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Species distribution modeling is widely used for evaluating invasion risk,

and for prioritizing areas for the control and management of invasive

species. However, selecting a modeling tool that accurately predicts

species invasion risk requires a systematic approach. In this study,

five species distribution models (SDMs), namely, artificial neural network

(ANN), generalized linear model (GLM), multivariate adaptive regression

splines (MARS), maximum entropy (MaxEnt), and random forest (RF), were

performed and evaluated their model performance using the mean value

of area under the curve (AUC), true skill statistics (TSS), and Kappa

scores of 12 ecosystem disturbing alien plant species (EDAPS). The mean

evaluation metric scores were highest in RF (AUC = 0.924 ± 0.058,

TSS = 0.789 ± 0.109, Kappa = 0.671 ± 0.096, n = 12) and lowest

in ANN. The ANOVA of AUC, TSS, and Kappa metrics revealed the RF

model was significantly different from other SDMs and was therefore

selected as the relatively best model. The potential distribution area

and invasion risk for each EDAPS were quantified. Under the current

climate conditions of South Korea, the average potential distribution area

of EDAPS was estimated to be 13,062 km2. However, in future climate

change scenarios, the average percentage change of EDAPS distribution

relative to the current climate was predicted to be increased over

219.93%. Furthermore, under the current climate, 0.16% of the area of

the country was estimated to be under a very high risk of invasion,

but this would increase to 60.43% by 2070. Invasion risk under the

current climate conditions was highest in the northwestern, southern,

and southeastern regions, and in densely populated cities, such as Seoul,

Busan, and Daegu. By 2070, invasion risk was predicted to expand

across the whole country except in the northeastern region. These results
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suggested that climate change induced the risk of EDAPS invasiveness,

and SDMs could be valuable tools for alien and invasive plant species

risk assessment.

KEYWORDS

climate change, ecosystem disturbing alien plant species, species distribution
models, South Korea, invasion risk assessment

Introduction

Introduction of alien and invasive species poses a
serious threat to native biodiversity, ecosystem integrity,
and agricultural productivity, which in turn results in large
economic losses worldwide (Early et al., 2016; Díaz et al., 2019).
Invasive species cause trophic imbalance and decrease species
resilience (Weiskopf et al., 2020). Moreover, global climate
change aggravates the risk of alien and invasive plant species
and expands their range (Weiskopf et al., 2020). Earlier studies
report that many alien and invasive species have traits that
increase invasion success and enable them to readily adapt
to climate change. These traits include greater tolerance to
increased temperatures, intensive growth under elevated carbon
dioxide levels, and geographic latitude-dependent phenotypic
plasticity (Molina-Montenegro and Naya, 2012). In addition,
extreme climatic events, such as prolonged heat waves, excessive
drought, and heavy precipitation, facilitate plant invasion
and decrease native species resistance to biotic stresses (Diez
et al., 2012). For almost two decades, several researchers have
anticipated that climate change will enhance the spread of
alien and invasive species. However, actual evidence for climate
change-facilitated alien species invasiveness is limited and
poorly synthesized (Hulme, 2017), which inhibits the proactive
prevention and management of alien and invasive species in the
ecosystems they affect (Bonebrake et al., 2018).

Human-induced factors, such as anthropogenic land cover
change, urbanization, and the construction of transportation
corridors, increase invasion risk of alien plants by promoting
disturbances and seed dispersal, which in turn create new
habitats that enable invasive weeds to thrive, while inhibiting
native species (Vila and Ibáñez, 2011; Wang et al., 2016;
Rew et al., 2018). Therefore, along with climate change,
other environmental variables, such as land cover change,
should be considered in species distribution modeling to more
effectively identify areas that are at high risk of invasion by
unwanted plant species.

The rapidly growing human population accelerates
economic development, international trade, and tourism, which
are factors that increase the introduction of alien and invasive
species (Lin et al., 2011; Seebens et al., 2018). South Korea is
the world’s 12th largest importer of goods, including agriculture

products, leading to the introduction of alien and invasive
species (UN, 2020). Until 2016, 427 alien and invasive plant
taxa were intentionally or unintentionally introduced to
South Korea, resulting in their invasion of agricultural fields,
orchards, and pastures (NIE, 2017; Young et al., 2017). The
Ministry of Environment, South Korea listed 16 alien and
invasive plants as ecosystem disturbing alien plant species
(EDAPS) based on their noxious characteristics and high
invasion potential to the ecosystem (Young et al., 2017; MoE,
2022). Alien and invasive species, including EDAPS, cause
the loss of approximately 22.6 billion Korean Won per year
(MoE, 2014). Because of the harmful effects of invasive plant
species on the country’s economy, it is necessary to profile
alien and invasive species, and identify high invasion risk areas.
Doing so will enable the adoption of cost-effective control
and management strategies to minimize the threats of EDAPS
invasion in South Korea. Moreover, implementing tools that
can forecast potential changes in invasive species distribution
and accurately assess future invasion risks is required.

