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Rapid urban land use and land cover changes have become a major environmental issue
because of their ecological effects, including loss of green space and urban heat islands.
Effective monitoring and management techniques are required. The Saudi Arabian twin
city of Abha-Khamis Mushyet was selected as a case study for this research. As a result,
the current study aimed to statistically and spatially investigate the relationship between
land surface temperature (LST) and land use land cover based urban biophysical
parameters such as normalized difference built-up index (NDBI), normalized difference
vegetation index (NDVI), and normalized difference water index (NDWI). This study used
random forest (RF) to classify LULC in 1990, 2000, and 2018. We also validated the
LULC maps in a novel way. Using mono window algorithm techniques, we extracted
LST for three periods. The dynamics of LULC, LST, and biophysical parameters were
investigated using standard statistical graphs such as the heat map and the Sankey
diagram. The correlation coefficient and the global bivariate Moran’ I approach were
used to determine the association between LST and urban biophysical parameters.
The relationship was then established in greater detail by categorizing the entire pixel
into percentile classes and employing parallel coordinate plots. Finally, the association
was built using GeoDA software and a conditional map. The LULC maps revealed a
334.4 percent increase in urban areas between 1990 and 2018. The built-up region
is the largest stable LULC, with an 83.6 percent transitional probability matrix between
1990 and 2018. While 17.9%, 21.8%, 12.4%, and 10.5% of agricultural land, scrubland,
exposed rocks, and water bodies were converted to built-up areas, respectively. The
LST has increased rapidly over time because of LULC changes. The link between
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LST and urban biophysical parameters revealed that NDBI had a positive relationship,
whereas NDWI and NDVI had a negative relationship. As a result, this study could be
very important because it could help decision makers figure out how to lessen the effects
of urban heat islands because of changes in LULC.

Keywords: urbanization, land surface temperature, urban hydro-biophysical parameters, machine learning,
conditional map, remote sensing

INTRODUCTION

One of the most obvious problems facing the world’s cities
is rising urban temperatures because of land use and land
cover (LULC) changes (Imran et al., 2021). During the past
several decades, the fast growth of built-up surfaces at the
cost of vegetation cover, croplands, and other natural pervious
surfaces is to blame for the increasing temperature trend across
urbanized landscapes (Pal and Ziaul, 2017; Naikoo et al., 2020).
The fast growth of the urban LULC pattern alters the thermal
characteristics of the land surface (Trlica et al., 2017). Built-
up surfaces have a more considerable heat observing capacity
and a lower emissivity than natural pervious surfaces because
their thermal properties differ from natural pervious surfaces
(Dimoudi et al., 2014). Impervious built-up surfaces store heat
for extended periods and slowly release it because of their poor
emissivity and greater heat observing capacity (Zhao et al.,
2020), which results in the increasing land surface temperature
(LST) as well as the formation of urban heat island (UHI)
phenomenon (Abulibdeh, 2021). Besides this, the rising LST
in cities is subject to various other factors such as population
density (Mallick and Rahman, 2012), topographic conditions
(Bindajam et al., 2020), prevailing winds (Zhou et al., 2012),
surface biophysical composition (Shahfahad et al., 2020), and
neighborhood environment (Zhou et al., 2018; Qiao et al., 2020).

The LST obtained from thermal satellite datasets are reliable
and repeatable measurements of the Earth’s surface, allowing
researchers to investigate the urban thermal environment at a
variety of spatial, i.e., from local to global and as well as temporal
scales, i.e., diurnal, seasonal, and inter-annual (AlQadhi et al.,
2021; Bindajam et al., 2021; Shahfahad et al., 2021; Naikoo
et al., 2022). Because the LST is sensitive to various land surface
characteristics, it may be used to extract data on multiple LULC
types (Sinha et al., 2015). The primary driver of LULC changes
is urbanization, and as a result, a continuous increase of LST
might disrupt the ambient environment for humans and other
ecosystem members (Pal and Ziaul, 2017). Therefore, many
studies have been done to analyze the LST variation because of the
LU/LC pattern changes in the urban areas (Fu and Weng, 2016;
Mathew et al., 2016; Gohain et al., 2021; Naikoo et al., 2022).

