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Passive acoustic monitoring (PAM) allows for the study of vocal animals on 
temporal and spatial scales difficult to achieve using only human observers. Recent 
improvements in recording technology, data storage, and battery capacity have led 
to increased use of PAM. One of the main obstacles in implementing wide-scale PAM 
programs is the lack of open-source programs that efficiently process terabytes of 
sound recordings and do not require large amounts of training data. Here we describe 
a workflow for detecting, classifying, and visualizing female Northern grey gibbon 
calls in Sabah, Malaysia. Our approach detects sound events using band-limited 
energy summation and does binary classification of these events (gibbon female or 
not) using machine learning algorithms (support vector machine and random forest). 
We then applied an unsupervised approach (affinity propagation clustering) to see 
if we could further differentiate between true and false positives or the number of 
gibbon females in our dataset. We used this workflow to address three questions: 
(1) does this automated approach provide reliable estimates of temporal patterns 
of gibbon calling activity; (2) can unsupervised approaches be  applied as a post-
processing step to improve the performance of the system; and (3) can unsupervised 
approaches be used to estimate how many female individuals (or clusters) there are 
in our study area? We found that performance plateaued with >160 clips of training 
data for each of our two classes. Using optimized settings, our automated approach 
achieved a satisfactory performance (F1 score ~ 80%). The unsupervised approach did 
not effectively differentiate between true and false positives or return clusters that 
appear to correspond to the number of females in our study area. Our results indicate 
that more work needs to be done before unsupervised approaches can be reliably 
used to estimate the number of individual animals occupying an area from PAM 
data. Future work applying these methods across sites and different gibbon species 
and comparisons to deep learning approaches will be  crucial for future gibbon 
conservation initiatives across Southeast Asia.
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Introduction

Passive acoustic monitoring

Researchers worldwide are increasingly interested in passive 
acoustic monitoring (PAM), which relies on autonomous recording 
units to monitor vocal animals and their habitats. Increased 
availability of low-cost recording units (Hill et al., 2018; Sethi et al., 
2018; Sugai et  al., 2019), along with advances in data storage 
capabilities, makes the use of PAM an attractive option for monitoring 
vocal species in inaccessible areas where the animals are difficult to 
monitor visually (such as dense rainforests) or when the animals 
exhibit cryptic behavior (Deichmann et al., 2018). Even in cases where 
other methods such as visual surveys are feasible, PAM may 
be  superior as it may be  able to detect animals continuously for 
extended periods of time, at a greater range than visual methods, can 
operate under any light conditions, and is more amenable to 
automated data collection than visual or trapping techniques 
(Marques et  al., 2013). In addition, PAM provides an objective, 
non-invasive method that limits observer bias in detection of 
target signals.

One of the most widely recognized benefits of using acoustic 
monitoring, apart from the potential to reduce the amount of time 
needed for human observers, is that there is a permanent record of the 
monitored soundscape (Zwart et al., 2014; Sugai and Llusia, 2019). In 
addition, the use of archived acoustic data allows for multiple analysts 
at different times to review and validate detections/classifications, as 
opposed to point-counts where one or multiple observers, often with 
varying degrees of experience, collect the data in-situ. It is, therefore, not 
surprising that, in many cases, analysis of recordings taken by 
autonomous recorders can be more effective than using trained human 
observers in the field. For example, a comparison of PAM and human 
observers to detect European nightjars (Caprimulgus europaeus) showed 
that PAM detected nightjars during 19 of 22 survey periods, while 
surveyors detected nightjars on only six of these occasions (Zwart et al., 
2014). An analysis of 21 bird studies that compared detections by human 
observers and detections from acoustic data collected using autonomous 
recorders found that for 15 of the studies, manual analysis of PAM 
acoustic data led to results that were equal to or better than results from 
point counts done using human observers (Shonfield and Bayne, 2017). 
Despite the rapidly expanding advances in PAM technology, the use of 
PAM is limited by a lack of widely applicable analytical methods and the 
limited availability of open-source audio processing tools, particularly 
for the tropics, where soundscapes are very complex (Gibb et al., 2018).

Interest in the use of PAM to monitor nonhuman primates has 
increased in recent years, with one of the foundational papers using 
PAM to estimate occupancy of three signal types: chimpanzee buttress 
drumming (Pan troglodytes) and the loud calls of the Diana monkey 
(Cercopithecus diana) and king colobus monkey (Colobus polykomos) in 
Taï National Park, Côte d’Ivoire (Kalan et al., 2015). The authors found 
that occurrence data from PAM combined with automated processing 
methods was comparable to that collected by human observers. Since 
then, PAM has been used to investigate chimpanzee group ranging and 
territory use (Kalan et  al., 2016), vocal calling patterns of gibbons 
(Hylobates funereus; Clink et al., 2020b) and howler monkeys (Alouatta 
caraya; Pérez-Granados and Schuchmann, 2021), occupancy modeling 
of gibbons (Nomascus gabriellae; Vu and Tran, 2019) and density 
estimation of pale fork-marked lemurs (Phaner pallescens) based on 
calling bout rates (Markolf et al., 2022).

Acoustic analysis of long-term datasets

Traditional approaches for finding signals of interest include hand-
browsing spectrograms to identify signals of interest using programs 
such as Raven Pro (K. Lisa Yang Center for Conservation Bioacoustics, 
Ithaca, NY, USA). This approach can reduce processing time relative to 
listening to the recordings but requires trained analysts and substantial 
human investment. Another approach is hand-browsing of long-term 
spectral averages (LTSAs), which still requires a significant time 
investment, but allows analysts to process data at a faster rate than hand-
browsing of regular spectrograms, as LTSAs provide a visual 
representation of the soundscape over a larger time period [days to 
weeks to years (Wiggins, 2003; Clink et  al., 2020b)]. However, 
particularly with the advances in data storage capabilities and 
deployment of arrays of recorders collecting data continuously, the 
amount of time necessary for hand-browsing or listening to recordings 
for signals of interest is prohibitive and is not consistent with 
conservation goals that require rapid assessment. This necessitates 
reliable, automated approaches to efficiently process large amounts of 
acoustic data.

Automated detection and classification

Machine listening, a fast-growing field in computer science, is a 
form of artificial intelligence that “learns” from training data to perform 
particular tasks, such as detecting and classifying acoustic signals 
(Wäldchen and Mäder, 2018). Artificial neural networks (Mielke and 
Zuberbühler, 2013), Gaussian mixture models (Heinicke et al., 2015), 
and Support Vector Machines (Heinicke et al., 2015; Keen et al., 2017) 
– some of the more commonly used algorithms for early applications of 
human speech recognition (Muda et al., 2010; Dahake and Shaw, 2016) 
– can be used for the automated detection of terrestrial animal signals 
from long-term recordings. Many different automated detection 
approaches for terrestrial animals using these early machine-learning 
models have been developed (Kalan et al., 2015; Zeppelzauer et al., 2015; 
Keen et  al., 2017). Given the diversity of signal types and acoustic 
environments, no single detection algorithm performs well across all 
signal types and recording environments.

