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Iron is an important element and its biogeochemical processes are vital

to the matter and energy cycles of wetland ecosystems. Hydrology greatly

controls characteristics of soil property and plant community in wetlands,

which can regulate the behavior of iron and its oxides. However, it remains

unclear how the spatial distribution of iron and its forms in estuarine wetlands

responses to hydrological conditions. Five typical plant communities along a

naturally hydrological gradient in the Yellow River Estuary wetland, including

Phragmites australis in freshwater marsh (FPA), Phragmites australis in salt

marsh (SPA), Tamarix chinensis in salt marsh (TC), Suaeda salsa in salt marsh

(SS) and Spartina alterniflora in salt marsh (SA), as sites to collect soil samples.

The total iron (FeT) and three iron oxides (complexed iron, Fep; amorphous

iron, Feo; free iron, Fed) in samples were determined to clarify the spatial

distribution of iron and explore its impact factors. The mean contents of

FeT, Fep, Feo and Fed were 28079.4, 152.0, 617.2 and 8285.3 mg·kg−1 of

soil at 0–40 cm depth in the different sites, respectively. The means were

significantly different across communities along the hydrological gradient,

with the higher values for SA on the upper intertidal zone and for SPA on the

lower intertidal zone, respectively. Iron and its forms were positively correlated

with the total organic carbon (TOC), dissolved organic carbon (DOC), total

nitrogen (TN) and clay, and negatively correlated with electrical conductivity

(EC). The indexes of iron oxides (Fep/Fed, Feo/Fed and Fed/FeT) were also

different across communities, with a higher value for SA, which were positively

correlated with soil water content (WC) and TOC. The results indicate that a

variety of plant community and soil property derived from the difference of

hydrology might result in a spatial heterogeneity of iron in estuarine wetlands.
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Introduction

Estuarine wetlands are located in the interaction between
water and land ecosystems (Jiang et al., 2006), which are
generated by the deposition of sediment carried by rivers into
the sea. They play a vital role in maintaining biodiversity,
protecting estuarine coastline and regulating climate (Barbier
et al., 2011; Jiang et al., 2020). Estuarine wetlands are also one
of the important carriers for biogeochemical processes of iron
(Fe), sulfur (S), carbon (C), nitrogen (N), phosphorus (P) and
so on (Telfeyan et al., 2017; Luo et al., 2019; Lu et al., 2020a).
As the fourth abundant element in the earth crust, iron is one
of the major redox materials in soil, which is widely distributed
in the forms of iron oxide (Weaver and Tarney, 1984). Iron
(hydr-)oxides, the main existing forms in soil, are a part of soil
colloid, which play an important role in the formation of soil
aggregates. The quantities of iron oxides reflect the process and
environment of soil-developing (Molina et al., 2001), regulating
the nutrient cycles in soil. The redox reaction of iron can affect
the decomposition of soil organic matter and the adsorption or
transformation of heavy metals in wetland soils (Fimmen et al.,
2008; Zhang et al., 2009). Thus, the oxidation/reduction of iron
is vital to matter and energy cycles of wetland ecosystems. It’s
necessary to better understand the importance of iron behaviors
for the biogeochemical processes of relevant elements.

Iron oxides in soil consist of the four forms: exchangeable
iron, complexed iron (Fep), amorphous iron (Feo), free iron
(Fed). Exchangeable iron oxide is abundant in acid soil, while the
content in alkaline and neutral soil is less than 1mg kg−1, which
is difficult to determine (Zhou and Shen, 2013). Fed has a high
activity of migration and transformation, and the percentage of
Fed in FeT is called the free degree of iron (Fed/FeT × 100%),
which can reflect the weathering degree of soil (He and Chen,
1983). Feo represents amorphous or weakly crystalline iron
oxides, which is one of the most easily utilized forms by plant.
As an electron acceptor for iron-reducing microorganisms, it
can promote the oxidative decomposition of organic matter
(Hori et al., 2010; Yu et al., 2021). The percentage of Feo in Fed
(activation degree: Feo/Fed × 100%) can determine the genesis
characteristics of soil, reflecting the influence of environment on
soil developing. Fep belongs to amorphous iron oxides, and its
formation process is important for iron ion migration in soil,
which is important for the soil fertility (He and Chen, 1983;
Tipping et al., 2002). The percentage of Fep in Fed (complexation
degree: Fep/Fed × 100%) is important for immobility of soil
organic matter. Compared with Fep and Fed, Feo has a large
specific surface area, high adsorption and low crystallinity,
which is easily utilized by iron-reducing microorganisms and
can be reduced quickly (Hyacinthe et al., 2006).