Previous research reported that natural land cover types such
as water bodies, wetlands and vegetated surfaces have helped
reduce the LST more than artificial built-up surfaces because
of the cooling effect (Wentz et al., 2014; Trlica et al., 2017;
Nurwanda and Honjo, 2020; Allen et al., 2021; Sussman et al.,
2021). Furthermore, a few research findings showed that the size
of vegetation patches, water bodies, and built-up surfaces also
have varied effects on the LST. For example, Gioia et al. (2014)

found that the size of the vegetation patch had a direct influence
on lowering LST on the regional scale and that green areas with
dense vegetation tend to lower LST on the local scale. Song et al.
(2020) examined the influence of building density on LST and
discovered that low- and high-density built-up regions had varied
LST, although being subject to the climatic conditions and soil
composition. For instance, Shahfahad et al. (2021) investigated
the relationship between surface biophysical characteristics and
LST in many cities from various climatic zones. They found
coastal cities had a lesser link between LST and vegetation cover,
but inland cities have a more significant association.

Many methodologies and strategies have been used to analyze
LST and its relationships to the LULC pattern in different cities
worldwide. Various approaches have been adopted to quantify
LST and thermal climate variation because of LULC changes
in the urban areas (Sobrino et al., 2010; Jimenez-Munoz et al.,
2014; Mallick et al., 2020). For instance, Zawadzka et al. (2021)
applied class-level landscape metrics to examine the thermal
properties of the urban LULC pattern. Similarly, a few studies
applied urban thermal field variation index (UTFVI) and urban
hotspots (UHS) models for the quantification and modeling
of changes in the urban thermal environment (Guha et al.,
2018; Shahfahad et al., 2021). In addition, a few studies also
applied local indicators of spatial autocorrelation (LISA) cluster
(Das Majumdar and Biswas, 2016), temperature vegetation index
(TVX) (Jiang and Tian, 2010), InVEST (Zawadzka et al., 2021),
etc., for the quantification and modeling of LST change regarding
LULC change. The main advantage of the LISA model is that it
can quantify the spatial pattern of LST and analyze the changes
in it during a period (Das Majumdar and Biswas, 2016). Thus,
we used the LISA cluster technique to analyze and quantify the
change in LST owing to LULC modifications in this research.

Urbanization has been changed a variety of physical and
biological characteristics of the urban landscape, including
vegetation cover, water bodies, soil properties, and micro (Kuang
et al., 2015; Guha et al., 2018). Understanding the effect of
urbanization on the urban environment is essential because
sustainable urban expansion can only be realized if the link
between urbanization and its environmental impact is well
understood (Zhao et al., 2017). This work aims to measure
and evaluate the spatio-temporal patterns of urbanization and
urban biophysical components in Abha city from this viewpoint.
Biophysical components are indicators that may trace the
human influence on a particular environment in general (Duan
et al., 2017; Tran et al., 2017; Guha et al., 2018). According
to Oke and Cleugh (1987), fast urbanization may modify
the urban biophysical components, substantially affecting the
Earth-Atmospheric energy process at the micro-scale. Because
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of extraordinary changes in land-use land cover (LULC), the
mean average temperature at the local level is steadily rising
(Roy et al., 2020).

The main features of Indian urbanization are unpredicted
and uncontrolled urban growth, increased impervious area,
and haphazard development, all of which result in significant
reductions in agricultural land, vegetation cover, wetland, and
other natural water bodies, as well as increased pollution,
slum development, and various social and economic problems
(Xie et al., 2013). As a result, contemporary remote sensing
methods are an excellent tool for more precise measurement
and monitoring of urban land cover types (Xie et al., 2013;
Sharma et al., 2015). With automated and semi-automatic
procedures, detailed and improved information may be extracted
from remote sensing data, and this information, i.e., images,
can be supplied from the past. As a result, the urban
landscape’s dynamism may be readily observed (Jain et al., 2020).
Landsat satellite imageries (such as MSS, TM, ETM+, OLI)
are widely used as the input database for various researches
to extract the urban built-up area and estimate other various
biophysical elements (Kaplan et al., 2018). Researchers use
remote sensing-based indices like the Normalized Difference
Built-up Index (NDBI), the Normalized Difference Vegetation
Index (NDVI), the Normalized Difference Water Index (NDWI),
the Normalized Difference Bareness Index (NDBal), and the
Modified Normalized Difference Water Index (MNDWI) to track
urban expansion and its effects (Guha et al., 2018; Mallick and
Rudra, 2021).