A summary of existing automated detection/
classification approaches

Python and R are the two most popular open-source programming 
languages for scientific research (Scavetta and Angelov, 2021). Although 
Python has surpassed R in overall popularity, R remains an important 
and complementary language, especially in the life sciences (Lawlor 
et al., 2022). An analysis of 30 ecology journals indicated that in 2017 
over 58% of ecological studies utilized the R programming environment 
(Lai et al., 2019). Although we could not find a more recent assessment, 
we  are certain that R remains an important tool for ecologists and 
conservationists. Therefore, automated detection/classification 
workflows in R may be more accessible to ecologists already familiar 
with the R programming environment. Already, many existing R 
packages can be  used for importing, visualizing, and manipulating 
sound files. For example, “seewave” (Sueur et al., 2008) and “tuneR” 
(Ligges et al., 2016) are some of the more commonly used packages for 
reading in sound files, visualizing spectrograms and extracting features.
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An early workflow and R package “flightcallr” used random forest 
classification to classify bird calls, but the detection of candidate signals 
using band-limited energy summation was done using an external 
program, Raven Pro (Ross and Allen, 2014). One of the first R packages 
that provided a complete automated detection/classification of acoustic 
signals workflow in R was “monitoR,” which provides functions for 
detection using spectrogram cross-correlation and bin template 
matching (Katz et al., 2016b). In spectrogram cross-correlation, the 
detection and classification steps are combined. The R package 
“warbleR” has functions for visualization and detection of acoustic 
signals using band-limited energy summation, all done in R (Araya-
Salas and Smith-Vidaurre, 2017).

There has been an increase in the use of deep learning—a subfield 
of machine listening that utilizes neural network architecture—for the 
combined automated detection/classification of acoustic signals. Target 
species include North Atlantic right whales (Eubalaena glacialis, Shiu 
et al., 2020), fin whales (Balaenoptera physalus, Madhusudhana et al., 
2021), North American and European bird species (Kahl et al., 2021), 
multiple forest birds and mammals in the Pacific Northwest (Ruff et al., 
2021), chimpanzees (Pan troglodytes, Anders et  al., 2021), high 
frequency and ultrasonic mouse lemur (Microcebus murinus) calls 
(Romero-Mujalli et al., 2021) and Hainan gibbon (Nomascus hainanus) 
vocalizations (Dufourq et  al., 2021). See Table  1 for a summary of 
existing approaches that use R or Python for the automated detection of 
acoustic signals from terrestrial PAM data. Note that the only 
applications for gibbons are on a single species, the Hainan gibbon.

Recently, a workflow was developed that provided a graphical 
interface through a Shiny application and RStudio for the automated 
detection of acoustic signals, with the automated detection and 
classification done using a deep convolutional neural network (CNN) 
implemented in Python (Ruff et al., 2021). Another R package utilizes 
deep learning for the automated detection of bat echolocation calls; this 
package also relies on CNNs implemented in Python (Silva et al., 2022). 
Deep learning approaches are promising, but they often require large 
amounts of training data, which can be  challenging to obtain, 
particularly for rare animals or signals (Anders et al., 2021). In addition, 
training deep learning models may require extensive computational 
power and specialized hardware (Dufourq et al., 2022); effective training 
of deep learning models also generally requires a high level of domain 
knowledge (Hodnett et al., 2019).

Feature extraction

An often necessary step for classification of acoustic signals (unless 
using deep learning or spectrogram cross-correlation) is feature 
extraction, wherein the digital waveform is reduced to a meaningful 
number of informative acoustic features. Traditional approaches relied 
on manual feature extraction from the spectrogram, but this method 
requires substantial effort from human observers, which means it is not 
optimal for automated approaches. Early automated approaches utilized 
feature sets such as Mel-frequency cepstral coefficients; MFCCs 
(Heinicke et al., 2015), a feature extraction method originally designed 
for human speech applications (Han et al., 2006; Muda et al., 2010). 
Despite their relative simplicity, MFCCs can be  used to effectively 
distinguish between female Northern grey gibbon individuals (Clink 
et al., 2018a), terrestrial and underwater soundscapes (Dias et al., 2021), 
urban soundscapes (Noviyanti et al., 2019), and even the presence or 
absence of queen bees in a bee hive (Soares et al., 2022). Although the 

use of MFCCs as features for distinguishing between individuals in 
other gibbon species has been limited, the many documented cases of 
vocal individuality across gibbon species (Haimoff and Gittins, 1985; 
Haimoff and Tilson, 1985; Sun et al., 2011; Wanelik et al., 2012; Feng 
et al., 2014) indicate that MFCCs will most likely be effective features for 
discriminating individuals of other gibbon species. There are numerous 
other options for feature extraction, including automated generation of 
spectro-temporal features for sound events (Sueur et al., 2008; Ross and 
Allen, 2014) and calculating a set of acoustic indices (Huancapaza 
Hilasaca et al., 2021).

Other approaches rely on spectrogram images and treat sound 
classification as an image classification problem (Lucio et  al., 2015; 
Wäldchen and Mäder, 2018; Zottesso et al., 2018). For many of the 
current deep learning approaches, the input for the classification is the 
spectrogram, which can be  on the linear or Mel-frequency scale 
(reviewed in Stowell, 2022). An approach that has gained traction in 
recent years is the use of embeddings, wherein a pre-trained 
convolutional neural network (CNN), for example, using ‘Google’s 
AudioSet’ dataset (Gemmeke et  al., 2017), is used to create a set of 
informative, representative features. A common way to do this is to 
remove the final classification layer from the pre-trained network, which 
leaves a high-dimensional feature representation of the acoustic data 
(Stowell, 2022). This approach has been used successfully in numerous 
ecoacoustic applications (Sethi et al., 2020, 2022; Heath et al., 2021).

Training, validation, and test datasets

When doing automated detection of animal calls, the number and 
diversity of training data samples must be taken into consideration to 
minimize false positives (where the system falsely classifies the signal as 
the signal of interest) and false negatives (e.g., missed opportunities), 
where the system fails to detect the signal of interest. To avoid overfitting 
— a phenomenon that occurs when model performance is not 
generalizable to data that was not included in the training dataset — it 
is essential to separate data into training, validation, and test sets 
(Heinicke et al., 2015; Mellinger et al., 2016). The training dataset is the 
sample of data that was used to fit the model, the validation set is used 
to provide an unbiased evaluation of a model fit on the training dataset 
while tuning model hyperparameters, and the test dataset is the sample 
of data used to provide an unbiased evaluation of a final model fit. Some 
commonly used metrics include precision (the proportion of detections 
that are true detections) and recall (the proportion of actual calls that 
are successfully detected; Mellinger et al., 2016). Often, these metrics are 
converted to false alarm rates, such as the rate of false positives per hour, 
which can help guide decisions about the detection threshold. In 
addition, when doing automated detection and classification, it is 
common to use a threshold (such as the probability assigned to a 
classification by a machine learning algorithm) to make decisions about 
rejecting or accepting a detection (Mellinger et al., 2016). Varying these 
thresholds will result in changes to false-positive and the proportion of 
missed calls. These can be plotted with receiver operating curves (ROC; 
Swets, 1964) or detection error tradeoff curves (DET; Martin et al., 1997).

PAM of gibbons

Gibbons are pair-living, territorial small apes that regularly emit 
species- and sex-specific long-distance vocalizations that can be heard 
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>1 km in a dense forest (Mitani, 1984, 1985; Geissmann, 2002; Clarke 
et al., 2006). All but one of the approximately 20 gibbon species are 
classified as Endangered or Critically Endangered, making them an 
important target for conservation efforts (IUCN, 2022). Gibbons are 
often difficult to observe visually in the forest canopy but relatively easy 
to detect acoustically (Mitani, 1985), which makes them ideal candidates 
for PAM. Indeed, many early studies relied on human observers listening 

to calling gibbons to estimate group density using fixed-point counts 
(Brockelman and Srikosamatara, 1993; Hamard et al., 2010; Phoonjampa 
et al., 2011; Kidney et al., 2016). To date, relatively few gibbon species 
have been monitored using PAM, including the Hainan gibbon in China 
(Dufourq et al., 2021), yellow-cheeked gibbons in Vietnam (Vu and 
Tran, 2019, 2020), and Northern grey gibbons (Hylobates funereus) on 
Malaysian Borneo (Clink et al., 2020b). However, this will undoubtedly 

TABLE 1 Summary of existing approaches that use R or Python for the automated detection/classification of acoustic signals from terrestrial PAM data.