Iron and its oxides in wetland soils can be influenced
by biotic and abiotic factors, e.g., hydrological condition, soil
property, microbes and vegetation type (Kappler et al., 2004;
Zou et al., 2011; Karimian et al., 2018). The redox status in

wetland soil depends on hydrological condition, which regulates
the oxidation/reduction reaction of iron (Zhang and Furman,
2021). Under reduction conditions, iron exists as dissolved Fe2+

and has a strong mobility, while the protection of organic
matter can promote the stability of iron complexes; under
oxidation conditions, iron can exist as Fe3+ and is easily
formed to insoluble iron (hydr-)oxides, which would decrease
iron migration and transformation in sediments (Melton et al.,
2014; Jiang et al., 2019). The pH can affect the redox status,
microbial activity and soil adsorption capacity, regulating
the transformation and availability of iron in wetland soils
(Johnston et al., 2014; Ye et al., 2022). Soil organic matter
dynamics is closely related to the biogeochemical cycles of iron,
and the reduction rate of Fe(III) will be greatly improved in tidal
flat sediments rich in organic matter (Santos-Echeandia et al.,
2010; Lalonde et al., 2012). Soil salinity level determines the ionic
strength to some extends, which may affect the transformation
of iron oxides in salt marshes by regulating the turnover of soil
organic carbon and exchange capacity of cations (Williams et al.,
1994; Laing et al., 2007; Qu et al., 2018). Due to a high activity of
roots, rhizosphere as an important micro-zone in soil is different
from the surrounding soil in physical, chemical and biological
characteristics, consequently resulting in an acceleration of iron
cycles (Adejumo et al., 2018; Zhai et al., 2018).

The Yellow River Estuary wetland is the most complete,
broadest and youngest wetland ecosystem in the warm
temperate zone of China. There is a naturally hydrological
gradient from the riverside to the coast, where various plant
communities and soil properties develop on the different micro-
topographies. Thus, it is expected to be heterogeneous for
soil iron and its forms in the Yellow River Estuary wetland
(Zhang et al., 2017). However, it remains unclear how the
spatial distribution of iron and its forms in estuarine wetlands
responses to hydrological conditions. In the present study, we
selected five communities along a hydrological gradient in the
Yellow River Estuary wetland to clarify the spatial distribution
of iron and explore its impact factors. Our hypotheses are
1) there would be a significantly spatial heterogeneity of iron
and its oxides along a hydrological gradient, and 2) the iron
distribution could be related to soil property under different
hydrological conditions.

Materials and methods

Study area

The Yellow River Estuary wetland (37◦40′–38◦10′N,
118◦41′–119◦16′E) is located in the western bank of Bohai Sea.
It is an important migration transfer station and winter habitat
for birds. The wetland is a flat and wide marine sedimentary
plain. The soil is mainly meadow soil and salt marsh soil.
The area belongs a warm temperate continental monsoon
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and has the climatic characteristics of the same rain-heat
season and dry-cold season. The annual average temperature
is 12.1◦C, and the annual average precipitation is 552.6 mm,
most of which is concentrated in summer. The annual average
evapotranspiration is 1928.2 mm, which is more threefold
than the annual precipitation (Cui et al., 2009). The dominant
vegetation types are P. australis, T. chinensis, S. salsa, and
S. alterniflora, in which P. australis, S. salsa and S. alterniflora
are widely distributed.

Study sites and soil sampling

Along a naturally hydrological gradient from the northern
side of the Yellow River to the coast, five typical plant
communities were selected as sampling sites in turn (Figure 1),
including P. australis in freshwater marsh (FPA), P. australis
in salt marsh (SPA), T. chinensis in salt marsh (TC), S. salsa
in salt marsh (SS) and S. alterniflora in salt marsh (SA), with
three repeated samples in each site. The five sites have obviously
different hydrological conditions (Figure 2). FPA site is located
on the riverside of the supratidal zone and is almost unaffected
by tides, with sources of river water or/and rainfall and seasonal
flooding; SPA site is located on the upper edge of the intertidal
zone near the supratidal zone, with a similar hydrological
characteristic as FPA, but influenced by extreme tide events; TC
site is located on the upper intertidal zone and the surface is
occasionally flooded; SS and SA sites are on the middle intertidal
zone and the lower intertidal zone, respectively, and the surface
is periodic flooded.