The problems caused by invasive species prompted us to
study invasive weeds in South Korea under future climate
change scenarios, to guide the development of measures to
control their spread (Adhikari et al., 2021; Hong et al., 2021).
In one study, 16 invasive weeds from the southern region
(<36◦ latitude) were evaluated. These 16 weed species were
estimated to expand their range and habitat to the northern
region of the country in large scale over 145.19% in year 2070
(Hong et al., 2021). In another study, ten alien plant species
that were intentionally introduced for horticulture, pasture
improvement, and soil erosion control were assessed for their
spatial invasion risk. Under future climate change scenarios,
intentionally introduced species are predicted to spread to non-
targeted ecosystems and occupy approximately 86.21% area
of the country, which falls under the moderate- to high-risk
category (Adhikari et al., 2021). Both of our previous studies
identify rapid environmental changes that carry an increasing
risk of alien weed invasion. These reports indicate that the rise
in invasive weeds could seriously threaten natural ecosystem
integrity and cropland productivity in South Korea.

Risk assessment is an essential step before initiating
procedures for the control and eradication of alien and invasive
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species. Numerous risk assessment tools are used to quantify
invasion risk of alien plant species (Morse et al., 2004; Robertson
et al., 2021). Species distribution models (SDMs), for example,
are widely used tools to assess the invasion risk of alien plants,
and aid in designing conservation policies for their control
and eradication (Bradley et al., 2010; Dullinger et al., 2017;
Adhikari et al., 2021). SDMs resolve the ecological niche of
plant species by statistical regression, machine learning, and
spatial interpolation (Elith and Leathwick, 2009; Li and Wang,
2013; Zurell et al., 2020). However, the large number of SDM
algorithms make it difficult to select the best algorithm and
methodology (Elith et al., 2010). Moreover, a single SDM may
not always provide accurate predictions for risk assessment,
and there is no modeling technique that consistently performs
better in predicting invasiveness across species, regions, and
applications (Elith et al., 2006; Koo et al., 2017). Evaluating
many models and selecting the best one based on its predictive
performance allow the acquisition of more reliable predictions
(Mainali et al., 2015; Koo et al., 2017; Zurell et al., 2020; Ahmed
et al., 2021). Therefore, we adopted this concept in the risk
assessment of EDAPS in South Korea.

The main objective of this study was to conduct a risk
assessment of EDAPS present in South Korea. The specific
objectives were as follows: (1) Selection of the best algorithm
between two statistical regression-based models, namely, the
generalized linear model (GLM) and multivariate adaptive
regression splines (MARS), and among three machine learning
models, namely, artificial neural network (ANN), maximum
entropy (MaxEnt), and random forest (RF). Algorithms were
assessed using established the model calibration techniques, area
under the curve (AUC) value of receiver operating curve (ROC)
(Pearson, 2010), true skill statistics (TSS) (Allouche et al., 2006),
and Kappa scores (McHugh, 2012). (2) Estimate the potential
distribution area of 12 EDAPS and assess invasion risk using
the best SDM algorithm under the current and future climate
change scenarios, representative concentration pathways (RCP)
4.5 and RCP 8.5, and land cover changes in South Korea.

Materials and methods

Study area

South Korea is located at the southern part of the Korean
Peninsula. It has a total land area of 98,477 km2, and is
surrounded by the East Sea, the Yellow Sea, and the East China
Sea (NIBR, 2014). The country has more than 3,000 islands
with a coastline that is approximately 2,413 km long (NIBR,
2014). The country has diverse patterns of climate, ranging
from warm oceanic climates to cold continental climates
characterized by four seasons. Winters are long and dry with
average temperatures of −6 to 3◦C, while summers are short
and humid with average temperatures of 23–26◦C (KMA, 2021).

FIGURE 1

Photographs of EDAPS used in this study. (A) Sicyos angulatus,
(B) Lactuca serriola, (C) Ambrosia trifida, (D) Solanum
carolinense, (E) Ambrosia artemisiifolia, (F) Paspalum distichum,
(G) Symphyotrichum pilosum, (H) Hypochaeris radicata,
(I) Ageratina altissima, (J) Rumex acetosella, (K) Solidago
altissima, and (L) Paspalum dilatatum.

Heavy precipitation occurs in the summer season because of the
East Asian monsoon, leading to an average annual precipitation
of 1,000–1,800 mm (KMA, 2021). South Korea has 41,483
species, which include, but are not limited to, 5,308 vascular
plants, 1,899 vertebrates, and 22,612 invertebrates (NIBR, 2014).

