 
determine the conservation value of Japanese populations of these 
species to propose effective conservation measures. We  obtained 
genome-wide information through multiplexed inter-simple sequence 
repeat genotyping by sequencing (MIG-seq) (Suyama and Matsuki, 
2015) and double digest Restriction site Associated DNA sequencing 
(ddRADseq) (Peterson et al., 2012) to characterize the phylogenies, 
genetic structures, and genetic diversity of both species at individual and 
population level.

2. Materials and methods

2.1. Plant samples and DNA extractions

Six and four V. emarginatum samples from Japan and Taiwan, 
respectively, were analyzed (Supplementary Table S1; Figures 1A–C). 
Leaf samples from the Amami population were obtained from ex situ 
stocks collected from the native habitat on Amami Island and grown in 
Toyama Botanic Gardens, Kyoto Botanical Garden, and private nurseries 
on Amami Island. At all these facilities, all plants were originated from 
separate wild individuals on Amami Island; the plants have not 
undergone a generational change since collection, and hence retain their 
genetic information as it was at the time of collection. For 
E. platyphyllum, leaf samples were collected from plants growing at least 
2 m apart from each other, in Iriomote Island and Taiwan 
(Figures 1A,D,E), respectively. In Iriomote Island, we took 43 samples 
throughout the distribution area; in Taiwan, 18 and 22 samples were 
collected from two growing areas (Wulai and Taiping Shan), respectively 
(Supplementary Table S2). The leaf samples of both species were 
preserved in silica gel until DNA extraction. Total genomic DNA was 
extracted from dried leaf material using a CTAB method (Murray and 
Thompson, 1980). DNA concentration was measured using the Qubit® 
dsDNA BR Assay Kit (Invitrogen, MA, United States) and adjusted to 
15 ng/μL with TE buffer.

2.2. MIG-seq, data quality control, and clone 
identification

Elatostema platyphyllum reproduces vegetatively through the 
rhizome, therefore, visual identification of individuals is difficult. To 
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identify the clonal samples of E. platyphyllum, all samples of this species 
were examined using MIG-seq, based on the original protocol with 
minor modifications (Suyama et  al., 2022). A sequencing library of 
350–800-bp sequences was diluted to 12 pM and sequenced on an 
Illumina MiSeq Sequencer (Illumina) using reagents from the MiSeq 
Reagent Kit v3 (150 cycles, Illumina). Sequencing reads were 
preprocessed using Trimmomatic version 0.32 (Bolger et al., 2014) to 
cut two bases off the start and end of reads which are below a threshold 
quality and align all read lengths to 76 bp. Then, reads with the quality 
below 30 were removed. Subsequent SNP detection was conducted using 
the Stacks software package version 2.4 (Rochette et al., 2019). We set 
the minimum number of identical reads required to create a stack (−m 
3), the mismatches allowed between stacks within individuals (−M 2), 
and maximum distance allowed to align the secondary reads to the 
primary stacks (–N 4).

The clonal samples were identified using GenoDive version 3.05 
(Meirmans, 2020). To distinguish sequence errors and variations 
between clones, loci data with low missing values retained by 80–100% 
of the whole samples were used. Additionally, the likelihood of 
misidentification was reduced by obtaining two independent data from 
the same samples and removing sequences that did not match between 
repetitions. Clone assignment was conducted following the manual of 
GenoDive version 3.05. The Infinite Allele Model was used for the 
calculation of genetic distance between samples, and missing data were 
removed from the data set. The threshold to be considered as the same 
genet was set to 2. The unit identified as the same clone based on the 

analysis was considered one genet, and 28 samples were used as 
representative samples for subsequent analysis.