In September 2020, soil samples at the depths of 0–
10, 10–20, 20–30, and 30–40 cm were collected from the
sites using a drill of stainless steel. The subsamples were
immediately sealed in an icebox filled N2 to determine iron
oxides. The other subsamples were dried in air to determine
soil physicochemical properties, including water content (WC),
pH, electrical conductivity (EC), total organic carbon (TOC),
dissolved organic carbon (DOC), total nitrogen (TN) and total
sulfur (TS). Soil properties were shown in Table 1.

Sample measurement

The contents of FeT in soil samples were determined
using a mothed of phenanthroline - spectrophotometry.
Briefly, 0.25 g of dried soil samples were placed in 30 mL
polytetrafluoroethylene crucibles and 2–3 drops of water were
added to wet samples, followed by addition of 4 mL hydrofluoric
acid, 5 mL nitric acid and 0.5 mL perchloric acid. The
samples were heated at 300◦C until perchlorate acid fumes
were thoroughly exhausted. The residues in the crucibles were
dissolved with 1 mL hydrochloric acid (1:1), moved into 50 mL
colorimetric tubes, colored for 2 h by phenanthroline reagents,

and determined the concentrations of FeT at 510 nm using the
spectrophotometry (TU-1810DS, China).

The Fep, Feo and Fed in the soils were continuously extracted
with alkaline sodium pyrophosphate, acid ammonium oxalate
and sodium dithionite - sodium citrate - sodium bicarbonate
(DCB), respectively (Weiss et al., 2004). Briefly, 1.0 g of wet
soil samples and 20 mL 0.1 M sodium pyrophosphate were
placed in 50 mL centrifuge tubes under the N2 condition. After
suspension solutions were shocked for 2 h and centrifugated
for 10 min, the supernatants were transferred into 50 mL
colorimetric tubes, added 5 drops of sulfuric acid (1:1) and 2
drops of 5% potassium permanganate, and kept for a night. The
residues were added 40 mL acid ammonium oxalate (0.14 M
oxalate acid and 0.2 M ammonium oxalate), shaken in dark for
4 h and centrifugated for 10 min, followed by extracting 5 mL
of supernatants. The residues were added 20 mL 1 M sodium
citrate and 2.5 mL 1 M sodium bicarbonate, heated for 15 min in
water bath at 80◦C, and oscillated with addition of 0.5 g sodium
hydrosulfite. Then, the suspension solutions were shocked for
2 h and centrifugated for 10 min again, and the supernatants of
5 mL were taken into 50 mL colorimetrical tubes. The extracted
solutions of Fep, Feo, and Fed were colored for 24, 12 and 2 h
by phenanthroline reagents, respectively, and determined iron
concentrations at 510 nm using spectrophotometry.

Iron is calculated as below:

FeT =
x× V × a

m
(1)

Fey =
xy × V × a× 1.43

m
(2)

Where FeT and Fey are content of iron and oxides in the soil
(mg·kg−1), x and xy are concentrations of iron and oxides in the
solution (mg·L−1), V is volume of the solution (L), a is dilution
multiple of the solution, m is weight of dried soil sample (kg)
and 1.43 is the coefficient of conversion.

The content of TOC was determined by high-temperature
external thermal potassium dichromate oxidation method. The
content of DOC was determined by TOC analyzer (Elementar,
Germany). The content of TN was determined by continuous
flow analyzer (Futura, France). The content of TS was
determined by magnesium nitrate oxidation - barium sulfate
turbidimetric method. Soil pH (water:soil = 5:1) was determined
by pH meter. Soil EC (water:soil = 5:1) was determined by
conductivity meter. Soil particle (clay: < 4 µm; silt: 4–63 µm;
sand: 64–2,000 µm) was determined by laser particle size
analyzer (Mastersizer 3000, England) after pretreatment with
hydrogen peroxide and hydrochloric acid.

Statistical analysis

General linear model (GLM) was used to test the effect of
community and soil depth on the contents of iron (p < 0.05).
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FIGURE 1

The sample sites (a) and plant communities (b) in the study area. FPA, P. australis in freshwater marsh; SPA, P. australis in salt marsh; TC, T.
chinensis in salt marsh; SS, S. salsa in salt marsh; SA, S. alterniflora in salt marsh.

FIGURE 2

Schematic diagram of the hydrological conditions for different plant communities.
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TABLE 1 Soil properties in the different communities.