Species occurrence records of
ecosystem disturbing alien plant
species

Twelve EDAPS in South Korea (Table 1; Figure 1) were
selected based on the availability of minimum species presence
points for species distribution modeling, and invasion potential
in natural ecosystems and agricultural lands (NIE, 2017;
Young et al., 2017). The process of survey design, recording of
species occurrence, and spatial filtering of species occurrence
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TABLE 1 List of ecosystem disturbing alien plant species (EDAPS) used in the study.

Scientific name Common name Native range Mode of
introduction

Introduction period Degree of
naturalization

Ambrosia artemisiifolia Common ragweed North America Unintentional Before 1963 V

Ambrosia trifida Giant ragweed North America Unintentional – V

Symphyotrichum pilosum Frost aster North America Intentional
(Ornamental)

Before 1986 IV

Ageratina altissima White snakeroot North America Unintentional Before 1980 I

Hypochaeris radicata Cat’s ear North America Unintentional Before 1992 II

Lactuca serriola Prickly lettuce North Africa Unintentional Before 1980 I

Paspalum dilatatum Dallas grass South America Unintentional Before 1993 I

Paspalum distichum Knotgrass Tropical/subtropical zone Unintentional Before 1995 I

Rumex acetosella Red sorrel Eurasia Unintentional Before 1949 V

Sicyos angulatus Star cucumber North America Unintentional Before 1949 II

Solanum carolinense Carolina horsenettle North America Unintentional Before 1980 II

Solidago altissima Late goldenrod North America Intentional (nectar
source)

Before 1974 I

In the last column, the Roman numbers I–V denote the degree of EDAPS naturalization. I, rarely; II, low density and distributed in a small area; III, low density, but distributed widely;
IV, high density, but locally distributed; V, widespread and high density.

TABLE 2 List of variables used in the modeling of ecosystem disturbing alien plant species.

Code Description Unit Source

Bio01 Annual mean temperature Degrees Celsius KMA

Bio03 Isothermality (BIO2/BIO7) (* 100) Percentage KMA

Bio04 Temperature seasonality Percentage KMA

Bio12 Annual precipitation Millimeters KMA

Bio13 Precipitation of wettest month Millimeters KMA

Bio14 Precipitation of driest month Millimeters KMA

d-water Distance from water Meters KACCC

d-road Distance from roads Meters KACCC

SSP1 Land cover – KACCC

KMA, Korea Meteorological Administration; KACCC, Korea Adaptation Center for Climate Change; Bio1, annual mean temperature; Bio3, isothermality; Bio4, temperature seasonality;
Bio12, annual precipitation; Bio13, precipitation in the wettest month; Bio 14, precipitation in the driest month; d-road, distance from roads; d-water, distance from water; and land cover,
land cover change.

points were performed as described in Adhikari et al. (2021)
and Hong et al. (2021).

Selection of bioclimatic and
environmental variables for modeling

Land cover change, distance from the road, distance
from the water, and 19 bioclimatic variables were considered
as essential parameters for predicting the distribution of
the 12 EDAPS (Supplementary Table 1). Climate data,
which included precipitation, and monthly minimum and
maximum temperature, were obtained from the KMA1

(unpublished data; Table 2). The data were used to develop

1 https://www.kma.go.kr

climate change scenarios for current and future South Korean

climates. Two climate change scenarios, namely, RCP 4.5
and RCP 8.5, were chosen for the year 2070. The current
and the year 2070 (i.e., future) climates were calculated

by averaging climate metrics from years 1950 to 2000,
and 2066 to 2075, respectively (Adhikari et al., 2020b;
Kim et al., 2021). HadGEM3-RA is a global climate model
developed by the Met Office Hadley Centre, London,
United Kingdom.2 It is used by the KMA for developing
national climate change scenarios for South Korea because
of the country’s complex topography, uneven coastlines,
and more than 3,000 islands of the country (Lee et al.,
2012). Therefore, the HadGEM3-RA global circulation
model was selected for determining RCP 4.5 and RCP 8.5

2 https://www.metoffice.gov.uk/
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climate change scenarios using the R Package Dismo v. 1.3
(Hijmans et al., 2020).

In addition to bioclimatic variables, diverse environmental
variables, including land cover changes (e.g., grassland, forest,
urban, cropland, wetland, barren, and water), distance from
the road (d-road), and distance from the water (d-water),
were used for alien plant species and weed modeling. Land
cover data, d-water, and d-road data were downloaded
from the Korea Adaptation Center for Climate Change3

(accessed on October 11 2021). Spearman’s correlation was
used (Supplementary Table 2) on pairs with the Proc Corr
function of SAS 9.4 to minimize autocorrelation (r2 > 0.75,
p = 0.05) among bioclimatic and environmental variables
(SAS Institute, Inc., Cary, NC, United States), as described in
Shin et al. (2018), Jeon et al. (2020). All the variables had
a spatial resolution of 0.01◦ (30 s), which have an area of
approximately 1 km2.