Signal type
Training data 
recording location

Detection/
classification 
approach

R? Python?
Open 
source?

Citation Repository?

Nocturnal flight 

calls of multiple 

avian species

Six locations in New York 

State, USA

BLED detector in external 

program + RF

Y N Y Ross and Allen 

(2014)

Package on R forge 

(Ross, 2013)

Four primate 

species

Taï National Park, Côte 

d’Ivoire

Speaker segmentation + SVM or 

Gaussian Mixture Models

Y N N Heinicke et al. 

(2015)

Code availability not 

indicated in 

publication

Two northeastern 

songbird species

10 sites in Vermont and 

New York, USA

Binary point matching or 

spectrogram cross-correlation

Y N Y Katz et al. (2016a,b) Package on CRAN 

(Hafner and Katz, 

2018)

Forest elephants Three sites in Gabon and one 

in the 

Central African Republic

CNNs N Y N Bjorck et al. (2019) Code availability not 

indicated in 

publication

Two frog species Temperate N. America and 

Panama

Measure the presence of periodic 

structure based on the power 

spectral density

Y Y Y Lapp et al. (2021) Python and R 

implementations on 

GitHub

No signals 

specified

~ Binary point matching or 

spectrogram cross-correlation + 

SVM, RF, others

Y N Y Balantic and 

Donovan (2020)

Package on Gitlab

Chimpanzees Taï National Park, Côte 

d’Ivoire

Convolutional recurrent neural 

networks

N Y Y Anders et al. (2021) Package on GitHub

984 bird species North America and Europe Deep artificial neural networks N Y Y Kahl et al. (2021) Source code on 

GitHub

12 bird species 

and 2 small 

mammal species

Forested landscapes of 

Oregon and Washington, 

USA

CNNs Y Y Y Ruff et al. (2021) Code and data on 

Zenodo (Ruff et al., 

2020)

Hainan gibbons Hainan, China CNNs N Y Y Dufourq et al. 

(2021)

Code available on 

GitHub; training data 

on Zenodo (Dufourq 

et al., 2020)

Bat echolocation 

calls and two owl 

species

Europe CNNs Y Y Y Silva et al. (2022) Package on CRAN 

(Silva, 2022)

Hainan gibbons, 

black-and-white 

ruffed lemurs and 

two bird species

Hainan, China; Ranomafana 

National Park, Madagascar; 

Mount Mulanje Biosphere 

Reserve, Malawi and Intaka 

Island Nature Reserve in 

Cape Town, South Africa

Pretrained CNNs (e.g., transfer 

learning)

N Y Y Dufourq et al. 

(2022)

Code available on 

GitHub

60 species of 

katydids

Barro Colorado Island, 

Panama

CNNs N Y Y Madhusudhana 

et al. (2019)

Code available on 

Zenodo 

(Madhusudhana, 

2021)

Repositories are linked if they have an associated digital object identifier (DOI) or are available via package development web sites such as the Comprehensive R Archive Network (CRAN). 
Otherwise, availability as indicated in associated publications is shown.
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change over the next few years with increased interest and accessibility 
of equipment and analytical tools needed for effective PAM of gibbon 
species across Southeast Asia.

Most gibbon species have two types of long-distance vocalizations. 
Male solo is the term used for male vocalizations emitted while vocalizing 
alone, and duets are the coordinated vocal exchange between the adult 
male and female of the pair (Cowlishaw, 1992, 1996). Gibbons generally 
call in the early morning, with male gibbon solos starting earlier than the 
duets (Clink et al., 2020b). In the current paper, we focused our analysis 
on a call type in the female contribution to the duet, known as the great 
call, for two reasons. First, the structure of the great call is highly 
stereotyped, individually distinct (Terleph et al., 2015; Clink et al., 2017), 
of longer duration than other types of gibbon vocalizations, and the males 
tend to be silent during the female great call, which facilitates better 
automated detection. Second, most acoustic density estimation 
techniques focus on duets, as females rarely sing if they are not in a mated 
pair (Mitani, 1984). In contrast, males will solo whether in a mated pair 
or drifters (Brockelman and Srikosamatara, 1993), which means 
automated detection of the female call will be more relevant for density 
estimation (Kidney et  al., 2016) using PAM. Northern grey gibbon 
females have been shown to emit individually distinct calls (Clink et al., 
2017, 2018a), and these calls can be  discriminated well using both 
supervised and unsupervised methods (Clink and Klinck, 2021).

Individual vocal signatures and PAM

A major hurdle in the implementation of many PAM applications is 
the fact that individual identity is unknown, as data are collected in the 
absence of a human observer. In particular, density estimation using 
PAM data would greatly benefit from the ability to infer the number of 
individuals in the survey area from acoustic data (Stevenson et al., 2015). 
The location of the calling animal can infer individual identity. Still, 
precise acoustic localization that relies on the time difference of arrival 
(TDOA) of a signal at multiple autonomous recording units can 
be logistically and analytically challenging (Wijers et al., 2021). Another 
way that individual identity can be  inferred from acoustic data is 
through individually distinct vocal signatures. Individual vocal 
signatures have been identified across a diverse range of taxonomic 
groups (Darden et al., 2003; Gillam and Chaverri, 2012; Kershenbaum 
et al., 2013; Favaro et al., 2016). Most studies investigating individual 
signatures use supervised methods, wherein the identity of the calling 
individual is known, but see Sainburg et al. (2020) for unsupervised 
applications on individual vocal signatures. Identifying the number of 
individuals based on acoustic differences from PAM data remains a 
challenge, as unsupervised approaches must be used since the data are, 
by definition, collected in the absence of human observers (Clink and 
Klinck, 2021; Sadhukhan et al., 2021).

Overview of the automated detection/
classification workflow

This workflow complements existing R packages for acoustic analysis, 
such as tuneR (Ligges et al., 2016), seewave (Sueur et al., 2008), warbleR 
(Araya-Salas and Smith-Vidaurre, 2017), and monitoR (Katz et al., 2016b), 
and contributes functionalities for automated detection and classification 
using support vector machine, SVM (Meyer et al., 2017) and random 
forest, RF (Liaw and Wiener, 2002) algorithms. Automated detection of 

signals in this workflow follows nine main steps: (1) Create labeled 
training, validation, and test datasets; (2) identify potential sound events 
using a band-limited energy detector; (3) data reduction and feature 
extraction of sound events using Mel-frequency cepstral coefficients; 
MFCCs (Han et al., 2006; Muda et al., 2010); (4) train machine learning 
algorithms on the training dataset (5) classify the sound events in the 
validation dataset using trained machine learning algorithms and calculate 
performance metrics on the validation dataset to find optimal settings; (6) 
use a manually labeled test dataset to evaluate model performance; (7) run 
the detector/classifier over the entire dataset (once the optimal settings 
have been identified); (8) verify all detections and remove false positives; 
and (9) use the validated output from the detector/classifier for inference 
(Figure 1).

When training the system, it is important to use data that will not 
be used in the subsequent testing phase, as this may artificially inflate 
accuracy estimates (Heinicke et al., 2015). Creating labeled datasets and 
subsequent validation of detections to remove false positives requires 
substantial input and investment by trained analysts; this is the case for 
all automated detection approaches, even those that utilize sophisticated 
deep learning approaches. In addition, automated approaches generally 
require substantial investment in modifying and tuning parameters to 
identify optimal settings. Therefore, although automated approaches 
substantially reduce processing time relative to manual review, they still 
require high levels of human investment throughout the process.