2.3. ddRADseq and data quality control

For phylogenetic and genetic structural analysis, all samples of 
V. emarginatum and representative samples of E. platyphyllum were 
used for ddRADseq. Genomic DNA was double digested using the 
restriction enzymes BglII and EcoRI; the digested DNA fragments 
and two adapters (BglII adapter and EcoRI adapter) were ligated. 
Digestion and ligation were performed simultaneously at 37°C for 
16 h. The reaction mixture contained 20 ng of genomic DNA, 5 units 
of BglII (New England BioLabs, Ipswich, MA, United States), 5 units 
of EcoRI-HF (NEB), 1× NEB buffer2 (NEB), 1× bovine serum 
albumin (New England BioLabs), 0.2 μM BglII adapter, 0.2 μM 
EcoRI adapter, 1 mm ATP (Takara, Shiga, Japan), and 300 units of 
T4 DNA ligase (Enzymatics, Beverly, MA, United  States). The 
reaction product was then purified with AMPure®XP (Beckman 
Coulter, CA, United States). Purified DNA was amplified by PCR 
with indexed primers (Sakaguchi et al., 2015) using KOD-Plus-Neo 
(TOYOBO, Osaka, Japan). PCR product fragments of approximately 
320 bp were selected using E-Gel SizeSelect 2% (Life technologies, 
Waltham, MA, United States). V. emarginatum library was uniquely 
barcoded and sequenced with 100 bp pair-end reads in two lanes of 
an Illumina HiSeq2500 (Illumina, San Diego, CA, United States), 

A

D E

B C

FIGURE 1

(A) Sampling sites of Vaccinium emarginatum (○) and Elatostema platyphyllum (▲). The numbers of samples are indicated in the parentheses. (B) A habitat 
of V. emarginatum in Amami Island. This species prefers to grow on the upper part of the trunks. (C) A plant of V. emarginatum producing fruits. (D) The 
sampling location of E. platyphyllum on Iriomote Island. (E) A plant of E. platyphyllum in its habitat on Iriomote Island.
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and that of E. platyphyllum was sequenced with 150 bp pair-end 
reads in two lanes of an Illumina HiSeqX (Illumina, San Diego, CA, 
United States) by Macrogen (Seoul, South Korea). Sequencing reads 
were preprocessed using Trimmomatic version 0.39 (Bolger et al., 
2014) to remove adapter sequences and bases with the following 
parameters: ILLUMINACLIP TruSeq3-PE-2.fa2:30:10 and 
SLIDINGWINDOW:4:15. Furthermore, all read lengths were 
aligned to 100 bp for V. emarginatum and 150 bp for E. platyphyllum. 
The numbers of filtered reads are shown in Supplementary  
Tables S1, S2.

2.4. SNP calling

The locus assembly and single nucleotide polymorphism (SNP) 
call was performed using denovo_map.pl. from Stacks version 2.53 
(Rochette et  al., 2019). We set the minimum number of identical 
reads required to create a stack (−m 3), the mismatches allowed 
between stacks within individuals (−M 3), and those between stacks 
among individuals (−n 2). For E. platyphyllum, the phylogenetic 
analysis of all samples revealed some identical clones as described 
below. Since having the same clones in a sample set can introduce 
biases during SNP calls with stacks, SNP calls were performed again 
using only one representative sample from the identical clone in the 
sample set.

2.5. Phylogeny

For phylogenetic analysis, the populations program of the Stacks 
package was used to extract SNPs and create a variant call format (VCF) 
file. We set the minimum percentage of individuals in a population 
required to process a locus (−r 0.8), minimum minor allele frequency 
(−-min-maf 0.05), and maximum observed heterozygosity required to 
process a nucleotide site at a locus (−-max-obs-het 0.5). The –write-
single-snp option was used to restrict data analysis to only the first SNP 
per locus to avoid any influence of linkage among SNPs on the following 
analysis. The resulting VCF files of the SNP extraction were converted 
to PHYLIP format using PGDSpider version 2.1.1.5 (Lischer and 
Excoffier, 2012), and the invariant sites were removed with the script 
ascbias.py.1 Subsequently, a concatenation-based maximum likelihood 
tree was obtained for each species by RAxML-NG version 0.9.0 (Kozlov 
et  al., 2019), using the best model of evolution determined by 
MODELTEST-NG (Darriba et al., 2020). Branch support values were 
obtained through 1,000 standard bootstrap replicates. The resulting 
phylogenetic tree was drawn with FigTree version 1.4.4 (Rambaut, 2012).

Additionally, the phylogenetic networks were constructed with 
SplitsTree version 4.10 (Huson and Bryant, 2006). The output VCF files 
from the populations program of the Stacks package were converted to 
NEXUS format using the vcf2phylip.py script.2 Subsequently, the 
networks were constructed using the NEXUS files with default settings 
in SplitsTree.