Species distribution modeling using
artificial neural network, generalized
linear model, multivariate adaptive
regression splines, maximum entropy,
and random forest models

Species distribution modeling was performed using
two regression-based models, GLM and MARS, and three
machine learning models, ANN, MaxEnt, and RF. Regression-
based models predict future species distribution based on
the relationship between dependent variables and several
independent variables (Araghinejad, 2014). Regression models
range from linear to non-linear, and from parametric to
non-parametric (Araghinejad, 2014). The GLM is a flexible
and relatively simple tool derived from linear models that
allows for non-linearity and non-constant variance structures
in data by not forcing data into unnatural scales (Hastie
and Tibshirani, 2017). GLM is particularly applicable for
analyzing non-normal distribution data, such as binomial
and Poisson distributions (Bolker et al., 2009). MARS was
developed from linear regression models that spontaneously
determine non-linearities and interactions between predictor
variables. MARS is particularly suitable for a wide range of
predictor variables (Choe et al., 2016) and a large number
of explanatory variables with low order interaction effects
(Thuiller et al., 2010).

In addition to regression-based models, machine learning
methods accelerate processing and analysis of massive raw
data repositories (Berger-Wolf et al., 2017), allowing for faster
ecological studies and broader geographical scopes. Moreover,
machine learning models extract hidden characteristics

3 https://kaccc.kei.re.kr

from input data and are appropriate for analyzing datasets
with a complex correlation structure. For machine learning
models, ANNs are non-linear models that have a network
of simple elements or artificial neurons with a complex
global behavior (Hopfield, 1982). The hidden neurons in a
layer receive information from inputs, which are summed
and processed using a fixed function. ANNs run similar
to multiple regression when outputs are categorical or
continuous variables (Li and Wang, 2013). MaxEnt is a machine
learning algorithm that determines species distribution using
presence-only data and pseudoabsence data based on the
MaxEnt theory (Phillips et al., 2006; Phillips and Dudík,
2008). The MaxEnt model performs robust predictions
while making minimum effort in parameter tuning through
default settings (Phillips et al., 2006). The RF is a novel
ensemble classifier that generates a large number of decision
trees, in which classes are determined by a majority vote
(Li and Wang, 2013). RF has many qualitative features. It
handles thousands of input variables without deleting any,
manages correlated variables effectively, and has a robust
method for processing unbalanced data sheets and missing
data. As such, RF is considered one of the most accurate
machine learning algorithms with high predictive performance
(Breiman, 2001).

The absence data of alien and invasive species is not always
trustworthy. The expanding distribution range of alien and
invasive species, and the fact that they have not yet attained
equilibrium, result in misinterpretation (Jiménez-Valverde
et al., 2011). Therefore, we used background (pseudoabsence)
points of study area, which were determined with ArcGIS
10.3 (Esri, Redlands, CA, United States) as suggested by
Thuiller et al. (2021). Species distribution modeling with
ANN, GLM, MARS, MaxEnt, and RF was performed by
selecting a single model in the “Biomod2” Package v.3.5.1.
for GNU R4 (Thuiller et al., 2021), as described in Adhikari
et al. (2021). The species occurrence data were split into
a 3:1 ratio for model calibration and validation. All the
modeling options for each algorithm were set with default
values according to the guidelines of the “Biomod2” Package
v.3.5.1. (Thuiller et al., 2021), but the model replications were
100 for each SDM.

Evaluation of model performance and
validation using area under the curve,
true skill statistics, and Kappa values

Three measures, namely, the AUC values of the ROC
curves (Pearson, 2010), the TSS (Allouche et al., 2006),
and the Kappa statistic (McHugh, 2012), were used to

4 https://cran.r-project.org/web/packages/biomod2/index.html
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TABLE 3 Analysis of variance of AUC, TSS, and Kappa determined
using five species distribution models (SDMs).

