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The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong

selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature)

to the native species, which have driven striking phenotypic and genetic

adaptations. Although the mechanisms of high-altitude adaptation have

been explored for many plateau species, how the phylogenetic background

contributes to genetic adaption to high-altitude of Vulpes is largely unknown.

In this study, we sequenced transcriptomic data across multiple tissues of

two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and

their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the

genetic and gene expression changes caused by high-altitude environment.

The results indicated that the positive selection genes (PSGs) identified

by both high-altitude Vulpes are related to angiogenesis, suggesting that

angiogenesis may be the result of convergent evolution of Vulpes in the

face of hypoxic selection pressure. In addition, more PSGs were detected

in V. ferrilata than in V. v. montana, which may be related to the longer

adaptation time of V. ferrilata to plateau environment and thus more genetic

changes. Besides, more PSGs associated with high-altitude adaptation were

identified in V. ferrilata compared with V. v. montana, indicating that the

longer the adaptation time to the high-altitude environment, the more genetic

alterations of the species. Furthermore, the result of expression profiles

revealed a tissue-specific pattern between Vulpes. We also observed that

differential expressed genes in the high-altitude group exhibited species-

specific expression patterns, revealed a convergent expression pattern of

Vulpes in high-altitude environment. In general, our research provides

a valuable transcriptomic resource for further studies, and expands our

understanding of high-altitude adaptation within a phylogenetic context.
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Introduction

As the highest-elevation plateau on Earth, high ultraviolet
radiation, thermal extremes, and oxidative stress of the Qinghai-
Tibet Plateau (QTP) pose significant challenges to the survival
of native species (Ge et al., 2013). The harsh environmental
conditions have led to various adaptive responses in a variety of
species (Li et al., 2018). Current studies on plateau adaptation of
native species have included many species, such as the Tibetan
loach (Yang et al., 2019), Himalayan marmot (Bai et al., 2019),
the Tibetan locust (Ding et al., 2018), snub-nosed monkey (Yu
et al., 2016), yak (Qiu et al., 2012; Lan et al., 2021), freshwater
snails (Vinarski et al., 2021), viperine snakes (Souchet et al.,
2020), and ectothermic snakes (Li et al., 2018). The mechanisms
of adaptation to high-altitude might have undergone convergent
evolution in some species. For example, EPAS1 gene has been
found to be a positive selection signature in a variety of domestic
animals on the QTP, which present a convergent genetic changes
(Wu et al., 2020). Many high-altitude animals reduced O2

demand by suppressing total metabolism to compensate for a
reduced cellular O2 supply as a response to hypoxia. However,
the mechanisms of adaptation to high-altitude among some
species might be completely different. For example, deer mice
which lived on high-altitude regions have stronger thermogenic
capacity to cope with the harsh environment by improving
energy metabolism (Cheviron et al., 2012). Therefore, the
exploration of the adaptation mechanism of different species in
the plateau region is helpful to enrich our understanding of the
high-altitude adaptation mechanism. Although the mechanisms
of adaptation have been explored for so many plateau species,
few studies have been done on plateau adaptation in Canids,
limited research has focused on Canis, such as the Tibetan wolf
(Zhang et al., 2014) and the Tibetan mastiff (Li et al., 2014).
However, how the Vulpes adapts to the harsh local environment
on the QTP remains unclear.

Vulpes vulpes montana (also named hill fox) and Vulpes
ferrilata (also named Tibetan sand fox) are the two species
of Vulpes distributed on the QTP, while their close relatives,
Vulpes lagopus (also named arctic fox) and Vulpes corsac (also
named sand fox) are lives in low-altitude regions (Imani Harsini
et al., 2017; Peng et al., 2021; Lyu et al., 2022). According
to previous phylogenetic relationship studies, the divergence
time of V. lagopus and V. vulpes was 3.17 Ma, and the
divergence time ofV. ferrilata andV. corsacwas 0.96 Ma (Kumar
et al., 2015; Zhao et al., 2016). Despite their time scales of
divergence were different, both V. v. montana and V. ferrilata
were subjected to the same selection pressures and adapted
to the plateau environment. Previous studies have shown that
high-altitude species present a similar expression shifts or a
tissue-dominated pattern, while it is unknown whether the
plateau adaptation strategies of Vulpes are influenced by the
phylogenetic background (Yu et al., 2016; Tang et al., 2017; Hao
et al., 2019).