1 https://github.com/btmartin721/raxml:ascbias

2 https://github.com/edgardomortiz/vcf2phylip

2.6. Genetic structure

For genetic structure analysis, the populations program of the Stacks 
package was used to extract SNPs and create a VCF file. We set the 
minimum percentage of individuals in a population required to process 
a locus (−r 0.8), the minimum number of populations a locus must 
be  present (−p  4 for V. emarginatum and 3 for E. platyphyllum), 
minimum minor allele frequency (−-min-maf 0.05), and maximum 
observed heterozygosity required to process a nucleotide site at a locus 
(−-max-obs-het 0.5). Moreover, we used the –write-single-snp option 
to restrict data analysis only to the first SNP per locus to avoid any 
influence of linkage among SNPs on the following analysis. This 
program also calculated the number of private alleles in each population. 
The VCF files were converted to structure files using PGDSpider version 
2.1.1.5.

Genetic structure analysis of the population was performed using 
the Bayesian clustering method STRUCTURE version 2.3.4 (Pritchard 
et al., 2000) with K = 1 to 9, 20 times for each K, with 100,000 burn-ins 
for 100,000 iterations per run. The STRUCTURE Harvester (Earl and 
VonHoldt, 2012) was used to infer the optimal K based on the delta K 
method (Evanno et al., 2005). The result of the run with the highest 
likelihood LnP(D) among all runs for that K was adopted.

In addition, the principal component analysis (PCA) among 
accessions was carried out using TASSEL version 5 (Bradbury 
et al., 2007).

2.7. Genetic diversity at the individual and 
population level

To evaluate genetic diversity at the individual level, we calculated 
SNP frequency within a single plant, by extracting and outputting SNPs 
in VCF format using the populations program of the Stacks package 
with the same options for genetic structure analysis. Then, the Genotype 
Summary in TASSEL version 5 was used to calculate the percentage of 
heterozygous SNPs in each individual.

Additionally, ADZE version 1.0 (Szpiech et al., 2008) was used to 
estimate private allelic richness with a standardized sample size of two, 
which is the smallest sample size from a single population. In ADZE, the 
generalized number of private alleles expected in a population is 
estimated using the rarefaction approach when sample sizes differ across 
populations (Kalinowski, 2005).

3. Results

3.1. Vaccinium emarginatum

A total of 37,772,894 paired-end reads were obtained from 10 
samples, averaging 3,777,289 reads per sample (Supplementary Table S1). 
We extracted 5,887 SNPs for phylogenetic analysis with RAxML-NG 
from this dataset. Based on the model select of MODELTEST-NG, the 
maximum likelihood phylogenetic tree was created using TVM + ASC_
LEWIS model. The phylogenetic tree showed that the Japanese and 
Taiwanese populations formed distinct clades (Figure 2). The Japanese 
population showed short branches between individuals, indicating small 
genetic differences within the Japanese population. The phylogenetic 
network constructed by SplitsTree based on 12,878 SNPs also suggesting 
the same phylogenetic structure (Supplementary Figure S1).
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For genetic structure analysis, we  extracted 4,341 SNPs. The 
STRUCTURE Harvester analysis showed that delta K peaked at K = 2 
(Supplementary Figures S2, S3). Both clustering (Figure  3) and the 
phylogenetic tree showed a clear genetic differentiation between the 
Japanese and Taiwanese populations. The result of PCA 
(Supplementary Figure S4) indicated the differentiation within 

Taiwanese populations in addition to the genetic structure of Japanese 
and Taiwanese populations.

The individual heterozygosity of the Taiwanese population was 
0.202 ± 0.036 on average, while that of the Japanese population was much 
lower, 0.014 ± 0.003 (t-test, p = 0.000) (Figure 3; Supplementary Table S3). 
Although the Japanese population had lower heterozygosity, numbers of 
private allele and private allele richness were larger than Taiwanese samples. 
The numbers of private alleles in the 4,341 SNPs extracted from Amami 
Island, Dahang Shan, Mingchih, and Yuanzui Shan samples were 1,188, 
727, 569, and 220, respectively. The private allelic richness of each was 
0.245 ± 0.006, 0.184 ± 0.005, 0.089 ± 0.004, and 0.083 ± 0.004, respectively.

3.2. Elatostema platyphyllum

An average of 397,838 reads per samples was obtained by MIG-seq 
and clonal identification was conducted using 144 SNPs. The results 
showed that the Iriomote population was considered to be composed of 
one genet and the samples from Taiwan consisted of 27 genets 
(Supplementary Table S2). One sample from each genet was selected as 
representative and examined using ddRADseq for the following analysis.