Objectives

We have three main objectives with this manuscript. Although more 
sophisticated methods of automated detection that utilize deep learning 
approaches exist (e.g., Dufourq et al., 2021, 2022; Wang et al., 2022), 
these methods generally require substantial training datasets and are not 
readily available for users of the R programming environment (R Core 
Team, 2022). However, see (Silva et al., 2022) for a comprehensive deep-
learning R package that relies heavily on Python. We aim to provide an 
open-source, step-by-step workflow for the automated detection and 
classification of Northern grey gibbon (H. funereus; hereafter gibbons) 
female calls using readily available machine learning algorithms in the 
R programming environment. The results of our study will provide an 
important benchmark for automated detection/classification 
applications for gibbon female great calls. We also test whether a post-
processing step that utilizes unsupervised clustering can help improve 
the performance of our system, namely if this approach can help further 
differentiate between true and false positives. Lastly, as there have been 
relatively few studies of gibbons that utilize automated detection 
methods to address a well-defined research question (but see Dufourq 
et al., 2021 for an example on Hainan gibbons), we aimed to show how 
PAM can be  used to address two different research questions. 
Specifically, we aim to answer the questions: (1) can we use unsupervised 
approaches to estimate how many female individuals (or clusters) there 
are in our study area, and (2) can this approach be used to investigate 
temporal patterns of gibbon calling activity? We  utilized affinity 
propagation clustering to estimate the number of females (or clusters) 
in our dataset (Dueck, 2009). This unsupervised clustering algorithm 
has been shown to be  useful for identifying the number of gibbon 
females in a labeled dataset (Clink and Klinck, 2021). To investigate 
temporal patterns of calling activity, we compared estimates derived 
from our automated system to those obtained using manual annotations 
from LTSAs by a human observer (Clink et al., 2020b).
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FIGURE 1

Schematic of automated detection/classification workflow presented in the current study. See the text for details about each step.

Materials and methods

Data collection

Acoustic data were collected using first-generation Swift recorders 
(Koch et  al., 2016) developed by the K. Lisa Yang Center for 
Conservation Bioacoustics at the Cornell Lab of Ornithology. The 
sensitivity of the used microphones was −44 (+/−3) dB re 1 V/Pa. The 

microphone’s frequency response was not measured but is assumed to 
be flat (+/− 2 dB) in the frequency range 100 Hz to 7.5 kHz. The analog 
signal was amplified by 40 dB and digitized (16-bit resolution) using 
an analog-to-digital converter (ADC) with a clipping level of −/+ 
0.9 V. Recordings were saved as consecutive two-hour Waveform 
Audio File Format (WAV) with a size of approximately 
230 MB. We recorded using a sampling rate of 16 kHz, giving a Nyquist 
frequency of 8 kHz, which is well above the range of the fundamental 
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frequency of Northern grey gibbon calls (0.5 to 1.6 kHz). We deployed 
eleven Swift autonomous recording units spaced on a 750-m grid 
encompassing an area of approximately 3 km2 in the Danum Valley 
Conservation Area, Sabah, Malaysia (4°57′53.00″N, 117°48′18.38″E) 
from February 13–April 21, 2018. We attached recorders to trees at 
approximately 2-m height and recorded continuously over a 
24-h period.

Source height (Darras et al., 2016) and presumably recorder height 
can influence the detection range of the target signal, along with the 
frequency range of the signal, levels of ambient noise in the frequency 
range of interest, topography, and source level of the calling animal 
(Darras et al., 2018). Given the monetary and logistical constraints for 
placing recorders in the canopy, we opted to place the recorders at a 
lower height. Our estimated detection range is approximately 500 meters 
using the settings described below (Clink and Klinck, 2019), and future 
work investigating the effect of recorder height on detection range will 
be  informative. Danum Valley Conservation Area encompasses 
approximately 440 km2 of lowland dipterocarp forest and is considered 
‘aseasonal’ as it does not have distinct wet and dry seasons like many 
tropical forest regions (Walsh and Newbery, 1999). Gibbons are less 
likely to vocalize if there was rain the night before, although rain appears 
to have a stronger influence on male solos than coordinated duets (Clink 
et al., 2020b). The reported group density of gibbons in the Danum 
Valley Conservation Area is ~4.7 per km2 (Hanya and Bernard, 2021), 
and the home range size of two groups was reported as 0.33 and 0.34 km2 
(33 and 34 ha; Inoue et al., 2016).

We limited our analysis to recordings taken between 06:00 and 11:00 
local time, as gibbons tend to restrict their calling to the early morning 
hours (Mitani, 1985; Clink et al., 2020b), which resulted in a total of over 
4,500 h of recordings for the automated detection. See Clink et  al. 
(2020b) for a detailed description of the study design and Figure 2 for a 
study area map. On average, the gibbon duets at this site are 15.1 min 
long (range = 1.6–55.4 min) (Clink et  al., 2020b). The duets are 
comprised of combinations of notes emitted by both the male and 
female, often with silent gaps of varying duration between the different 
components of the duet. The variability of note types and silent intervals 
in the duet would make training an automated detector/classifier system 
to identify any component of the duet a challenge (especially in the 
absence of a lot of training data). In addition, focusing on a certain call 
type within the longer vocalization is the established approach for 
automated detection/classification of gibbon vocalizations (Dufourq 
et al., 2021). Therefore, our automated detection/classification approach 
focused on the female great call. See Figure  3 for a representative 

FIGURE 2

Map of recording locations of Swift autonomous recording units in 
Danum Valley Conservation Area, Sabah, Malaysia.

FIGURE 3

Representative spectrogram of a Northern grey gibbon duet recorded in Danum Valley Conservation Area, Sabah, Malaysia. The white bracket indicates a 
portion of the gibbon duet (also known as a bout), and the red boxes indicate unique great calls emitted by the gibbon female. The spectrogram was 
created using the Matlab-based program Triton (Wiggins, 2003).
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spectrogram of a Northern grey gibbon duet and female great calls 
within the duet.

Creating a labeled training dataset

It is necessary to validate automated detection and classification 
systems using different training and test datasets (Heinicke et al., 2015). 
We randomly chose approximately 500 h of recordings to use for our 
training dataset and used a band-limited energy detector (settings 
described below) to identify potential sounds of interest in the gibbon 
frequency range, which resulted in 1,439 unique sound events. The 
subsequent sound events were then annotated by a single observer 
(DJC) using a custom-written function in R to visualize the spectrograms 
into the following categories: great argus pheasant (Argusianus argus) 
long and short calls (Clink et al., 2021), helmeted hornbills (Rhinoplax 
vigil), rhinoceros hornbills (Buceros rhinoceros), female gibbons and a 
catch-all “noise” category. For simplicity of training the machine 
learning algorithms, we converted our training data into two categories: 
“female gibbon” or “noise,” and subsequently trained binary classifiers, 
although the classifiers can also deal with multi-class classification 
problems. The binary noise class contained all signals that were not 
female gibbon great calls, including great argus pheasants and hornbills. 
To investigate how the number of training data samples influences our 
system’s performance, we randomly subset our training data into batches 
of 10, 20, 40, 80, 160, 320, and 400 samples of each category (female 
gibbon and noise) over 10 iterations each. We were also interested to see 
how the addition of high-quality focal recordings influenced the 
performance, so we added 60 female gibbon calls collected during focal 
recordings from previous field seasons (Clink et al., 2018b) to a set of 
training data. We  compared the performance of the detection/
classification system using random iterations to the training dataset 
containing all the training data samples (n = 1,439) and the dataset with 
the female calls added.