With the maturation of transcriptome sequencing
technology, it is possible to study more deeply about gene
expression patterns in different species and tissues. Previous
studies have successfully analyzed the hair color development
of giant pandas and the high-altitude adaptation mechanism of
birds by using transcriptomics (Xiong et al., 2022; Zheng et al.,
2022).

In this study, we combined transcriptome data and
sequenced multiple tissues (lung, kidney, and liver) from adult
individuals of Vulpes (V. lagopus, V. v. montana, V. ferrilata,
and V. corsac) to conduct high- and low-altitude comparison
to identify the genes associated with high-altitude adaption.
Furthermore, via the comparison of the gene expression
profiles in tissues, we explored whether there was a tissue-
specific expression pattern in the two high-altitude Vulpes.
This study could provide insightful understanding of how
the Vulpes respond to high-altitude environment and explore
whether there is convergent evolution in the face of the same
selection pressure, thus enriching the knowledge of high-
altitude adaptation of Vulpes.

Materials and methods

Sample collection

Different Vulpes samples were collected from different
regions and years. V. ferrilata was collected from Gande County,
Tibetan Autonomous Prefecture of Golog, Qinghai Province
in China in 2019, V. v. montana was collected from Golmud
city, Haixi Mongolian and Tibetan Autonomous Prefecture,
Qinghai Province in China in 2021, and V. corsac was collected
from Hailar City, Inner Mongolia Autonomous Region in
China in 2020 (Figure 1A). For RNA extraction, three tissues
(liver, lung, and kidney) were cut into pieces and mixed with
RNAlater. Then, the processed samples were stored in an ultra-
low temperature refrigerator at –80◦C until further use.

All samples were taken from individuals who died of
natural causes or accidents and were taken shortly after
death to ensure that RNA was not degraded. The sample
collection procedures and experiments were conformed to the
guidelines established by the Ethics Committee for the Care
and Use of Laboratory Animals of Qufu Normal University
(Permit Number: QFNU2019-012). In addition, V. lagopus
transcriptome data used in this study were downloaded from
the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) database1 (Peng et al., 2021).
Transcriptome data of V. ferrilata were from our previous
research with accession numbers SRR15858292, SRR15858291,
and SRR15858290 (Lyu et al., 2022).

1 https://ncbi.nlm.nih.gov/genome/?term=vulpes+lagopus
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RNA extraction, library construction,
and transcriptome sequencing

Total RNA was extracted on dry ice by grinding tissue
(liver, lung, and kidney) in TRIzol reagent (Tiangen Biotech,
China) and processed following the manufacturer’s protocol.
Agilent 2100 Bioanalyzer (Agilent Technologies, USA), 0.7%
agarose gel pulse (Lonza, USA) electrophoresis, and NanoDrop
microspectrophotometer (Thermo Fisher Scientific, USA) were
used to detected the RNA integrity, concentration, and purity,
respectively. Then the Oligo (dT) 0.5X magnetic beads were
used to enrich the mRNA.

The transcriptome sequencing of V. v. montana and
V. corsac were performed on Illumina NovaSeq 6000 platform
(Illumina, USA). Briefly, a total amount of 3 µg RNA per sample
was used as input material for the RNA sample preparations.
Then, NEBNext R© Ultra RNATM Library Prep Kit for Illumina

R©

(NEB, USA) was used to generate sequencing libraries according
to the guideline which provided by manufacture and index codes
were added to attribute sequences to each sample. After that,
a cBot Cluster Generation System of TruSeq PE Cluster Kit
v3-cBot-HS (Illumina, USA) was used to the clustering of the
index-coded samples. Finally, sequencing platform was used to
sequence the library and generate the paired-end reads.

Transcriptome assembly and gene
function annotation

Quality control of Illumina paired-ended sequenced raw
data was handled by Fastp v.0.20.0 (default parameters) (Chen
S. F. et al., 2018). After removing low quality reads, reads
containing adapters, reads containing Poly-N, and clean data
were obtained for and subsequent analysis. Trinity v2.9.0
(min_kmer_cov set to 2) was used to assemble the clean data of
transcriptome (Grabherr et al., 2011). Briefly, three independent
modules in Trinity v2.9.0 (i.e., Inchworm, Chrysalis and
Butterfly) were used to processing the high-quality clean data.
At first, reads were decomposed to construct k-mer (k = 25)
dictionary, seed k-mer was selected and both sides of contig was
extended to form contig. Secondly, the overlapping contigs were
clustered to form components, and each component became a
set of possible representations of alternative splicing isoform or
homologous genes. Each component had a corresponding de
Bruijn graph. Finally, the de Bruijn graph of each component
was simplified to output the full-length transcript of the
alternative splicing subtype, and the transcript corresponding to
the paralogous gene was combed to obtain the splicing result
file. After de novo assembly, the longest transcript of each
gene obtained by Trinity v2.9.0 splicing were used as reference
sequences for subsequent analysis.