Evaluation metrics df Mean square F-value

AUC 4 0.0483 11.97***

TSS 4 0.0573 3.88**

Kappa 4 0.0635 9.42***

**p < 0.01; ***p < 0.001. df, degree of freedom; AUC, area under the curve; TSS,
true skill statistics. The five SDMs used for this analysis are artificial neural network,
generalized linear model, multivariate adaptive regression splines, maximum entropy,
and random forest.

evaluate and validate model performance. The process of
model calibration and validation were performed as described
in Adhikari et al. (2021, 2022). In this study, computing
AUC, TSS, and Kappa did not only compare the predictive
performances of the models, but also selected the best model
using corresponding scores for 12 EDAPS. Mean scores
of AUC, TSS, and Kappa were estimated and presented
as graphs to compare the degree of prediction accuracy
among the five SDMs and thereby enable selection of the
best model. Analysis of variance (ANOVA) (Table 3) and
Duncan’s multiple range test were then performed using SAS
9.4 to determine statistically significant differences among
the five SDMs. The process of selecting the best model
using AUC, TSS, and Kappa values was consistent with
Koo et al. (2017) and Mainali et al. (2015). The ROC
curve, TSS, and Kappa analyses were implemented with
the “Biomod2” Package v.3.5.1. for GNU R. The optimal
TSS scores were used to convert probability distribution
maps into binary distribution map representing suitable
or unsuitable habitats by employing the optimal threshold
that enhanced the highest TSS score as a cutoff value in
Biomod2 (Thuiller et al., 2021). The optimal TSS scores
were estimated by default in Biomod2 were species specific
and varied in different SDMs. The modeling procedure used
in this study is summarized in the flowchart shown in
Figure 2.

Prediction of potential distribution and
invasion risk of ecosystem disturbing
alien plant species

The areas of suitable habitats of all alien weeds were
estimated using a best model under the current and
future climate change scenarios. The average percentage
of relative change of EDAPS distribution under RCP
4.5 and RCP 8.5 climate change scenarios for 2070
was calculated and compared with that of the current
climate change scenario and presented in tabulated form
(Table 4). The binary distribution maps of 12 EDAPS
obtained in each model were summed up using the Raster

3.4 Package in GNUR4.03. An aggregated distribution
map of current and future climate change scenarios,
and land cover changes in South Korea, were obtained.
Invasion risk maps were produced using the aggregated
distribution maps, in which cells with higher species
richness represented a larger invasion risk, and therefore
potentially a greater hazard for the environment. Invasion
risk was divided into four categories: low risk, moderate
risk, high risk, and very high risk, based on the linear scale
described in Adhikari et al. (2021). The invasion risk maps
obtained from the different models and the area covered
by each risk category were compared to the total area
of the country under the RCP 4.5 and RCP 8.5 climate
change scenarios.

Results

Spearman’s correlation test selected
six bioclimatic and three
environmental variables

Spearman’s correlation test was performed to select
relevant and independent bioclimatic and environmental
variables for species distribution modeling. Six bioclimatic
variables and three environmental variables were chosen
based on their weak correlations (r < 0.75) with each
other. The selected variables were as follows: annual mean
temperature (Bio01), isothermality (Bio03), temperature
seasonality (Bio04), annual precipitation (Bio12), precipitation
during the wettest month (Bio13), precipitation during

TABLE 4 Relative change in the distribution of ecosystem disturbing
alien plant species (EDAPS).

Species name Currenta 2070 (%)b

Ambrosia artemisiifolia 29,712 219.93

Ambrosia trifida 10,102 591.67

Symphyotrichum pilosum 21,028 315.12

Ageratina altissima 13,036 427.59

Hypochaeris radicata 4,413 1920.03

Lactuca serriola 19,765 341.46

Paspalum dilatatum 1,471 4453.64

Paspalum distichum 7,692 936.69

Rumex acetosella 14,697 549.52

Sicyos angulatus 19,558 296.10

Solanum carolinense 7,319 1159.26

Solidago altissima 7,959 1036.86

EDAPS, ecosystem disturbing alien plant species.
aEstimated area (Km2) of the different EDAPS under the current climate.
bThe average percentage change in the distribution of EDAPS under the climate change
scenarios RCP 4.5 and RCP 8.5.
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FIGURE 2

Flow chart showing database and modeling methods for predicting EDAPS invasion risk in South Korea.

the driest month (Bio 14), distance from water (d-
water), distance from roads (d-road), and land cover
(SSP1) (Table 2).

The random forest model has the
highest predictive performance

Individual species distribution model was established for
12 EDAPS using five SDMs and presented in Supplementary
Figures 1–60. The predictive performance of each model
was evaluated using AUC, TSS, and Kappa values and
expressed in Supplementary Tables 3–5. Among the five
SDMs, the RF model had the highest AUC value for all
EDAPS. The mean AUC value (n = 12) was estimated to
be highest in RF (0.928 ± 0.058), followed by MaxEnt
(0.85 ± 0.05), MARS (0.816 ± 0.053), GLM (0.781 ± 0.068),
and ANN (0.763 ± 0.07) (Supplementary Table 3). When
considering the mean AUC values determined above, the
predictive performance of RF was excellent, MaxEnt and MARS
were good, and GLM and ANN were fair for predicting
EDAPS distribution. Similar to AUC scores, TSS and Kappa
values were estimated to be highest in RF for all EDAPS
(n = 12) except for Solidago altissima. Based on the mean
values of TSS and Kappa, RF (TSS = 0.790 ± 0.109,
Kappa = 0.684 ± 0.096) was the most superior in regard
to model performance, while ANN was the most inferior