Community type Soil
depth

EC
mS·cm−1

WC
%

pH TOC
g·kg−1

DOC
mg·kg−1

TN
g·kg−1

TS
mg·kg−1

Clay
%

FPA 0−10 cm 0.15± 0.021 40.38± 0.15 6.41± 0.12 3.54± 0.21 77.00± 24.00 0.32± 0.001 79.18± 2.91 5.92± 0.34

10−20 cm 0.14± 0.042 40.00± 1.21 6.60± 0.06 3.56± 0.13 116.15± 1.80 0.32± 0.006 91.54± 2.91 4.14± 0.17

20−30 cm 0.17± 0.007 28.17± 3.15 6.73± 0.17 3.96± 0.11 118.76± 27.70 0.32± 0.007 93.60± 2.91 5.03± 0.00

30−40 cm 0.22± 0.014 45.45± 3.01 6.73± 0.14 3.28± 0.07 181.41± 9.20 0.38± 0.143 212.05± 18.94 8.72± 0.56

SPA 0−10 cm 1.18± 0.050 25.93± 0.52 7.24± 0.23 10.41± 0.39 203.59± 7.30 0.44± 0.014 679.67± 77.20 13.66± 044

10−20 cm 1.30± 0.085 26.83± 0.63 7.60± 0.10 19.58± 0.29 366.73± 9.20 0.97± 0.004 527.23± 27.68 16.88± 1.08

20−30 cm 1.77± 0.021 48.48± 5.12 7.80± 0.01 7.53± 0.28 170.97± 9.20 0.30± 0.010 434.53± 13.11 13.29± 2.14

30−40 cm 2.00± 0.001 37.84± 0.78 7.88± 0.00 9.45± 0.39 198.37± 7.40 0.45± 0.133 429.38± 87.40 25.33± 2.35

TC 0−10 cm 9.67± 0.849 20.34± 1.11 7.80± 0.16 5.71± 0.04 160.53± 5.50 0.28± 0.001 853.74± 58.27 7.63± 0.27

10−20 cm 6.50± 0.092 27.91± 0.03 7.85± 0.15 5.02± 0.11 154.00± 11.10 0.29± 0.001 476.76± 34.96 6.12± 0.01

20−30 cm 3.48± 0.001 23.26± 0.18 7.77± 0.21 3.77± 0.11 113.54± 1.80 0.30± 0.001 405.69± 30.59 7.70± 0.57

30−40 cm 3.87± 0.001 31.37± 0.99 7.93± 0.26 5.17± 0.14 151.39± 7.40 0.29± 0.001 541.65± 85.94 12.63± 0.34

SS 0−10 cm 3.79± 0.247 36.96± 4.21 8.08± 0.01 4.78± 0.23 118.76± 5.50 0.34± 0.069 773.40± 40.79 14.71± 1.39

10−20 cm 2.22± 0.001 34.21± 0.89 8.42± 0.13 4.67± 0.34 130.51± 9.50 0.29± 0.002 485.00± 2.91 15.41± 0.99

20−30 cm 2.71± 0.021 30.43± 1.54 8.35± 0.13 4.15± 0.04 118.76± 16.60 0.29± 0.005 556.07± 85.94 17.29± 2.12

30−40 cm 3.78± 0.001 36.84± 1.99 8.28± 0.14 4.53± 0.25 134.42± 42.50 0.28± 0.002 720.87± 129.64 17.12± 0.75

SA 0−10 cm 2.99± 0.007 48.08± 0.68 8.40± 0.11 15.19± 0.14 191.85± 20.30 0.54± 0.272 794.00± 2.91 20.01± 0.01

10−20 cm 2.35± 0.113 39.47± 3.65 8.44± 0.00 14.01± 0.09 168.36± 1.80 0.36± 0.162 700.27± 18.94 17.56± 0.33

20−30 cm 3.47± 0.184 48.84± 3.10 8.28± 0.16 8.18± 0.10 151.39± 3.70 0.32± 0.004 671.43± 16.02 23.28± 3.01

30−40 cm 2.97± 0.587 51.28± 4.01 8.25± 0.06 9.83± 0.28 261.02± 7.40 0.31± 0.002 623.02± 34.96 19.64± 0.95

Differences across communities
(0–40 cm)