The unigenes assembled above were used for function
annotation based on seven public databases, including NCBI

non-redundant protein sequences (Nr), NCBI non-redundant
protein sequences (Nt), Protein family (Pfam), Clusters of
Orthologous Groups of proteins, and Karyotic Ortholog Groups
(KOG/COG), A manually annotated and reviewed protein
sequence database (Swiss-Prot), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Gene Ontology (GO). The software
and parameters used to annotate the different databases are
shown in Supplementary Table 1.

Identification of gene orthologous
groups and phylogenetic analyses

OrthoMCL v2.0.9 (default) was used to identify homologous
genes between Vulpes (i.e., V. lagopus, V. v. montana,
V. ferrilata, and V. corsac) and four Carnivora species
(Ailuropoda melanoleuca, Ursus maritimus, Canis lupus
familiaris, and Canis lupus dingo) (Chen, 2006). Specifically,
BLASTx2 and ESTScan v3.0.3 were used to extract the CDS of
each putative genes and determine the direction of sequences
that did not have align results, respectively (He et al., 2012).
BLASTP (see text footnote 2) was used to conducting for all
amino acid sequences which translated from the extracted CDSs
with a cut-off e-value of 1e–5. Finally, orthologous groups were
constructed from the BLASTP results with OrthoMCL v2.0.9.

The single-copy genes were further used for species
phylogenetic analysis. At first, the obtained one-to-one
orthologous were aligned by MUSCLE v3.8.31. After alignment,
RAxML v8.2.10 (-m PROTGAMMAAUTO -p 12345 -T 8 -f
b) was used for phylogenetic tree construction (Stamatakis,
2006). The estimation of divergence time was performed using
MCMCTree package in PAML v4.8 (Yang, 2007). The generated
tree file was displayed using FigTree v1.4.4 and MEGA v10.1.8
(Sudhir et al., 2016). In this study, we used three secondary
calibration points published in previous studies as references
(i.e., the most recent common ancestors of A. melanoleuca and
U. maritimus, V. ferrilata and C. l. familiaris, and V. lagopus
and V. vulpes were calibrated as diverged between 16.1 and 22.6,
10.13 and 16.86, and 4.5 and 10.3 Ma, respectively) (Hu et al.,
2016; Peng et al., 2021; Lyu et al., 2022).

Identification of genes under positive
selection and quantification of gene
expression levels

In the comparisons of homologous genes, a gene with a
high Ka/Ks ratio [the ratio of the number of non-synonymous
substitutions per non-synonymous site (Ka) to the number
of synonymous substitutions per synonymous site (Ks)] was

2 https://blast.ncbi.nlm.nih.gov
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considered to be evolving under positive selection. In this
study, in order to explore the similarities and differences of
adaptive mechanisms selected by V. ferrilata and V. v. montana
in the face of plateau environmental pressures (e.g., high-
UV radiation, extreme temperature, and low oxygen content),
Codeml in PAML v4.8 was used to test the likely ratio of
branching sites to determine positively selected genes (PSGs)
in the high-altitude Vulpes groups (Yang, 2007). Genes with
P < 0.05 were determined as PSGs. To further explore
whether the tissues (liver, lung, and kidney) closely related
to energy metabolism and oxygen utilization have a tissue-
specific expression pattern between high-altitude Vulpes groups
and their low-altitude relatives, gene expression levels were
calculated using RSEM v1.3.1 (Li and Dewey, 2011). Input
data for gene differential expression was the read-count data
obtained in gene expression level analysis. For samples with
biological replicates, we employed DESeq2 v3.11 based on a
negative binomial distribution for analysis (Maza, 2016). For
the research on wild animals, since the samples are extremely
precious and difficult to obtain, how to ensure the statistical
significance of the limited samples to the maximum extent is
our key consideration. For samples without biological replicates,
we first employed TMM to normalize read-count data, followed
by edgeR v4.2 for differential analysis (Robinson et al., 2009).
Briefly, Rlog is selected for standardization according to the
sample size. We fit the input DDS objects with negative
binomial distribution (fitNbinomGLMs). This step mainly
uses negative binomial regression to estimate the value of
regression coefficient, and finally returns the coefficient value
of negative binomial distribution regression. By introducing
negative binomial regression standardization, we can take
advantage of the biological duplication of sequencing data to
eliminate the influence of outliers to a certain extent.