(TSS = 0.601 ± 0.121, Kappa = 0478 ± 0.486) (Supplementary
Tables 4, 5). ANOVA of AUC, TSS, and Kappa metrics revealed
significant differences among the five SDMs (Table 3). Mean
comparisons using Duncan’s multiple range test showed that
RF was significantly different from other SDMs (Figures 3A–C).
When AUC, TSS, and Kappa were considered together,
RF consistently showed the highest predictive performance.
MaxEnt followed RF in regard to accurate modeling of EDAPS,
while ANN showed relatively poor predictive performance.
Taken together, the data indicate that RF is the best model
for studying the potential distribution of the 12 EDAPS
among the five SDMs.

Paspalum dilatatum is predicted to
have the highest average relative
change in distribution in the future

The area of potentially suitable habitat of 12 EDAPS
was estimated using the RF model, and the average
change in percentage of invasive species distribution
under the future climate change scenarios (RCP 4.5
and RCP 8.5) for 2070 was calculated and compared
with that of the current climate distribution (Table 4).
Under the current climate, Ambrosia artemisiifolia had
the highest potential distribution (29,712 km2), while
P. dilatatum had the lowest distribution area (1,471 km2)
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FIGURE 3

Predictive performance of the SDMs used in this study. AUC (A), TSS (B), and Kappa (C) values of 12 EDAPS for calibrating the five SDMs. Values
are means (n = 12) ± standard error. Similar letters above the bar graphs indicate no significant differences among the models based on
Duncan’s multiple range test.

(Table 4). The average distribution area of 12 EDAPS

under the current climate was 13,062 km2. However, in
future climate change scenarios, range expansion of the
12 EDAPS varied largely and was estimated to range
from 219.93 to 4,453.6%. P. dilatatum would have the
highest average relative change in distribution followed
by Hypochaeris radicata, S. altissima, Paspalum distichum,
Ambrosia trifida, Rumex acetosella, Ageratina altissima, Lactuca
serriola, Symphyotrichum pilosum, Sicyos angulatus, and
A. artemisiifolia.

Current and future climate change
affects ecosystem disturbing alien
plant species invasion risk

Invasive alien plant species are threats to native biodiversity
and ecosystems (Ansong and Pickering, 2015). In this study,
EDAPS invasion risk was predicted using the RF model based on
the species richness in a grid cell. Invasion risk was categorized
into low (<25%), moderate (>25–50%), high (>50–75%), and
very high risk (>75–100%), according to the level of species
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FIGURE 4

Prediction of invasion risk of 12 EDAPS under the current and future climate change conditions (RCP 4.5 and RCP 8.5) in South Korea.
(A) Color-coded maps of South Korea showing areas of potential invasion risk using the RF model. Colors indicate the different risk categories.
(B) Segmented bar graphs showing estimated percentages (%) of the different invasion risk categories relative to the total area of the country.

richness in each cell (Adhikari et al., 2021). The invasion risk

maps under the current and future climate change conditions
(RCP 4.5 and RCP 8.5) are presented in Figure 4A. Currently,
70.81% of the country belongs to the low risk of invasion
category. This category was followed by moderate (19.67%),
high (9.23%), and very high risk of invasion (0.16%) categories
(Figure 4B). However, the extent and spatial pattern of invasion
risks were predicted to increase in the future. The results showed
that most EDAPS would maintain their current distribution
with rapid range expansions in the future. Under the RCP 4.5,
36.55% of the country would fall under the high-risk category,
and 43.90% of the country would be classified under the very
high-risk category (Figure 4B). On the other hand, under the
RCP 8.5, 27.86% of the country would belong to the high-risk
category, and 60.43% of the country would fall under the very
high-risk category (Figure 4B). These results suggested that
RCP 8.5 was relatively more favorable for EDAPS distribution
than that of RCP 4.5. Therefore, invasion risks were predicted to
be high under RCP 8.5.

Discussion

The following results were obtained in this study. (1) RF
was selected as the best model among the five SDMs based on
the average AUC, TSS, and Kappa scores. (2) The RF model
estimated invasion risk to be high in the coastal areas of the
northwestern and southern regions, and some large cities of
South Korea, such as Incheon, Seoul, and Busan, under the
current climate. In the future climate change scenarios, invasion
risk was predicted to increase across the whole country except
for the high-altitude northeastern region of Gangwon province
(Figure 4A). (3) The extreme future climate change scenario
presented by RCP 8.5 revealed that EDAPS distribution fell
under the high- or very high-risk category, which corresponded
to a large proportion of the country’s area.