FPA a FPA ab FPA a FPA a FPA a FPA ab FPA a FPA a

SPA ab SPA bc SPA b SPA b SPA b SPA a SPA b SPA b

TC c TC c TC b TC a TC a TC b TC b TC a

SS b SS bc SS c SS a SS a SS b SS b SS b

SA b SA ad SA c SA b SA ab SA ab SA b SA b

p <0.001 0.008 <0.001 0.002 0.027 0.130 <0.001 <0.001

EC, electrical conductivity; WC, water content; TOC, total organic carbon; DOC, dissolved organic carbon; TN, total nitrogen; TS, total sulfur, respectively. The different lower case letters represent a significant difference (p < 0.05).
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FIGURE 3

Distribution characteristics of FeT (A), Fep (B), Feo (C) and Fed (D) in soils of different communities. FeT, total iron; Fep, complexed iron; Feo,
amorphous iron; Fed, free iron. Lower letters represent significant differences across depths of the same site (p < 0.05).

TABLE 2 Effects of community, soil depth as well as the interaction effects on iron based on general linear model (GLM) at α = 0.05.

Item df FeT Fe2+ Fep Feo Fed Fep/Fed Feo/Fed Fed/FeT

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.93

Community type(CT) 4 F 1018.9 6882.1 1404.9 617.6 951.2 793.8 317.2 151.4

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Soil depth(SD) 3 F 48.1 915.2 247.6 255.6 31.7 264.5 247.1 25.7

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

CT× SD 12 F 32.4 331.1 75.7 121.8 16.4 52.8 92.0 7.1

p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Fep , complexed iron; Feo , amorphous iron; Fed , free iron; FeT , total iron, respectively.

The one-way ANOVA with LSD (p < 0.05) was used to test
the differences in the content of iron and soil depth among the
different community types. Origin 2019b was used to determine
correlations between the contents of iron and soil properties
(p < 0.05).

Results

Distribution characteristics of FeT in
the different communities

The mean contents of FeT in soils at 0–40 cm depth
across the different communities of FPA, SPA, TC, SS and SA
were 23212.0, 35926.4, 23113.4, 27682.3 and 30462.7 mg·kg−1,
respectively, with a higher value in SPA and a lower in TC

(Figure 3A). There was an increasing trend with soil depth in
FPA, a decreasing trend in SS and SA, and a higher value at
the 10–20 cm depth in SPA and TC. Overall, the FeT contents
were significantly different across the different communities
(p<0.001) and soil depths (p<0.001) (Table 2).

Distribution characteristics of iron
oxides in the different communities

The mean contents of Fep, Feo and Fed ranged from 37.2 to
563.9, from 277.1 to 1814.9 and from 4768.2 to 12986.2 mg·kg−1

in soils at 0–40 cm depth across the different communities,
respectively (Figures 3B–D). The values were higher in SA or
SPA and lower in TC. At the soil depth, the higher values of
Fep and Feo were determined in the upper soil layers (0–10 cm
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and 10–20 cm), and the higher value of Fed was determined in
the lower soil layers (30–40 cm). Overall, there were significant
differences across communities (p < 0.001) and soil depths
(p<0.001) (Table 2).

The complexation degree of iron oxide (Fep/Fed) in soils at
0–40 cm depth across the five communities were 1.3, 0.9, 1.2,
1.5, and 4.0%, respectively, with a higher value in SA and a
lower in SS (Figure 4A). The corresponding values for activity
degree of iron oxide (Feo/Fed) were 6.2, 7.0, 6.1, 4.5, and 11.8%,
respectively, with a higher value in SA and a lower in SPA
(Figure 4B). On the whole, the complexation degree and activity
degree of the upper soil layers was higher than that of the lower
soil layers. The free degree of iron oxide (Fed/FeT) were 32.9,
32.1, 23.9, 25.9, and 31.8%, respectively, with a higher value
in FPA and a lower in TC (Figure 4C), and the values were
higher in the lower soil layers than those in the upper soil layers.
Overall, there were significant differences across communities
(p < 0.001) and soil depths (p < 0.001) (Table 2).

Correlations between the contents of
iron and soil properties

The mean contents of pH, EC, TOC, DOC, TN, and TS of
soil at 0–40 cm depth were 7.74, 2.67 mS·cm−1, 7.48 g·kg−1,
167.38 mg·kg−1, 0.37 g·kg−1, and 273.66 mg·kg−1 in FPA,
SPA, TC, SS, and SA, respectively (Table 1). The values of
pH, EC, TOC, DOC and TS were significantly different across
communities (p < 0.05). The clay in soils accounted for 4.14–
25.33%, which were significantly different across communities
(p < 0.05).