Results

Sequencing data assembly, function
annotation, and CDS prediction

Six transcriptome libraries (Vc1, Vc2, Vc3, Vvm1, Vvm2,
and Vvm3) were generated for RNA sequencing from three
tissues (i.e., 1: liver, 2: lung, 3: kidney) which play critical roles
in metabolism and oxygen utilization across V. v. montana
and V. corsac (Haas et al., 2013). After filtering the raw data,
a total of 459,782,372 clean reads were remained for further
transcriptomic assembly (Table 1).

The length of transcripts and unigene were counted,
respectively, and the results are shown in Supplementary
Table 2. Briefly, the numbers of unigenes for the four
transcriptomic assemblies ranged from 85,094 (V. corsac) to
271,031 (V. lagopus). The mean unigene length was between 676
(V. v. montana) and 898 bp (V. lagopus), while the N50 lengths

ranged from 1,108 (V. ferrilata) to 1,847 bp (V. corsac). All these
assemblies together generated 638,094 unigenes with an average
length of 775 bp.

After assembly, the unigenes assembled above were used for
function annotation based on seven public databases (Nr, Nt,
GO, PFAM, KOG, Swiss-Prot, and KO). In summary, 83,267,
60,477, 179,003, and 51,653 unigenes of V. ferrilata, V. v.
montana, V. lagopus, and V. corsac have been annotated to at
least one database, accounting for 45.49, 61.12, 66.04, and 60.7%
of the total number of unigenes in each species, respectively.
And the unigenes numbers which annotated in all databases
were ranged from 4,498 (V. v. montana) to 5,195 (V. ferrilata).
More details about the gene function annotation of four Vulpes
are shown in Table 2.

As for CDS prediction, a total of 85,498 (V. ferrilata: 18,121,
V. v. montana: 17,247, V. corsac: 16,639, V. lagopus: 33,491)
CDSs and 182,088 (V. ferrilata: 79,768, V. v. montana: 43,337,
V. corsac: 36,282, V. lagopus: 22,701) CDSs were obtained from
the two steps, respectively (Supplementary Table 3). After that,
the CDSs were further filtered to obtain the full-length CDS
sequences and performed UTR prediction.

Identification of gene orthologous
groups and phylogenetic analyses

OrthoMCL v2.0.9 was used to perform orthologous search
analysis of the full-length CDS, and one-to-one orthologous
genes were filtered for the phylogenetic analyses (Figure 1B).
The phylogenetic tree topology was quite consistent with
previous phylogenetic studies except V. ferrilata (Zhao et al.,
2016). As shown in Figure 1B, V. v. montana and V. corsac
were shown to be sister to each other, with an divergence time
of 3.4 Ma (95% CI: 4.30–2.50). In addition, the divergence time
between the V. ferrilata and the ancestors of V. v. montana
and V. corsac, V. lagopus and the ancestors of V. ferrilata are
6.53 Ma (95% CI: 7.20–5.80) and 7.68 Ma (95% CI: 8.70–6.80),
respectively.

Identification of genes under positive
selection

In order to explore the similarities and differences of the
adaptation mechanism of the two high-altitude Vulpes (i.e.,
V. ferrilata and V. v. montana), the two Vulpes were analyzed
by branch site model as the foreground branch separately.
Finally, 111 and 28 PSGs were identified in V. ferrilata and V. v.
montana, respectively. Among these genes, 4 genes (TCF20,
RASSF5, KRAS, and ZCCHC17) were identified as PSGs in
both V. ferrilata and V. v. montana. To further explore the
high-altitude adaptive mechanisms of the two Vulpes, we
performed GO enrichment analyses for PSGs in V. ferrilata and
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V. v. montana, respectively (Figures 2A,B). The top 10 enriched
GO terms of V. ferrilata were GTPase activity (GO:0003924,
7 genes, p = 0.001853361), GTP binding (GO:0005525,
7 genes, p = 0.006013457), vesicle-mediated transport
(GO:0016192, 3 genes, p = 0.04152219), oxidoreductase
activity (GO:0016491, 6 genes, p = 0.047099438), membrane
(GO:0016020, 7 genes, p = 0.070771409), structural constituent
of ribosome (GO:0003735, 2 genes, p = 0.118087218),
ribosome (GO:0005840, 2 genes, p = 0.118087218), translation
(GO:0006412, 2 genes, p = 0.14136237), integral component of
membrane (GO:0016021, 7 genes, p = 0.204249059), and signal
transduction (GO:0007165, 3 genes, p = 0.233284218).
As for V. v. montana, the top 10 enriched GO terms
were nucleus (GO:0005634, 4 genes, p = 0.093514991),
translation initiation factor activity (GO:0003743, 1 gene,
p = 0.098136352), magnesium ion binding (GO:0000287,
1 gene, p = 0.113562242), protein serine/threonine
kinase activity (GO:0004674, 1 gene, p = 0.113562242),
intracellular anatomical structure (GO:0005622, 2 genes,