Sound event detection

Detectors are commonly used to isolate potential sound events of 
interest from background noise (Delacourt and Wellekens, 2000; Davy 
and Godsill, 2002; Lu et  al., 2003). In this workflow, we  identified 
potential sound events based on band-limited energy summation 
(Mellinger et al., 2016). For the band-limited energy detector (BLED), 
we first converted the 2-h recordings to a spectrogram (made with a 
1,600-point (100 ms) Hamming window (3 dB bandwidth = 13 Hz), with 
0% overlap and a 2,048-point DFT) using the package “seewave” (Sueur 
et  al., 2008). We filtered the spectrogram to the frequency range of 
interest (in the case of Northern grey gibbons 0.5–1.6 kHz). For each 
non-overlapping time window, we calculated the sum of the energy 
across frequency bins, which resulted in a single value for each 100 ms 
time window. We then used the “quantile” function in base R to calculate 
the threshold value for signal versus noise. We ran early experiments 
using different quantile values and found that using the 15th quantile 
gave the best recall for our signal of interest. We then considered any 
events which lasted for 5 s or longer to be detections. Note that settings 
for the band-limited energy detector, MFCCs, and machine learning 
algorithms can be  modified; we  modified the detector and MFCC 
settings as independent steps in early experiments. We found in early 
experiments that modifying the quantile values and the duration of the 

detections influenced the performance of our system, so we suggest 
practitioners adopting this method experiment with modifying these 
settings to fit their system.

Supervised classification

We were interested in testing the performance of secondary 
classifiers —support vector machine (SVM) or random forest (RF) — 
for classifying our detected sound events. To train the classifiers, we used 
the training datasets outlined above and calculated Mel-frequency 
cepstral coefficients (MFCCs) for each of the labeled sound events using 
the R package “tuneR” (Ligges et  al., 2016). We  calculated MFCCs 
focusing on the fundamental frequency range of female gibbon calls 
(0.5–1.6 kHz). We focused on the fundamental frequency range because 
harmonics are generally not visible in the recordings unless the animals 
were very close to the recording units. As the duration of sound events 
is variable, and machine learning classification approaches require 
feature vectors of equal length, we averaged MFCCs over time windows. 
First, we divided each sound event into 8 evenly spaced time windows 
(with the actual length of each window varying based on the duration 
of the event) and calculated 12 MFCCs along with the delta coefficients 
for each time window (Ligges et al., 2016). We appended the duration 
of the event onto the MFCC vector, resulting in a vector for each sound 
event of length 177. We then used the E1071 package (Meyer et al., 2017) 
to train a SVM and the “randomForest” package (Liaw and Wiener, 
2002) to train a RF, respectively. Each algorithm assigned each sound 
event to a class (“female gibbon” or “noise”) and returned an associated 
probability. For SVM, we set “cross = 25,” meaning that we used 25-fold 
cross-validation, set the kernel to “radial,” and used the “tune” parameter 
to find optimal settings for the cost and gamma parameters. For the 
random forest algorithm, we used the default settings apart from setting 
the number of trees = 10,000.

Validation and test datasets

We annotated our validation and test datasets using a slightly 
different approach than we used for the training data. We did this because 
our system utilizes a band-limited energy detector. If we simply labeled 
the resulting clips (like we did with the training data), our performance 
metrics would not account for the detections that were missed initially 
by the detector. Therefore, to create our test and validation datasets, one 
observer (DJC) manually annotated 48 randomly chosen hours of 
recordings taken from different recorders and times across our study site 
using spectrograms created in Raven Pro 1.6. Twenty-four hours were 
used for validation, and the remaining 24 h were used as a test dataset to 
report the final performance metrics of the system. For each sound file, 
we identified the begin and end time of any female gibbon vocalization. 
We also labeled calls as high quality (wherein the full structure of the call 
was visible in the spectrogram and there were no overlapping bird calls 
or other background noises) or low quality (wherein the call was visible 
in the spectrogram, but the full structure was not, or there was 
overlapping with another calling animal/noise). As the detector isolates 
sound events based on energy in a certain frequency band, sometimes 
the start time of the detection does not align exactly with the annotated 
start time of the call; therefore, when calculating the performance metrics 
we considered sound events that started 4 s before the annotations or 2 s 
after the annotations to be a match.

https://doi.org/10.3389/fevo.2023.1071640
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Clink et al. 10.3389/fevo.2023.1071640

Frontiers in Ecology and Evolution 09 frontiersin.org

We evaluated our system using five different metrics using the R 
package ‘ROCR’ (Sing et al., 2005) to calculate precision, recall, and false 
alarm rate. We  were interested to see how the performance of our 
classifiers varied when we  changed the probability threshold, so 
we calculated the area under the precision-recall curves, which shows 
the trade-off between the rate of false-positives and false-negatives at 
different probability thresholds. We  calculated the area under the 
receiver operating characteristic curve (AUC) for each machine learning 
algorithm and training dataset configuration. We also calculated the F1 
score, as it integrates both precision and recall information into 
the metric.

We used a model selection approach to test for the effects of training 
data and machine learning algorithm on our performance metrics 
(AUC), so we created as series of two linear models using the R package 
“lme4” (Bates et  al., 2017). The first model we  considered, the null 
model, had only AUC as the outcome, with no predictor variables. The 
second model, which we  considered the full model, contained the 
machine learning algorithm (SVM or RF) and training data category as 
predictors. We used the Akaike information criterion (AIC) to compare 
the fit of the two models to our data, implemented in the “bbmle” 
package (AICctab adjusted for small sample sizes; Bolker, 2014). 
We chose the settings that maximized AUC and the F1-score for the 
subsequent analysis of the full dataset (described below).

Verification workflow

The optimal detector/classifier settings for our two main 
objectives were slightly different. For our first objective, wherein 
we  wanted to compare patterns of vocal activity based on the 
output of our automated detector to patterns identified using 
human-annotated datasets (Clink et  al., 2020b), we  aimed to 
maximize recall while also maintaining an acceptable number of 
false positives. In early tests, we found that using a smaller quantile 
threshold (0.15) for the BLED detector improved recall. One 
observer (IK) manually verified all detections using a custom 
function in R that allows observers to quickly view spectrograms 
and verify detections. Although duet bouts contain many great 
calls, we  considered instances where at least one great call was 
detected during each hour as the presence of a duet. We  then 
compared our results to those identified using a human observer 
and calculated the percent of annotated duets the automated system 
detected. To compare the two distributions, we used a Kolmogorov–
Smirnov test implemented using the ‘ks.test’ function in the R 
version 4.2.1 programming environment (R Core Team, 2022). 
We first converted the times to “Unix time” (the number of seconds 
since 1970-01-01 00:00:00 UTC; Grolemund and Wickham, 2011) 
so that we  had continuous values for comparison. We  used a 
non-parametric test as we did not assume a normal distribution of 
our data.

For the objective wherein we  used unsupervised clustering to 
quantify the number of females (clusters) in our dataset, we needed 
higher quality calls in terms of signal-to-noise ratio (SNR) and overall 
structure. This is because the use of MFCCs as features for discriminating 
among individuals is highly dependent on SNR (Spillmann et al., 2017). 
For this objective, we manually omitted all detections that did not follow 
the species-specific structure with longer introductory notes that 
transition into rapidly repeating trill notes and only used detections with 
a probability >0.99 as assigned by the SVM (Clink et al., 2017).

Unsupervised clustering

We used unsupervised clustering to investigate the tendency to 
cluster in: (A) the verified detections containing true and false positives 
after running the detector/classifier over our entire dataset: and (B) 
female calls that follow the species-specific structure of the great call 
wherein different clusters may reflect different individuals. We used 
affinity propagation clustering, a state-of-the-art unsupervised approach 
(Dueck, 2009) that has been used successfully in a few bioacoustics 
applications, including anomaly detection in a forest environment (Sethi 
et al., 2020) and clustering of female gibbon calls with known identity 
(Clink and Klinck, 2021). Our previous work showed that out of three 
unsupervised algorithms compared, affinity propagation clustering 
returned a number of clusters that matched the number of known 
female individuals in our dataset most closely (Clink and Klinck, 2021). 
Input preferences for the affinity propagation clustering algorithm can 
vary the number of clusters returned. We  initially used an adaptive 
approach wherein we  varied the input preference from 0.1 to 1  in 
increments of 0.1 (indicated by “q” in the “APCluster” R package; 
Bodenhofer et al., 2011) and calculated silhouette coefficients using the 
“cluster” package (Maechler et al., 2019). We found that the optimal q 
identified in this manner led to an unreasonably high number of clusters 
for the true/false positives, so we set q = 0.1, resulting in fewer clusters.