FeT was positively correlated with TOC, DOC, TN, TS,
and clay (Figure 5); Fep was positively correlated with TOC,
WC and clay; Feo was positively correlated with TOC, TN, and
DOC; Fed was positively correlated with TOC, DOC, TN and
clay, and negatively correlated with EC. Overall, the contents
of iron and its oxides were closely related to organic carbon,
nitrogen and soil texture. Fep/Fed was positively correlated with
WC and TOC; Feo/Fed was positively correlated with TOC;
Fed/FeT was positively correlated with WC, and negatively
correlated with EC.

Discussion

Iron and its oxides in wetland soil would be different in
regions due to variously environmental and climate conditions
(Jiang et al., 2011). The contents of FeT in some wetland
soils have reported in the previous studies, e.g., 22018.5–
27551.9 mg·kg−1 in mangrove sediment of Manukau Harbour,
New Zealand (Bastakoti et al., 2019); 27780–29700 mg·kg−1

in Jiaozhou Bay coastal wetland, China (Yan et al., 2020);
approximately 13067.0 mg·kg−1 in Sanjiang Plain wetland,

FIGURE 4

Distribution characteristics of iron oxide complexation degree
(A), activity degree (B) and free degree (C) in soils of different
communities.

China (Huo et al., 2011). In the present study, the means
of FeT were 20732.3–39879.3 mg·kg−1 in the Yellow River
Estuary wetland soil, with a higher value compared with those
in other wetlands. The possible explanation is that the alluvial
deposition of sediment carried by the Yellow River leads to the
accumulation of abundant iron-bearing minerals in the delta. In
the last 70 years, the annual amount of sediment transported
from the Yellow River to the Bohai Sea is approximately
6.62 × 108 t (Wang et al., 2021a), and the mean concentration
of iron in suspended sediments is 41.3 mg·kg−1, approximately
accounting for 2.7× 104 t iron transported to sea annually (Yao
et al., 2015). Additionally, the Yellow River Delta is a new-born
wetland and soil has a lower degree of soil weathering (Fed/FeT :
20.2–34.3%), which can be beneficial to the enrichment of
mineral elements (Liu et al., 2019).
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FIGURE 5

Correlations between iron and factors in soils of different communities. EC, WC, TOC, DOC, TN, and TS represent electrical conductivity, water
content, total organic carbon, dissolved organic carbon, total nitrogen, total sulfur, respectively. * and ** represent a significant difference at the
level of 0.05 and 0.01, respectively.

The distribution of iron and its oxides in wetland soil are
controlled by biotic and abiotic factors, such as hydrologic
condition, soil properties, vegetation, microbial community and
so on (Hoang et al., 2018; Richir et al., 2020; Sui et al., 2021).
In the present study, there were significant differences in iron
and its oxides across communities. The contents of FeT , Feo,
and Fed were higher in SA and SPA, and Fep was higher in SA
(Figure 3), indicating that iron distribution can be controlled
by vegetation with different hydrologic conditions. Previous
studies demonstrated that hydrologic condition can regulate
processes of deposition and transformation in wetlands through
changing hydrodynamic and aerobic/anoxic conditions, which
would control the stability of organic matter and the immobility
of iron ions and oxides in soil (Calabrese and Porporato, 2019;
Calabrese et al., 2020). SA is on the lower intertidal zoon and
S. alterniflora is an invasive plant in the coastal wetland of

the Yellow River Estuary, with a total area of 4406.95 hm2 (Li
Y. R. et al., 2021). It develops quickly and has well developed
roots (Wan et al., 2014), which can reduce wave erosion and
increase sediment accumulation (Wang et al., 2022), resulting
in a high input and deposition of iron in the soil. FPA is on
the riverside where the sediment carried by floods of the Yellow
River deposits, leading to a large amount of iron accumulation.
SPA is on the edge of the intertidal zone near the supratidal
zone, and the hydrologic condition is only controlled by extreme
tide events and river floods, resulting in less frequent and depth
of flooding compared with other sites. Iron in soil of SPA
might be inclined to form iron (hydr-)oxides (e.g., α-FeOOH, α-
Fe2O3, γ-FeOOH and γ-Fe2O3) and aggravate the enrichment
of iron under the weakly anoxic or aerobic environment
(Rezapour et al., 2015). Furthermore, plant may be ascribed
to the distribution of iron because plant absorption and litter
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decomposition can affect iron migration and return into soil (Lu
et al., 2020b). The plants of S. alterniflora and P. australis have a
higher biomass (52.59–247.73 g·m−2 and 5.92–224.46 g·m−2)
(Xie et al., 2021), meaning more iron absorbed by plant and
returned into soil as litter decomposition (Costa et al., 2020). In
addition, the iron oxides in the rhizosphere can also be regulated
by oxygen transported through the plant stress-resistant tissues
(Li C. et al., 2021). The well ventilation tissue and root system
of S. alterniflora and P. australis can function as a great ability of
radial oxygen loss, which makes iron oxidized to form iron spots
in the rhizosphere (Zhang et al., 2019). The spots are mainly
composed of amorphous iron and crystalline iron oxides, which
can reduce the mobility of iron and promote the enrichment of
iron in wetland soil (Wang and Peverly, 1999).