p = 0.118067143), GTPase activator activity (GO:0005096, 1
gene, p = 0.128733548), antioxidant activity (GO:0016209,
1 gene, p = 0.128733548), glycosyltransferase activity
(GO:0016757, 1 gene, p = 0.128733548), nucleic acid binding
(GO:0003676, 3 gene, p = 0.132436046), and endoplasmic
reticulum (GO:0005783, 1 gene, p = 0.143654319). More details
of GO enrichment are shown in Supplementary Tables 4, 5.

Identification of the differentially
expressed genes

In this section, the FPKM (expected number of Fragments
Per Kilobase of transcript sequence per Millions base pairs
sequenced) of each tissue (1: liver; 2: lung; 3: kidney) of
Vulpes were calculated. As is shown in Figure 3, samples
of the same tissue from different species clustered together
except Vvm3, suggested that the Vulpes present a tissue-
specific expression pattern rather than a species-specific pattern.

TABLE 1 The summary of sequencing results.

Sample Raw reads Clean reads Clean bases (Gb) Error (%) Q20 (%) Q30 (%) GC (%)

Vf_1* 45,396,822 45,185,332 6.78G 0.03 97.06 92.06 48.29

Vf_2* 46,197,428 45,955,460 6.89G 0.03 96.93 91.85 47.47

Vf_3* 48,442,358 48,239,530 7.24G 0.03 96.76 91.34 47.65

Vvm_1 41,227,682 41,227,682 6.18G 0.03 97.72 93.60 51.30

Vvm_2 41,381,124 41,381,124 6.21G 0.03 97.53 93.27 52.15

Vvm_3 40,499,014 40,499,014 6.07G 0.03 97.57 93.13 49.48

Vc_1 43,628,280 43,628,280 6.54G 0.02 98.52 95.46 49.43

Vc_2 41,421,016 41,421,016 6.21G 0.03 97.38 92.98 51.51

Vc_3 42,946,794 42,946,794 6.44G 0.03 97.38 92.98 50.63

Vl_1* 23,942,758 23,650,863 7.1G 0.01 97.9 94.51 50.19

Vl_3* 24,790,686 24,311,292 7.29G 0.01 97.19 93.11 49.35

Vl_4* 21,662,347 21,335,985 6.4G 0.01 97.23 93.17 49.99

Vf, Vulpes ferrilata; Vvm, Vulpes vulpes Montana; Vc, Vulpes corsac; Vl, Vulpes lagopus.
*The data which download from SRA database.
1: Liver, 2: Lung, 3: Kidney, 4: Heart.
Error: sequencing error rate.
Q20/Q30: percentage of bases with a Phred value of at least 20/30. GC, The content of G and C.

TABLE 2 The result of function annotation based on seven public databases.

Annotation database Vf’s unigene nums Vvm’s unigene nums Vc’s unigene nums Vl’s unigene nums

NR 23,569 (12.87) 23,268 (23.51) 22,312 (26.22) 44,853 (16.54)

NT 77,581 (42.38) 57,456 (58.07) 49,738 (58.45) 171,515 (63.28)

KO 12,818 (7) 15,286 (15.45) 12,276 (14.42) 12,491 (4.6)

Swiss-Prot 20,151 (11) 24,514 (24.77) 19,870 (23.35) 26,863 (9.91)

PFAM 23,236 (12.69) 19,917 (20.13) 17,945 (21.08) 35,083 (12.94)

GO 23,361 (12.76) 20,089 (20.3) 18,054 (21.21) 35,075 (12.94)

KOG 7,768 (4.24) 9,056 (9.15) 7,896 (9.27) 7,946 (2.93)

All databases 5,195 (2.83) 4,498 (4.54) 4,934 (5.79) 4,691 (1.73)

One database 83,267 (45.49) 60,477 (61.12) 51,653 (60.7) 179,003 (66.04)

Total unigenes 183,036 (100) 98,933 (100) 85,094 (100) 271,031 (100)