We input an MFCC vector for each sound event into the affinity 
propagation clustering algorithm. For the true/false positives, 
we calculated the MFCCs slightly differently than outlined above, as fewer 
features resulted in better clustering. Instead of creating a standardized 
number of time windows for each event, we calculated MFCCs for each 
sound event using the default settings (wintime = 0.025, hoptime = 0.01, 
and numcep = 12). We then took the mean and standard deviation for 
each Mel-frequency band and the delta coefficients, resulting in 48 unique 
values for each sound event. We also included the duration of the signal. 
For the true and false positive detections, we used normalized mutual 
information (NMI) as an external validation measure implemented in the 
‘aricode’ package (Chiquet and Rigaill, 2019). NMI provides a value 
between 0 and 1, with 1 indicating a perfect match between two sets of 
labels (Xuan et al., 2010). For clustering of the high-quality female calls, 
we used the adaptive approach to find the optimal value of q. We used the 
standard number of MFCC windows approach as outlined above.

To visualize clustering in our dataset, we used a uniform manifold 
learning technique (UMAP) implemented in the R package ‘umap’ 
(Konopka, 2020). UMAP is a data reduction and visualization 
approach that has been used to visualize differences in forest 
soundscapes (Sethi et al., 2020), taxonomic groups of neotropical birds 
(Parra-Hernández et al., 2020), and female gibbon great calls (Clink 
and Klinck, 2021).

Data availability

A tutorial, annotated code, and all data needed to recreate figures 
presented in the manuscript are available on GitHub.1 Access to raw 
sound files used for training and testing can be granted by request to the 
corresponding author.

1 https://github.com/DenaJGibbon/Workflow-for-automated-detection-and- 

classification-gibbon-calls
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TABLE 2 Summary of precision, recall, F1, and area under the curve (AUC) calculated using the validation dataset for random subsets of training data 
compared to the full training dataset and the full dataset augmented with female great calls.

Training data Algorithm
Precision 

(mean ± sd)
Recall (mean ± sd) F1 (mean ± sd) AUC (mean ± sd)

n   = 10 RF 0.96 ± 0.07 0.3 ± 0.18 0.45 ± 0.2 0.76 ± 0.01

SVM 0.95 ± 0.08 0.41 ± 0.22 0.58 ± 0.22 0.79 ± 0.01

n   = 20 RF 0.97 ± 0.04 0.32 ± 0.18 0.48 ± 0.21 0.74 ± 0.05

SVM 0.96 ± 0.08 0.43 ± 0.22 0.59 ± 0.22 0.73 ± 0.31

n   = 40 RF 1 ± 0.03 0.35 ± 0.18 0.52 ± 0.21 0.72 ± 0.03

SVM 0.96 ± 0.05 0.52 ± 0.22 0.68 ± 0.22 0.73 ± 0.05

n   = 80 RF 1 ± 0.03 0.37 ± 0.18 0.53 ± 0.21 0.73 ± 0.03

SVM 0.95 ± 0.05 0.59 ± 0.18 0.73 ± 0.17 0.77 ± 0.03

n   = 160 RF 1 ± 0.04 0.41 ± 0.2 0.58 ± 0.21 0.74 ± 0.02

SVM 0.94 ± 0.06 0.68 ± 0.14 0.77 ± 0.11 0.77 ± 0.01

n   = 320 RF 1 ± 0.04 0.46 ± 0.2 0.63 ± 0.22 0.76 ± 0.01

SVM 0.93 ± 0.06 0.71 ± 0.11 0.79 ± 0.08 0.81 ± 0.01

n   = 400 RF 1 ± 0.04 0.48 ± 0.2 0.65 ± 0.21 0.76 ± 0

SVM 0.92 ± 0.06 0.71 ± 0.13 0.79 ± 0.11 0.82 ± 0.01

All RF 1 ± 0.02 0.34 ± 0.19 0.51 ± 0.22 0.76 ± NA

SVM 0.94 ± 0.05 0.71 ± 0.12 0.8 ± 0.09 0.83 ± NA

All + F RF 1 ± 0.02 0.39 ± 0.19 0.56 ± 0.21 0.76 ± NA

SVM 0.94 ± 0.05 0.72 ± 0.17 0.8 ± 0.16 0.83 ± NA

Precision, recall, and F1 values reported are for probability thresholds >0.50. Performance metrics were calculated using the ‘ROCR’ package (Sing et al., 2005). These metrics were used to 
determine which settings resulted in the best performance of the system. The bold indicates the best performing settings that were used for subsequent analysis of our entire dataset. 

Results

Training data and algorithm influence 
performance

The classification accuracy of SVM for the training dataset 
containing all samples was 98.82%, and the accuracy of the RF was 
97.85%. We found that the number of training data samples and the 
selected machine learning algorithm substantially influenced the 
performance of our detector/classifier using the validation dataset 
(Table 2). Using an AIC model selection approach, we found that the 
model with AUC as an outcome and with the machine learning 
algorithm and training data category as predictors performed much 
better than the null model (ΔAICc = 11.2; 100% of model weight). 
When using AUC as the metric, we  found that SVM performed 
slightly better than RF, and performance normalized when the 
number of training samples was greater than n = 160 (Figure  4). 
We  also found that the model with F1 score as an outcome and 
machine learning algorithm and training data category as predictors 
performed much better than the null model (ΔAICc = 34,730.6; 
100% of model weight; Figure 4). Again, SVM performed better than 
RF, but in this case, the training dataset that contained all the 
samples (n = 433 female calls and n = 1,006 noise events) or all the 
samples plus extra female calls performed better (Figure 4). There 
were noticeable differences in the performance of the two algorithms 
regarding F1 score across different probability thresholds (Figure 5). 
SVM had a higher performance at higher probability thresholds, 
whereas performance for RF had the highest F1 value when the 

probability threshold was 0.60. We decided to use the SVM algorithm 
with all the training samples for our full analysis. We used the 24-h 
test dataset to calculate the final performance metrics of our system. 
We found that the highest F1 score (0.78) was when the probability 
threshold was 0.90, precision was 0.88, and recall was 0.71.

Comparison of an automated system to 
human annotations

We used the SVM algorithm and all training data samples to run 
over our full dataset resulting in  4,771 detections, of which 3,662 were 
true positives and 1109 were false positives (precision = 0.77). A 
histogram showing the distributions of automatically detected calls and 
manually annotated calls is shown in Figure 6. A Kolmogorov–Smirnov 
test indicated that the two distributions were not significantly different 
D = 0.07, p > 0.05.

Unsupervised clustering

We used unsupervised clustering to investigate the tendency to 
cluster in true/false positives and high-quality female calls. For our first 
aim, we used affinity propagation clustering to differentiate between true 
and false positives after we used our detection/classification system. 
We did not find that affinity propagation clustering effectively separated 
false positives, as the NMI score was close to zero (NMI = 0.03). 
Although there were only two classes in our dataset (true and false 
positives), the clustering results indicated 53 distinct clusters. Supervised 
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FIGURE 4

Coefficient plots from the linear model with AUC (left) or F1 score (right) as the outcome and training data category and machine learning algorithm as 
predictors. Using AIC, we found that both models performed substantially better than the null model. For both coefficient plots, the reference training data 
category is n = 160. We considered predictors to be reliable if the confidence intervals did not overlap zero. For AUC (left), training data samples smaller than 
n = 160 had a slightly negative impact on AUC, whereas a larger number of training data samples had a slightly positive impact. Note that the confidence 
intervals overlap zero, so these can be interpreted only as trends. The use of the SVM algorithm had a slightly positive effect on AUC. For the F1 score 
(right), the number of training samples had a reliable effect on the F1 score. When samples were less than n = 160, the F1 score was lower. When there were 
more samples, the F1 score was higher. SVM also had a reliably positive effect on the F1 score.