The five SDMs used in this study showed different
prediction results of EDAPS while using same environmental
variables and species occurrence data, which indicates the
model uncertainty (Wenger et al., 2013). Accounting for
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this model uncertainty is critical for effective conservation
actions. Therefore, we quantified model uncertainty by
comparing predictive performances of each model using three
standard model evaluation metrices (AUC, TSS, and Kappa).
A quantitative evaluation of model performance establishes
the model’s suitability for specific applications and identifies
components of the model that require further improvement
(Koo et al., 2017). Furthermore, evaluating model performance
can be used to compare different modeling approaches, and to
study how different data and/or species characteristics affect
the accuracy of predicted maps created by the model (Allouche
et al., 2006). The AUC value shows the predictive capacity of
a model using training and test datasets (Thuiller et al., 2005)
to distinguish observed occurrences from background data
(Thuiller et al., 2005). The AUC is unaffected by dataset size
(prevalence); however, it has limitations because it equally
weighs commission and omission errors, avoids true probability
values, and is based on geographical extent (Lobo et al.,
2008). AUC values are inflated when the geographical range is
expanded beyond the current distribution range, resulting in
overestimation of AUC. This in turn causes misinterpretation
during model evaluation (Lobo et al., 2008). Because of the
uncertainties with AUC metrics, TSS and Kappa were used
as alternative criteria for validating model performance. TSS
correlates with sensitivity, which corresponds to observed
presence that is precisely estimated, and specificity, which
means observed absence that is precisely estimated. Sensitivity
and specificity are recognized as omission and commission
errors, respectively (Pearson, 2010). Kappa values describe the
overall accuracy of model performance with the assumption
that accuracy occurs by chance (Allouche et al., 2006). In this
study, we used average scores of AUC, TSS, and Kappa (n = 12)
for evaluating model performance and selecting a best model.
Similar to our findings, other studies used these evaluation
metrics for model calibration, validation, comparison, and
selection of a best model (Li and Wang, 2013; Mainali et al.,
2015; Koo et al., 2017). Here, RF was the most accurate model
in predicting the distribution of all EDAPS, while ANN was
the worst performing model (Figure 3). Consistent with results
presented in this study, the superior performance of RF was
reported by previous SDM studies (Attorre et al., 2011; Mainali
et al., 2015).

Our studies showed that current invasion was predicted
to be highest in the northwestern region, where Gyeonggi
province and Seoul city are located. High invasion risk also
partly occurred in the southern and southeastern regions, where
Jeollanam-do, Jeju-si, and Gyeongsangnam-do provinces, as
well as Busan city, are located (Figure 4A). However, the
central region of the country, which includes Chungcheongbuk-
do province, Daejeon and Sejong cities, and Gangwon
province in the northeastern region, exhibited low risk of
invasion. These results showed that EDAPS invasion risks
initiated along ocean routes of the northwestern, southern,

and southeastern regions, and primarily colonized the harbor
areas of these regions and surrounding islands. Similar
predictions were uncovered by Adhikari et al. (2019, 2021)
and Hong et al. (2021). Invasion is typically brought about
by global trade and tourism, in which invasive plants enter
through harbors and airports intentionally or unintentionally
(Hellmann et al., 2008). The northwestern, southern, and
southeastern regions of South Korea have many international
harbors (e.g., Incheon, Pyeongtaek, Yeosu, Mokpo, and Busan)
and airports (e.g., Incheon, Busan, and Muan). Therefore,
invasive plants are introduced through these harbors and
airports, and colonize agricultural fields, urban lands, and wild
ecosystems (Early et al., 2016). Moreover, densely populated
areas and disturbed lands are characteristic of big cities,
such as Seoul, Incheon, Busan, and Daegu, and Gyeonggi-do
province. Therefore, invasion risk could be more severe in
these areas. Urban development, industrialization, construction
of road networks, and establishment of recreational parks
lead to disturbed lands, thereby facilitating the growth of
EDAPS (Hellmann et al., 2008; Adhikari et al., 2020a, 2021).
Introduced invasive species could then disperse across the
country through land, air, and water transportation systems
(Eminniyaz et al., 2013).