Vf, Vulpes ferrilata; Vvm, Vulpes vulpes Montana; Vc, Vulpes corsac; Vl, Vulpes lagopus. The numbers in parentheses indicate the proportion of genes with successful annotation to the
total number of genes.
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FIGURE 1

Localities and phylogenetic relationships of the 4 Vulpes. (A) Sampling locations. (B) Phylogenetic relationships and divergence time.
Phylogenetic relationships between Vulpes (i.e., Vulpes lagopus, Vulpes vulpes montana, Vulpes ferrilata, and Vulpes corsac) and four Carnivora
species (Ailuropoda melanoleuca, Ursus maritimus, Canis lupus familiaris, and Canis lupus dingo) based on one-to-one single-copy genes.

The PCA (principal component analysis) also revealed the
tissue-specific expression pattern: samples across all 4 species
clustered by tissues (Supplementary Figure 1). To further
explore whether there is an effect of different altitudes on gene
expression levels, we performed a differential gene expression
(DEGs) analysis of different altitude group of Vulpes. The result
indicated that a total of 75 genes showed significantly higher
expression levels (p< 0.05) in the high-altitude group compared
with the low-altitude group (Figure 4A and Supplementary
Table 6). In addition, the results of heat-map clustering showed
that these 75 genes also showed two different expression trends
in the high-altitude group (e.g., Col clustering of heat-map
divided 75 genes into two groups, but there was no significant
difference) (Figure 4B). We also identified DEGs in different
tissues in the two different altitude groups. As shown in
Figure 5, We identified 35 DEGs in the lung (27 up-regulated
and 8 down-regulated in the high-altitude group), 47 DEGs in

the liver (32 up-regulated and 15 down-regulated in the high-
altitude group), and 40 DEGs in the kidney (27 up-regulated and
13 down-regulated in the high-altitude group).

Discussion

To date, a large number of studies have revealed the
high-altitude adaptation mechanism of different plateau species
in the face of high selection environment (Tang et al.,
2017; Li et al., 2018; Yang et al., 2019). The same selection
pressure will lead to the same phenotype or molecular
convergence between species with different phylogenetic
background (Guo et al., 2016; Tian et al., 2021). On the
other hand, the similarities and differences of gene expression
levels in tissues of many high-altitude species and their
close relatives at low altitudes have also been confirmed
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FIGURE 2

GO enrichment analysis for positive selection genes. (A) GO enrichment analysis for positive selection genes of Vulpes ferrilata. (B) GO
enrichment analysis for positive selection genes of Vulpes vulpes montana.

(Tang et al., 2017; Hao et al., 2019; Xiong et al., 2022). However,
how evolutionary history (i.e., phylogenetic background)
contributes to similarity and difference in genetic adaptations
to high-altitude environments is largely unknown, in particular
in Vulpes. By systematically investigating two high-altitude
Vulpes and their low-altitude relatives within a phylogenetic
context, our comparative transcriptomics expanded our current
understanding of the Vulpes respond to a highly selective
environment.

With the aim of contributing to and improving the existing
transcriptomic resources available for the genus Vulpes, we
sequenced the transcriptomes of three tissues (liver, lung, and
kidney) of two Vulpes, combined with the transcriptomes data
of three identical tissues of V. ferrilata published in our previous
research and the data of three tissues (liver, heart, and kidney)
of V. lagopus mined from NCBI database (Peng et al., 2021;
Lyu et al., 2022). The topological structure of phylogenetic tree
constructed based on single-copy genes is quite consistent with
previous studies except V. ferrilata (Zhao et al., 2016). Previous
research suggested that V. ferrilata and V. corsac have the closest
phylogenetic relationship, and the ancestors of them diverged
from the ancestors of V. vulpes about 2.43 million years ago
(Zhao et al., 2016). It is worth noting that mtDNA phylogeny
could be different from nuclear phylogeny due to incomplete
lineage sorting or hybridization. However, due to the lack of
systematic studies, different studies have given different insights
into the time of divergence of the Vulpes (Fritz et al., 2009; Perini
et al., 2010; Nyakatura and Bininda-Emonds, 2012; Humphreys
and Barraclough, 2014). Our studies also add new insights of the
phylogenetic relationship and the divergence time of the four

Vulpes, which could provide a reference for further in-depth
studies.