A total of 100,705,390 paired-end reads, averaging 3,596,621 reads per 
sample, were obtained from the representative 28 samples by ddRADseq 
(Supplementary Table S2). From the dataset, 3,539 SNPs were extracted 
for phylogenetic analysis with RAxML-NG. Based on the model select of 
MODELTEST-NG, the maximum likelihood phylogenetic tree was created 
using SYM + G4 + ASC_LEWIS model. Within the resulting phylogenetic 
tree (Figure 4), the individual from Iriomote and Taiping Shan were in the 
same clade, while the Wulai population and others were clearly separated. 
The divergence between clades was smaller to that within populations, and 
the differentiation between the Japan and Taiwan populations was not 
clear. The phylogenetic network constructed by SplitsTree based on 6,867 
SNPs also showed the same situation (Supplementary Figure S5).

The estimated optimal K value calculated on the extracted 3,404 
SNPs was two (Supplementary Figures S6, S7). This result indicated the 
differentiation between the two populations in Taiwan, but no clear 
genetic structure over Japanese and Taiwanese populations (Figure 5). 
This feature is consistent with the architecture in the phylogenetic tree 
and the result of PCA (Supplementary Figure S8), where differences 
between samples were relatively larger than differences between clades.

The individual heterozygosity of the Japanese sample was 0.214 
(standard deviation is not shown because all samples were an identical 
clone and the representative sample was only one for the Japanese samples), 
and that of the Taiwanese samples averaged 0.247 ± 0.012 (Figure  5; 
Supplementary Table S3). The values for the Japanese sample were only 
slightly lower than those for the Taiwanese sample. Of the extracted 3,404 
SNPs, the private alleles were not found in Iriomote Island, while 241 and 
349 were found in Wulai and Taiping Shan populations, respectively. The 
private allelic richness of each population was 0.115 ± 0.004 in Iriomote, 
0.159 ± 0.003 in Wulai and 0.141 ± 0.003 in Taiping Shan.

4. Discussion

4.1. Genetic situation and conservation 
strategy of Vaccinium emarginatum

Phylogenetic and genetic structure analysis revealed much smaller 
differentiation within the Japanese population of V. emarginatum than in 

FIGURE 2

Phylogenetic analysis based on 5,887 SNPs of V. emarginatum samples 
using RAxML-NG and visualized by FigTree version 1.4.4. The numbers 
at the nodes indicate bootstrap support. Sample numbers are color-
coded by population; green is for Amami Island, blue is for Mingchih, 
red is for Dahang Shan and black is for Yuanzui Shan.

FIGURE 3

Heterozygosity at individual level and genetic structure analysis (K = 2) 
of V. emarginatum on genotypes at the 4,341 SNPs. Heterozygosity at 
individual level was calculated by TASSEL version 5 and genetic 
clustering was performed by STRUCTURE version 2.3.4.
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Taiwan (Figures 2, 3). Furthermore, the frequency of heterozygous sites at 
the individual level in the Japanese population was extremely lower 
compared to that of the Taiwanese population (Figure 3). Since small 

populations with low genetic diversity may reduce the population’s survival 
abilities (Willi et al., 2006), the Japanese population is in a critical situation 
because of its low genetic diversity at the population and individual levels.

FIGURE 4

Phylogenetic analysis based on 3,539 SNPs of E. platyphyllum samples which represents the genet groups. This figure was generated by RAxML-NG and 
visualized by FigTree version 1.4.4. The numbers at the nodes indicate bootstrap support. Sample numbers are color-coded by population; green is for 
Iriomote Island, red is for Wulai, and blue is for Taiping Shan.

FIGURE 5

Heterozygosity at individual level and genetic structure analysis (K = 2) of E. platyphyllum on genotypes at the 3,404 SNPs. Heterozygosity at individual level 
was calculated by TASSEL version 5 and genetic clustering was performed by STRUCTURE version 2.3.4.
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Although Tsutsumi (2011) revealed similarities between samples 
from Japan and Taiwan in nuclear Internal transcribed spacer and 
chloroplast sequences, the present analysis based on ddRADseq indicates 
clear genetic differentiation between Japanese and Taiwanese populations 
(Figures 2, 3). Furthermore, of the 4,341 loci extracted, we found that the 
Amami population had 1,188 private alleles. The private allelic richness 
was also the highest in the Amami population. This indicates that the 
differences between the Amami and Taiwanese populations in 
phylogenetic analysis were not only due to lower heterozygosity of Amami 
population, but also due to the own genetic variations in the Amami 
population, suggesting the genetic uniqueness. From a conservation point 
of view, genetically different intraspecific populations require separate 
genetic management (Moritz, 1995). Therefore, the Japanese and 
Taiwanese populations should be managed as separate conservation units.