Under the future climate change and anthropogenic
land cover change, large areas of the country were predicted
to be under the high-risk (27.86%) and very high-risk
(60.43%) categories of invasion by 2070. Furthermore,
it was estimated that these types of invasion events will
occur in the northwestern, western, and southern regions
of the country, particularly in the provinces of Jeollanam,
Jeollabuk-do, and Gyeonggi (Figure 4A). These predictions
are reinforced by the fact that the RF model selected for
risk assessment is a more robust classifier than other SDMs,
and it has a tendency to emphasize differences between
grid cells (Mainali et al., 2015). Furthermore, RF has a
flexible fitting process, making it very efficient in modeling
complex responses (Berk, 2008). Climate change generates
favorable conditions for introducing new invasive species
into ecosystems. It does so by making the habitat more
suitable for the invading species, while changing native
species distribution and abundance (Hellmann et al., 2008).
Moreover, climate change alters competitive interactions
among species, making native groups more susceptible to
colonization by new and established invaders (Finch et al.,
2021). Extreme climate (i.e., very wet and dry) favors
establishment and range expansion of invasive species
(Hellmann et al., 2008; Adhikari et al., 2019). Unfortunately,
the average temperature in year 2100 is predicted to be
5.7◦C higher than the current average temperature (16◦C)
in South Korea (KMA, 2021). Increasing temperature
may play roles in expansion of transportation networks,
urbanization, and industrialization. Under these circumstances,
finding the most accurate model is required to mitigate
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potential invasion risks of EDAPS and/or any invasive
weeds and plants.

In this study, we investigated invasion risk of 12 EDAPS
in South Korea using SDMs. SDMs are empirical tools for
predicting species spatial distribution across geographical
space and time by determining correlations between species
occurrence and environmental parameters (Elith and
Leathwick, 2009; Franklin, 2013; Zurell et al., 2020). SDMs
are used extensively in landscape ecology, conservation biology,
wildlife management, and studies of climate change (Li and
Wang, 2013). SDMs are used synonymously with ecological
niche species distribution, habitat suitability, and climatic
envelope models (Zurell et al., 2020). We created invasion
risk maps for South Korea and categorized them into low
risk, moderate risk, high risk, and very high risk under the
current and future climate change and land cover change.
To the best of our knowledge, this is the first study assessing
invasive and alien plants using five SDMs. Furthermore, the
best model for alien and invasive plant risk assessment in
South Korea was identified. Through this model, we expect
to cover research gaps in risk assessment of alien and invasive
plants in South Korea. The current study sheds light on
prediction modeling of distribution and invasion risk that
can be applied to other invasive weed and plant species.
This study could inform the central and federal governments
and society about areas at high risk of invasion, guide
invasive species management, and secure economic resources
(Renteria et al., 2021).

Ecosystem disturbing alien plant species invasion risk
may not only depend on climatic factors and land cover
change, but also on other factors, such as biogeographic
origin, and biological and physiological traits (Ni et al.,
2021). Most of the EDAPS studied here originated from
tropical regions of South America and temperate regions
of North America and Europe. They were indiscriminately
introduced into South Korea except for S. pilosum and
S. altissima, which were imported as ornamental plants and
as a source of nectar (Table 1). The introduced EDAPS
then colonized disturbed lands, such as parks, roadsides,
and coastlines, and eventually became fully adapted. Such
plants adapt better to climatic variability than native species
(Barral, 2019). The warming climate correlates positively
with seed germination, and daytime temperature fluctuations
may stimulate seed germination (Chen et al., 2017). In
addition, species specific biological traits, such as growth
rate, reproduction rate, and seed mass, correlate with
invasiveness (Carboni et al., 2016). Furthermore, physiological
traits, such as photosynthetic rate, efficiency of resource
utilization, and competition, could play important roles
in the success of invasive plant species (Ni et al., 2021).
Moreover, natural phenomena, including wind, tides, and
flood, and animals, such as birds and mammals, could
facilitate EDAPS seed dispersal. Further studies are required

to determine if similar phenomena influence EDAPS invasion
risks in South Korea. Therefore, in addition to climatic and
anthropogenic factors, biological and physiological traits of
invasive plants, and methods of seed dispersal, need to be
incorporated in models to obtain more accurate predictions
of invasiveness.

Conclusion

This study compared the predictive performance of five
SDMs based on three evaluation metrics. These metrics
are widely used for calibration and validation of model
performance. By comparing the predictive performance and
outputs of the SDMs, we concluded that RF is the best modeling
method among the five SDMs for forecasting EDAPS invasion
risk. Climate change is likely to favor the spread of EDAPS and
increase invasion risk across South Korea. This study suggested
that comparison of many models with the same species and
location is an ideal approach to determine the best model, and
interpret the accuracy and coherence of the modeling results, for
predicting the impact of climate change on species invasiveness.
Predicting current and future EDAPS invasion risk areas could
provide valuable information for the development of effective
control and management strategies to minimize the threat of
invasive plant species at the regional and local levels. Based
on the results of risk analysis presented in this study, EDAPS
detection and eradication activities are required in South Korea’s
northwestern, southern, and southeastern regions, particularly
focusing on the cities of Seoul and Busan and the provinces
of Incheon, Chungcheongnam, and Jeollanam. These areas are
likely to be the source for future EDAPS range expansion into
new geographical areas.
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