FIGURE 5

F1-score for each machine learning algorithm (RF or SVM), probability threshold category, and training data category. Both algorithms had comparable 
performance in terms of F1 score, although the probability threshold with the highest F1 score differed. The dashed line indicates the highest F-1 score 
(0.80) for both algorithms on the validation dataset.
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FIGURE 7

UMAP projections indicating validated detections (left) and cluster assignment by affinity propagation clustering (right). Each point represents a detection, 
and the colors in the plot on the left indicate whether the detection was a true (T; indicated by the blue triangles) or false (F; indicated by the orange circles) 
positive. The colors in the plot on the right indicate which of the 53 clusters returned by the affinity propagation clustering algorithm the detection was 
assigned to.

classification accuracy using SVM for true and false positives was ~95%. 
UMAP projections of the true and false positive detections are shown in 
Figure 7. For our second aim, we used affinity propagation clustering to 
investigate the tendency to cluster in the high-quality female calls 
detected by our system (n = 194). Using adaptive affinity propagation 
clustering, we found that setting q = 0.2 resulted in the highest silhouette 
coefficient (0.18) and returned ten unique clusters. UMAP projections 
of female calls are shown in Figure 8. Histograms indicating the number 

of calls from each recorder assigned to each cluster by the affinity 
propagation algorithm are shown in Figure 9.

Discussion

We show that using open-source R packages, a detector and classifier 
can be developed with an acceptable performance that exceeds that of 

FIGURE 6

Histogram showing the number of calls detected by time using the automated system (left) and manually annotated by a human observer (right). Note that 
the differences in axes are due to the detections for the automated system being at the call level, whereas the annotations were at the bout level (and bouts 
are comprised of multiple calls). There was no statistically significant difference between the two distributions (see text for details).
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previously published automated detector/classifiers for primate calls 
[e.g., Diana monkey F1 based on reported precision and recall = 65.62 
(Heinicke et  al., 2015)]. However, the performance of this system 
(maximum F1 score = 0.78) was below some reported deep learning 
approaches [e.g., F1 score = 90.55 for Hainan gibbons (Dufourq et al., 
2021), F1 score = ~87.5 for owl species (Ruff et al., 2021), F1 score = 87.0 
for bats (Silva et al., 2022)]. In addition, we found that temporal patterns 
of calling based on our automated system matched those of the human 
annotation approach. We also tested whether using an unsupervised 
approach (affinity propagation clustering) could help further distinguish 
true and false positive detections but found that the clustering results 
(n = 53 clusters) did not differentiate true and false positives in any 
meaningful way. Visual inspection of the false positives indicated that 
many of them were overlapping with great argus pheasants, or were 
other parts of the gibbon duet or solo. A majority of the false positives 
were male solo phrases, and these vocalization types contain rapidly 
repeating notes in the same frequency range as the female gibbon call. 
Lastly, we  applied unsupervised clustering to a reduced dataset of 
validated detections of female calls that followed the species-specific call 
structure and found evidence for ten unique clusters. Inspection of 
spatial patterns of distribution of the clusters indicates that the clusters 
do not correlate with female identity.

Calls versus bouts

Our analysis focused on one call type within the gibbon duet: the 
female great call. We did this for practical reasons, as female calls tend 
to be  stereotyped and follow a species- and sex-specific pattern. In 
addition, females rarely call alone, which means the presence of the 
female call can be used to infer the presence of a pair of gibbons. Also, 
most acoustic survey methods focus on the duet for the reasons 
described above, and generally, only data on the presence or absence of 
a duet bout at a particular time and location are needed (Brockelman 
and Srikosamatara, 1993; Kidney et al., 2016). When calculating the 
performance of our automated detection/classification system, 
we focused on the level of the call, as this is a common way to evaluate 
the performance of automated systems (Dufourq et al., 2020). Finally, 

when comparing temporal patterns of calling behavior, we compared to 
an existing dataset of annotations at the level of the duet bout. We did 
this because annotating duet bouts using LTSAs is much more efficient 
than annotating each individual call for the entire dataset. However, for 
certain applications such as individual vocal signatures, the analysis 
necessarily focuses on individual calls within a bout.

Comparison of ML algorithms

We found that SVM performed slightly better than RF in most 
metrics reported (except precision). However, RF had a comparable 
classification accuracy to SVM on the training dataset (SVM 
accuracy = 98.82% and RF accuracy = 97.85% for all training data 
samples). This reduced performance can be  attributed to the 
substantially lower recall of RF relative to SVM, despite RF having 
higher precision in many cases (data summarized in Table  2). The 
precision of SVM decreased slightly as we  increased the number of 
training samples, which may be  due to increased variability in the 
training data samples that influenced the algorithm’s precision. We did 
not see that the precision of RF decreased with an increased number of 
training samples, but RF recall remained low regardless of the amount 
of training data. These patterns are reflected in differences in the F1 
scores across probabilities for both algorithms.

The tolerable number of false positives, or the minimum tolerable 
recall of the system, will depend heavily on the research question. For 
example, when modeling occupancy, it may be important that no calls 
are missed, and hence, a higher recall would be desirable. But, for studies 
that focus more on the behavioral ecology of the calling animals (Clink 
et al., 2020a,b), it may be important for the detector to identify calls with 
a low amount of false positives but less important if the detector misses 
many low signal-to-noise calls. Therefore, in some cases where high 
precision is desired but recall is less important, RF may be a better 
choice. It is also possible that tuning the RF (as we did with SVM) may 
result in better performance. However, we  did not do this as it is 
generally agreed that RF works well using default values of the 
hyperparameters (Probst et al., 2019).

Influence of training data

We found that the AUC and F1 metrics normalized when using 160 
samples of training data or more for each of the two classes (gibbon 
female and noise). However, using all training data or data augmented 
with female calls resulted in better F1 scores. The training datasets that 
contained all the samples and added females were unbalanced and 
contained many more noise samples than female calls. Including more 
diverse noise samples lead to better performance in this system, and 
both RF and SVM handle unbalanced datasets effectively. It is important 
to note that although we found performance normalized when training 
with 160 calls or more, this number does not account for the additional 
number of calls needed for validation and training. Therefore, the total 
number of calls or observations to effectively train and subsequently 
evaluate the performance of the system will be >160 calls. We realize that 
compiling a dataset of 160 or more calls for rare sound events from 
elusive species may be unrealistic. We found that our in our system 
including as few as 40 calls allowed for acceptable performance (F1 score 
for SVM = 0.70), so the approach could be potentially used successfully 
with a much smaller training dataset.

FIGURE 8

UMAP projections of Northern grey gibbon female calls. The location 
of each spectrogram indicates the UMAP projection of the call, and the 
border color indicates cluster assignment by affinity propagation 
clustering.
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In addition, our training, validation, and test datasets came from 
different recording units, times of day, and multiple territories of 
different gibbon groups. Including 40 calls from the same recorder 
and same individual would presumably not be  as effective as 
including calls from different individuals and recording locations. A 
full discussion of the effective preparation of datasets for machine 
learning is out of the scope of the present paper, but readers are 
urged to think carefully about the preparation of acoustic datasets 
for automated detection and aim to include samples from a diverse 
number of recording locations, individuals and time of day. Transfer 
learning which utilizes pre-trained convolutional neural networks 
for different classification problems than the model was originally 
trained, provides another alternative for small datasets, with transfer 
learning providing up to an 82% F1 score with small datasets 
(Dufourq et  al., 2022). Future work that compares the approach 
presented here with transfer learning will be highly informative.