Due to the differences in PSGs between V. ferrilata and V. v.
montana, the GO enrichment analysis of both showed different
functional enrichment results (Figures 2A,B). Furthermore,
V. ferrilata have more PSGs that may be related to coping with
the selection pressure of plateau environment compared with
V. v. montana (Table 3). Among these 111 PSGs in V. ferrilata,
20 PSGs related to high-altitude environmental selection stress
mainly include the following five aspects: DNA damage repair
(LIG4, ZNF830, CRTAC1, and GRB2) (Jun et al., 2016; Chen
G. et al., 2018; Hou et al., 2019; Félix et al., 2021), energy
metabolism (ARF6 and IRS1) (Dong et al., 2006; Gamara et al.,
2021), myocardial growth (EIF3A, IL6ST, SIRT4, and MZB1)
(Luo et al., 2016; Klimushina et al., 2019; Miao et al., 2019; Zhang
et al., 2021), angiogenesis (IGFBP3, RND3, APLNR, RBPJ, and
ARHGEF15) (Lofqvist et al., 2007; Kusuhara et al., 2012; Díaz-
Trelles et al., 2016; Mastrella et al., 2019; Wu et al., 2021), and
hypoxia stress response (RHEB, WWOX, COMMD1, LAMA4,
and PNN) (He et al., 2017; Murata et al., 2017; Hsu et al.,
2020; Baryla et al., 2022; Cai et al., 2022). In contrast, PSGs
related to altitude adaptation in V. v. montana only has DNA
damage repair (C19ORF57) (Takemoto et al., 2020) and hypoxia
response related to HIF1-α regulation (FUT11, USP8, CASP14,
VGLL4, and ALS2) (Troilo et al., 2014; Ye et al., 2018; Rivas
et al., 2020; Wang et al., 2020; Ruan et al., 2021). In addition
to the species-specific PSGs related to altitude adaptation, two
of the four PSGs (TCF20 and KRAS) shared by V. ferrilata
and V. v. montana are also related to altitude adaptation.
Transcription Factor 20 (TCF20) is a key gene that promotes
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FIGURE 3

Heat map of genes enriched for expression in each tissue of
Vulpes (i.e., Vulpes lagopus, Vulpes vulpes montana, Vulpes
ferrilata, and Vulpes corsac). The heat map was generated using
hierarchical clustering and complete linkage of the one-to-one
orthologous genes. Distances, representing the relative similarity
among genes and tissues, were calculated using Pearson’s
correlation coefficients. Color represents FPKM value of gene
expression after scaling and centering.

the activity of transcriptional activators C-JUN, which is related
to angiogenesis (Folkman, 2004). KRAS gene is also related to
angiogenesis. Previous research has demonstrated that KRAS
gene can interact with hypoxia conditions to induce vascular
endothelial growth factor (VEGF) (Zeng et al., 2010). In general,
the PSGs identified by both high-altitude Vulpes are related to
angiogenesis, suggesting that angiogenesis may be the result of
convergent evolution of Vulpes in the face of hypoxic selection
pressure. As for other PSGs identified in two high-altitude
Vulpes, V. ferrilata have more genes related to plateau adaption
than V. v. montana, and these genes also involve a wider range
of functions. This result might be caused by the background of
the phylogenetic relationship between the two species. Previous
studies have shown that the divergence time of the ancestors

of V. ferrilata and V. v. montana coincides with the uplift
time of the QTP, while the divergence time of V. v. montana
and V. vulpes is much shorter (Zhao et al., 2016; Lyu et al.,
2022). We speculated that the longer the time to adapt to high-
altitude environment, the more functional changes related to
high-altitude selection pressure could be made in species.