Estuarine wetlands have a stronger carbon sequestration
capacity, which is critical for iron immobility and deposition
through iron oxides bound on organic carbon (Yu et al.,
2019). Dynamics of soil organic carbon is closely related to
biogeochemical cycles of iron in wetlands (Lalonde et al.,
2012; Wang et al., 2021b). In the present study, total iron
and its oxides in soil were positively correlated with TOC and
DOC (Figure 5), which is consistent to the results reported
by some studies in the estuarine wetlands and paddy field
(Wang et al., 2012; Sun et al., 2013; Huang et al., 2020).
Previous studies have shown that iron oxides can promote
the retention of organic carbon in soil through adsorption,
chelation or co-precipitation (Duan et al., 2020; Bai et al.,
2021). Weak crystalline and amorphous iron oxides have strong
adsorption capacity for organic matter, consequently composing
stable organic metal complexes (Rezapour et al., 2010). In the
study, the contents of Feo in SPA and SA were significantly
higher than those in the other vegetation types (Figure 3C),
which corresponded to higher values of TOC and DOC in
the sites. Additionally, microbial-mediated iron reduction can
significantly affect organic carbon mineralization and thus
carbon cycling (Hussain et al., 2019). In the process, organic
carbon can provide energy for iron-reducing bacteria, leading
to drive the reduction of Fe(III) and promote the migration of
iron ions (Lovley, 1997; Xiao et al., 2019).

The biogeochemical processes of iron in coastal wetland soil
can be coupled with nitrogen cycles through surface adsorption
of iron oxides and Fe(III) reduction (Zhao et al., 2019). In the
present study, Feo, Fed and FeT were positively correlated with
TN (Figure 5). In the Yellow River Estuary wetland, inorganic
nitrogen accounted for less than 20% of the total nitrogen (Mu
et al., 2012). Iron oxides can promote the stability of organic
nitrogen and inhibit the nitrogen mineralization by adsorbing
organic matter on the surface (Heng et al., 2010; Liu et al., 2020).
However, the microbial reduction of Fe(III) plays an important
regulation in the transformation nitrogen. Guan et al. (2018)
found that adding Fe(III) oxide has increased N2 production
of sediments in the mangrove wetland, suggesting that Fe(III)
reduction could promote anaerobic ammonia oxidation and

increase nitrogen loss. The result about the positive correlation
between iron oxides and TN in our study indicates that surface
adsorption of iron oxides but Fe(III) reduction may contribute
nitrogen fixation. Moreover, the biogeochemical processes of
iron are also closely related with sulfur cycles in coastal wetlands
(Burton et al., 2011). In the present study, we found that
FeT was significantly positively correlated with TS (Figure 5).
In the coastal wetlands, H2S can act as a reducing agent for
Fe(III) oxides in sulfide-rich environments (Johnston et al.,
2014; Sheng et al., 2015; Karimian et al., 2018), and sulfide
(S2−) reacts with Fe2+ to form FeS or FeS2 in the process of
sulfate reduction, which could promote iron immobility in the
sediment (Schoepfer et al., 2014; Hu et al., 2022). S. alterniflora
is on the lower tide zone with a higher sulfur content in
soil (Table 1), possibly ascribed to a higher content of iron
oxides due to more iron combining with sulfur to form pyrite.
However, FPA is in the freshwater environment with a lower
content of sulfur in soil, which may cause less iron combined
by sulfur, possibly resulting in more iron loss in the form of
dissolved Fe2+ and more iron oxides remained in soil.