The heterozygosity of populations and individuals decreases more 
rapidly over generations in small populations (Frankham et al., 2002); 
the much smaller heterozygosity in Japanese individuals suggests that 
the Amami population remained small during repeated generational 
changes. The species was discovered in 1959 in Amami Island, and the 
low individual heterozygosity of the sample collected in 1959 (YI-0001) 
indicates that genetic diversity was already low at the time of discovery. 
It is unlikely that the species was introduced to Amami Island by 
humans, since it grows on the tops of the trunks of tall trees growing in 
primary forests that have not been affected by human activities. The 
habitat of V. emarginatum on Amami Island is highly pristine, with few 
naturalized plants. Because of its long generation time, it is considered 
that the Japanese individuals had lost genetic diversity over a long time 
before the discovery in 1959. The lower heterozygosity of the Amami 
population can lead to expression of recessive mutations that reduce 
fitness (Keller and Waller, 2002; Charlesworth and Willis, 2009), which 
can have a negative impact on the population’s viability.

Although the Amami Island has been registered a UNESCO World 
Heritage site since 2021, and its nature is being protected more than ever 
before. Continuous monitoring of the species’ wild habitat is necessary 
to prevent further reduction of the number of trees on which the 
species grows.

4.2. Genetic situation and conservation 
strategy of Elatostema platyphyllum

Elatostema platyphyllum has characteristics that contrast with 
V. emarginatum. First, the population of E. platyphyllum on Iriomote 
Island consisted of a single clone. Second, there were no significant 
phylogenetic differences between the Japanese and Taiwanese samples 
(Figure 4) and the STRUCTURE analysis also showed no clear genetic 
structure between them (Figure 5). Therefore, the Japanese population 
of E. platyphyllum had lower phylogenetic uniqueness than that of 
V. emarginatum. Third, only slight differences in heterozygosity were 
observed between Japanese and Taiwanese individuals. Although 
sexual reproduction and generational changes among a small number 
of individuals reduce genetic diversity, the reduction was not observed 
in the Japanese population despite the small number of genet (a single 
clone). Therefore, it is considered that the Japanese population 
originated from a single or a small number of individuals immigrated 
from Taiwan to Iriomote Island in the relatively near past, and has been 
maintained by vegetative reproduction or with few generational 
changes. Silvertown (2008) suggested high frequency of clonality in 
populations of rare or endangered species, of alien plants, or at the 

edges of the species’ geographical ranges. The Japanese population 
meets all these conditions.

The Iriomote population is located in the central part of the island, 
where indigenous vegetation has not been influenced by human activity, 
and the population seems derived from natural distribution. However, 
its history is likely as short as a few generations, which is almost 
equivalent to transient naturalized plants.

5. Conclusion

Despite their small numbers and low population genetic diversity in 
Japan, V. emarginatum and E. platyphyllum exhibited contrasting 
characteristics in terms of individual genetic diversity, phylogenetic 
uniqueness, and the number of generations in Japan. Briefly, the 
Japanese population of V. emarginatum showed phylogenetic 
uniqueness, a long history with repeated generational changes, and 
higher conservation value, while the Japanese E. platyphyllum 
maintained genetic diversity at individual level, had small phylogenetic 
difference to the Taiwanese population and had undergone smaller 
number of generational changes after its immigration to Japan.

Although the conservation status of a species is assessed primarily 
by the size of population and habitat, the genetic analysis in this study 
provided other important information to consider. The cases of the two 
species targeted in this study clearly demonstrate that the status of rare 
species is characterized not only by their abundance and habitat size, but 
also from a genetic perspective. In Japan, additional species are planned 
to be  targeted for conservation by the Act on Conservation of 
Endangered Species of Wild Fauna and Flora, and more intensive 
conservation management is attempting to be implemented for those 
species. However, the genetic traits of these Japanese species and 
populations are not yet fully uncovered. Given the constraints on the 
resources available for biodiversity conservation, in order to conserve a 
large number of species at risk efficiently and appropriately, it is 
imperative to understand the status of the species through multifaceted 
evaluation and analysis based on genetic information.
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