Previous study of high-altitude passerine birds and primates
suggested that there are two patterns of gene expression
in multiple tissues, including species-specific expression and
tissue-specific expression (Yu et al., 2016; Hao et al., 2019). In
this study, we observed a tissue-specific expression pattern in
Vulpes in the context of using all single copy orthologous genes,
that is, the expression of the same tissues between different
species clustered together, regardless of the influence of altitude.
However, due to the difficulty of obtaining samples, the results
of expression patterns of multiple repeated samples may be
different from that of a single sample. The only tissue (Vvm3)
that does not show tissue-specific expression may be related to
the difference of a single sample, which needs further research
in the future. To investigate the gene expression shifts caused
by high-altitude environment between the high- and low-
altitude group, a total of 75 highly expressed genes (HEGs) were
obtained in high-altitude group and 19 HEGs were identified as
high-altitude response genes (Table 4). These 19 high-altitude
related HEGs were mainly include the following five aspects:
hypoxia response (IRS2, LIPH, PLEK2, IGFBP1, FGL2, EID3,
ISG15, BNIP3L, INSIG1, SLC39A6, and PLIN2) (Fei et al., 2004;
Mardilovich and Shaw, 2009; Minchenko et al., 2015; Bildirici
et al., 2018; Perng and Lenschow, 2018; Fan et al., 2019; Li
Y. F. et al., 2019; Hu et al., 2020; Xu et al., 2020; Wang
et al., 2021), DNA damage repair (PSME4) (Huang et al., 2020),
myocardial growth (TBC1D25 and RNF146) (Gao et al., 2014;
Guo et al., 2020), angiogenesis (LACTB, ADGRD1, SEMA7A,
and RHOC) (Wang et al., 2008; Bayin et al., 2016; Li H. T.
et al., 2019; Krner et al., 2021), and energy metabolism (UCP5)
(Sanchez-Blanco et al., 2006). In summary, the HEGs of the two
high-altitude Vulpes are mainly reflected in response to hypoxia,
indicating that oxygen content is the main factor causing the
gene expression shifts of Vulpes. In addition, the expression
profiles of HEGs and a combination of all DEGs in different
tissues showed a different pattern from those of all genes (e.g.,
tissue-specific expression) by separating high-altitude Vulpes
from low-altitude Vulpes (Figures 4, 5), suggesting that the 2
high-altitude Vulpes have convergent shifted their expression
profiles.

In conclusion, our research identified two genes (TCF20 and
KRAS) which related to angiogenesis shared positive selection
signature in V. ferrilata and V. v. montana, suggesting that
angiogenesis may be one of the key functions of Vulpes to adapt
to high-altitude environment. In addition, V. ferrilata have more
PSGs related to plateau adaption than V. v. montana, which
may be related to the earlier adaptation of V. ferrilata to the
QTP than V. v. montana, revealing the influence of phylogenetic
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FIGURE 4

Seventy five differential expressed genes showed significantly higher expression levels in the high-altitude group compared with the
low-altitude group. (A) Box-plot analysis presented a significantly higher expression levels in the high-altitude group of these 75 differential
expressed genes. *p < 0.05, and **p < 0.01. (B) Heat-map analysis of 75 differential expressed genes. The heat map was generated using
hierarchical clustering. Distances, representing the relative similarity among genes and Vulpes, were calculated using Pearson’s correlation
coefficients. Color represents FPKM value of gene expression after scaling and centering.

FIGURE 5

Volcano plot analysis of differential expressed genes in tissues (i.e., liver, lung, and kidney) of different altitude group of Vulpes. The red dots
represent the genes up-regulated in Vulpes in the high altitude group (i.e., Vulpes vulpes montana and Vulpes ferrilata), the blue dots represent
the genes down regulated in Vulpes in the high altitude group, and the gray dots represent the genes that have not changed significantly.

background on adaptive genetic changes. On the other hand,
the HEGs of the two high-altitude Vulpes are mainly reflected
in response to hypoxia, indicating that oxygen content is the

main factor causing the gene expression shifts of Vulpes. The
results of the study on gene expression in three tissues of four
Vulpes at high-altitude and low-altitude also showed that there
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TABLE 3 PSGs related to high-altitude adaption.

Function Vf Vvm

Energy metabolism ARF6 and IRS1

DNA damage repair LIG4, ZNF830,
CRTAC1, and GRB2

C19ORF57

Myocardial growth EIF3A, IL6ST, SIRT4,
and MZB1

Angiogenesis TCF20*, KRAS*,
IGFBP3, RND3,

APLNR, RBPJ, and
ARHGEF15

TCF20* and KRAS*

Hypoxia stress response RHEB, WWOX,
COMMD1, LAMA4,

and PNN

FUT11, USP8,
CASP14, VGLL4,

and ALS2

Vf, Vulpes ferrilata; Vvm, Vulpes vulpes montana.
*PSGs shared by V. ferrilata and V. v. montana.

TABLE 4 HEGs related to high-altitude response.

Function High-altitude group

Energy metabolism UCP5

DNA damage repair PSME4

Myocardial growth TBC1D25 and RNF146

Angiogenesis LACTB, ADGRD1, SEMA7A, and
RHOC

Hypoxia stress response BNIP3L, INSIG1, SLC39A6,
PLIN2, AIRS2, LIPH, PLEK2,

IGFBP1, FGL2, EID3, and ISG15

was a convergent change in gene expression between the two
groups, revealing a convergent gene expression and regulation
mechanism of Vulpes in the face of high-altitude selection
pressure. Our research provides a valuable transcriptomic
resource for further studies, and expands our understanding of
high-altitude adaptation within a phylogenetic background.
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