Soil texture is one of the important factors affecting iron
forms, and especially clay can promote the enrichment of iron
(Finck, 2020). We found that the contents of soil clay in the
Yellow River Estuary wetland ranged from 4.14 to 25.33%
(Table 1), which were positively correlated with FeT , Fed and
Fep (Figure 5). Clay minerals can be wrapped by Fe/Al oxides
to form stable aggregate structure to improve water retention
capacity and physical quality of soil (AL-Shamare and Essa,
2021; Bai et al., 2021; Mendes et al., 2022). Moreover, clay
minerals can also be combined with soil organic matter to form
organic-inorganic complex, leading to a stronger immobility of
iron (Zhang et al., 2001; Angst et al., 2021). The salinity reflects
the ionic strength in soil and has an important impact on soil
properties and the distribution of iron and its oxides (Celik
et al., 2021; Ury et al., 2022). Previous studies showed that iron
from boreal rivers display a higher resistance toward salinity-
induced aggregation, e.g., iron (hydr-)oxides are selectively
removed by aggregation processes, and organic iron complexes
are less affected by increasing salinity (Herzog et al., 2019).
In the present study, iron contents were negatively correlated
with EC to some extents (Figure 5). Besides FPA, the other
four communities were influenced by tides in different intensity
(Figure 2), and the hydrologic conditions varied with the
depth and frequency of tidal flood. Therefore, soil EC in the
communities showed a great variety, which may contribute
the differentiation of iron oxides in soils. For example, the
soil surface in TC was always exposed and submerged only
at high tides, which leads to the salt accumulation in soil
due to an intense evaporation/transpiration. Consequently, the
iron oxides are relatively low under the action of salinity
aggregation. However, there was no obviously negative effect
of salinity on iron content in FPA, which indicated that the
distribution of iron and its oxides in the coastal wetland
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soils could be controlled by the interaction of factors. In
addition, salinity of coastal wetland soil has an important
effect on microbial community and activity by regulating soil
extracellular osmotic potential, which can directly or indirectly
regulate the transformation and bioavailability of iron (Richard
and Frances, 2001; Laing et al., 2007).

The values of Fed/FeT , Feo/Fed and Fep/Fed are important
indexes which can indicate the degree of soil weathering, which
is controlled by environmental conditions (He and Chen, 1983).
We found that all the three degrees were different across the
communities, with a higher value in the S. alterniflora and
P. australis communities (Figure 4 and Table 2), indicating a
well weathering for the soils. In the present study, the values
of Fed/FeT in different communities were negatively correlated
with EC and positively correlated with WC, which possibly
ascribed to the negatively effects of EC and the positively effects
of WC on iron oxides, respectively (Figure 5). The values
of Fep/Fed and Feo/Fed were positively correlated with TOC
(Figure 5). Organic matter is rich in fulvic acid which can
inhibit iron oxides deposition, and thus increases the activation
degree of iron oxides (Fan et al., 2016). Free iron oxides
are effective adsorbents for multivalence superoxide anions; of
them, amorphous iron has a higher affinity for multivalence
superoxide anions due to a large specific surface area and a
high reactivity of surface functional groups, which has a stronger
ability to combined soil organic matter (Zhao et al., 2018).
Moreover, free iron oxides are also an important mineral cement
in soil, and their decrease may lead to the deterioration of
soil structure and aggravate the degradation of soil (Duiker
et al., 2003; Zhang et al., 2016). Therefore, free iron oxides can
regulate carbon sequestration because they can be combined
with organic matter through adsorption/coprecipitation to form
a stable Fe-OC complex (Zhang et al., 2012; Zhao et al.,
2017). Given that hydrological conditions in the estuarine
wetlands would alter with climate change, the iron and its
forms could shift accordingly. The result suggests that the
carbon sequestration in estuarine wetlands could change with
hydrological alteration under climate change.

Conclusion

In the study, we found that iron and its forms in
estuarine wetland soils varied with communities along a
hydrological gradient. The contents of iron and its oxides
were higher in the S. alterniflora and P. australis (in the
salt marsh) communities, which was positively correlated
with soil organic carbon, nitrogen and clay, and negatively
correlated with salinity. The weathering indicators were
also different across plant communities with a higher free
degree in S. alterniflora and P. australis communities,
which was correlated with soil water content, organic
matter and salinity. The results indicate that iron and its

forms in estuarine wetland soils depends on hydrological
conditions, suggesting that high strength of hydrological
effects (e.g., frequency and depth of tides or floods) may
benefit the iron immobility. The results would be helpful to
understand the mechanisms of iron biogeochemistry and
explore the coupled cycles of iron with other elements in
estuarine wetlands.
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