Unsupervised clustering to distinguish true/
false positives

We did not find that affinity propagation clustering helped 
further differentiate true and false positives in our dataset, despite 
being able to differentiate between the two classes using supervised 
methods with ~95% accuracy. As noted above, many of the false 
positives were phrases from male solos, and these phrases are highly 
variable in note order and note sequence (Clink et al., 2020a), which 
may have led to the high number of clusters observed. The NMI 
score was close to zero, indicating a lack of accordance between the 
unsupervised cluster assignments and the true labels. These types 
of unsupervised approaches have been fruitful in distinguishing 
among many different types of acoustic signals, including 
soundscapes (Sethi et  al., 2020), bird species (Parra-Hernández 
et  al., 2020), and gibbon individuals (Clink and Klinck, 2021). 
We extracted MFCCs for all sound events focusing on the relevant 
frequency range for female gibbon great calls. As detections were 
based on band-limited energy summation in this frequency range, 
extracting MFCCs in this frequency range was a logical choice. 
We  did early experiments where we  summarized the extracted 
MFCCs in different ways and slightly modified the frequency range. 
We did not find that these early experiments led to better separation 
of true and false positives. Therefore, we conclude that the use of 
MFCCs and affinity propagation clustering is not an effective way 
to differentiate between true and false positives in our dataset. It is 
possible that using different features may have led to different 
results, and embeddings from convolutional neural networks as 
features (e.g., Sethi et al., 2020) or the use of low dimentional latent 
space projections learned from the spectrograms (Sainburg et al., 
2020) are promising future directions.

Unsupervised clustering of validated gibbon 
female calls

The ability to distinguish between individuals based on their 
vocalizations is important for many different PAM applications, and 
population density estimation in particular (Augustine et  al., 2018, 
2019). The home range size of two gibbon pairs in our population was 

previously reported to be about 0.34 km2 (34 ha; Inoue et al., 2016), but 
within gibbon populations, the home range size can vary substantially 
(Cheyne et al., 2019), making it difficult to know exactly how many pairs 
were included in our study area. In another study, gibbon group density 
was reported as 4.7 groups per km2; the discrepancy between this value 
and home range size estimates provided by Inoue et  al. (2016) is 
presumably due to the fact that the studies were measuring different 
parameters (density vs. home range) and the fact that home ranges can 
overlap, even in territorial species. Therefore, based on conservative 
estimates of gibbon density and home range size, up to 12 pairs may 
occur in our 3 km2 study area.

Our unsupervised approach using affinity propagation 
clustering on high-quality female calls returned ten unique clusters. 
We showed that affinity propagation clustering consistently returned 
a similar number of clusters to the actual number of individuals in 
a different dataset (Clink and Klinck, 2021). However, an inspection 
of the histograms in Figure 9 shows that some clusters appear to 
have strong spatial patterns (e.g., only appearing on a few recorders 
in close spatial proximity), whereas others appear on many 
recorders. In some cases, the same clusters appear on recorders that 
are >1.5 km apart — a presumably larger distance than the width of 
a gibbon home range — therefore, it seems unlikely that these 
clusters are associated with female identity. When using 
unsupervised approaches, it is common practice to assign each 
cluster to the class that contains the highest number of observations, 
and we showed affinity propagation clustering reliably returned a 
number of clusters that matched the number of individuals in the 
dataset, but often ‘misclassified’ calls to the wrong cluster/individual 
(Clink and Klinck, 2021). Importantly, our previous work was done 
on high-quality, focal recordings with a substantial amount of 
preprocessing to ensure the calls were comparable (e.g., did not 
contain shorter introductory notes or overlap with the male). In the 
present study, we manually screened calls to ensure they followed 
the species-specific structure and were relatively high-quality, but 
the limitations of PAM data (collected using an omnidirectional, 
relatively inexpensive microphone, and at variable distances to the 
calling animals) may preclude effective unsupervised clustering 
of individuals.

We conclude that more work needs to be done before we can reliably 
use unsupervised methods to estimate the number of individuals in a 
study area. Our current ability to utilize these approaches to return the 
number of individuals reliably is presently limited, especially because 
there is not a lot of information regarding the stability of individual 
signatures over time; but see (Feng et al., 2014). Future work that utilizes 
labeled training datasets collected using PAM data to train classifiers 
that can subsequently predict new individuals (e.g., an approach similar 
to that presented in; Sadhukhan et al., 2021) will help further our ability 
to identify unknown individuals from PAM data.

Generalizability of the system

Gibbon female calls are well-suited for automated detection and 
classification as they are loud and highly stereotyped, and gibbon 
females tend to call often. During a particular calling bout, they 
emit multiple calls, allowing for ample training data. Although 
gibbon female calls are individually distinct (Clink et  al., 2017, 
2018a), the differences between individuals were not sufficient to 
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preclude detection and classification using our system. Importantly, 
the fact that gibbon female calls tend to be of longer duration (> 6-s) 
than many other signals in the frequency range meant that the 
duration of the signal could be used as an effective metric to reject 
nonrelevant signals. The generalizability of our methods to other 
systems/datasets will depend on a variety of conditions, in 
particular, the signal-to-noise ratio of the call(s) of interest, type 
and variability of background noise, the amount of stereotypy in the 
calls of interest, and the amount of training data that can be obtained 
to train the system. Future applications that apply this approach to 
other gibbon species, or compare this approach with deep learning 
techniques, will be important next steps to determine the utility and 
effectiveness of automated detection approaches for other taxa.

Future directions

Due to the three-step design of our automated detection, classification, 
and unsupervised clustering approach, modifying the system at various 
stages should be relatively straightforward. In particular, using MFCCs as 
features was a logical approach given how well MFCCs work to distinguish 
among gibbon calls [this paper and Clink et al. (2018a)]. However, it is 
possible that using different types of feature sets may result in even better 
performance of the automated system. As mentioned above, the use of 
embeddings from pre-trained convolutional neural networks is a 
possibility. In addition, the supervised classification algorithms included 
in our approach were not optimized; the RF algorithm, in particular, was 
implemented using the default values set by the algorithm developers. 

FIGURE 9

Histograms showing the number of calls assigned to each cluster by the affinity propagation algorithm. Each panel indicates one of the clusters as assigned 
by affinity propagation clustering, the x-axis indicates the associated recording unit where the call was detected, and the y-axis indicates the number of 
calls for each cluster and recorder. The spectrograms shown exemplify each cluster assigned by the affinity propagation clustering algorithm.
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Therefore, further tuning and optimization of the algorithms may also 
influence the performance. Lastly, this approach was developed using 
training, validation, and test data from one site (Danum Valley 
Conservation Area). Future work investigating the performance of this 
system in other locations with (presumably) different types of ambient 
noise will be informative.

Conclusion

Here we highlight how the open-source R-programming environment 
can be  used to process and visualize acoustic data collected using 
autonomous recorders that are often programmed to record continuously 
for long periods of time. Even the most sophisticated machine learning 
algorithms are never 100% accurate or precise and will return false positives 
or negatives (Bardeli et al., 2010; Heinicke et al., 2015; Keen et al., 2017), 
which is also the case with human observers, but this is rarely quantified 
statistically (Heinicke et al., 2015). We hope this relatively simple automated 
detection/classification approach will serve as a useful foundation for 
practitioners interested in automated acoustic analysis methods. We also 
show that unsupervised approaches need further work and refinement 
before they can be  reliably used to distinguish between different data 
classes recorded using autonomous recording units. Given the importance 
of being able to distinguish among individuals for numerous types of PAM 
applications, this should be a high-priority area for future research.
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