Land surface temperature is a critical component of the
semi-arid urban mountain area because it reflects changes in
the environment, the terrain, and the physical processes that
underpin those (Bindajam et al., 2020; AlQadhi et al., 2021).
Additionally, the LULC changes in cities in countries such as
Saudi Arabia are rapid, owing to the high population increase
in metropolitan areas (Bindajam et al., 2021). Consequently, the
cities of arid and semi-arid countries like Saudi Arabia have
been witnessing the warmer climate than their surroundings
(Mallick et al., 2021).

Several studies have been conducted examining the
relationship between greenness (NDVI), impervious land
(NDBI), and changes in land use and land cover with LST
(Srikanta et al., 2018; Firozjaei et al., 2019; Ghosh et al., 2019;
Roy et al., 2020). Determining the link between the different
biophysical components and LULC variation is essential.
However, using a hybrid way of remote sensing technology and
statistical calculations, the current work attempts to evaluate
and analyze the spatiotemporal patterns of LULC, dynamics of
biophysical composition, and LST using machine learning and
advanced geo-statistical techniques. There is much evidence
of remote sensing-based research on the urban biophysical
composition and urban heat island phenomena (UHI) (Zhu
et al., 2018; Yao et al., 2020). As a result, the research emphasizes
the spatiotemporal dynamics of urban land use and the
biophysical parameters connected with them, such as plant cover,
urban water bodies, soil moisture, built-up area, and changes in
land surface temperature.

The explicit goals of the present study are to

(a) Map the land use land cover and quantify the LULC changes
at a temporal scale using random forest and Markovian
transition matrix,

(b) Determine the association between Land Surface
Temperature (LST) and urban biophysical components
and their spatiotemporal patterns using advanced statistical
techniques.

As a result, the current research could be necessary for long-
term urban planning.

MATERIALS AND METHODS

Study Area
Abha is a city in Saudi Arabia’s southwestern Asir province. This
city’s topography is rugged and heterogeneous, with elevations
ranging from 1,950 to 2,982 m above sea level (Figure 1).
A cold and semi-arid climate characterizes the city. The average
annual precipitation is 355 mm and occurs mainly from June to
October. The average annual minimum and high temperatures
were 19.3◦C and 29.70◦C, respectively. This city faces extreme
difficulties due to land degradation caused by manufacturing
activities, higher slopes, weaker geological formations, and
unpredictable rainfall affecting ESs. Plant communities are
thriving because of climate change and diverse topography. This
city is one of the Asir Mountains’ most diverse florist regions. The
urban hills are this region’s most appealing tourism destination,
with the most diverse flora and fauna.

Materials
For the present study, Landsat images for 1990, 2000, and
2018 were obtained from the website of the United States
Geological Survey.1 We extracted urban biophysical
characteristics from Landsat Thematic Mapper (TM)
images for 1990 and 2000, as well as Operational
Land Imager-8 (OLI-8) images for 2018 (path/row:
167/047 and spatial resolution: 30 m). The LST was also
retrieved using the Thermal Infrared Sensor (TIRS). The
United States Geological Survey (see text footnote 1) provided
multi-temporal images.

Method for Land Use and Land Coves
Mapping and Dynamics
The Random Forest method [developed by Breiman (2001)]
is generated by creating classification and regression trees-
CART. The RF technique is an ensemble learning approach
extensively used to classify land cover using multispectral
and hyperspectral satellite sensor images. The RF generates
a variety of trees based on random bootstrapped training
database patterns. Above the bootstrapping strategy, this
method uses random binary trees to build a training subset.
A random selection of the training information is used
to generate the model from the original database; out-of-
the-bag (OOB) data is defined as data that is not used.

1https://earthexplorer.usgs.gov/
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FIGURE 1 | Study area.

Two parameters must be provided in order to implement
the RF (Xu et al., 2012): the number of trees (ntree) and
the number of features in each split (mtry). Many research
studies obtained excellent results with the default values
(Genuer et al., 2017). However, the vast number of trees will
yield a steady outcome of varying relevance, according to
Liaw and Wiener (2002).

Furthermore, according to Breiman (2001), utilizing more
than the needed number of trees may be redundant, although
it does not impact the model. Furthermore, Feng et al. (2019)
claimed that RF could get accurate findings with ntree = 200.

Many research employs the default value for the mtry parameter,
which is mtry = p, where p is the number of predictor variables
(Feng et al., 2019). However, in this work, we implemented the
RF model with ntree = 200.

For 1990, 2000, and 2018, the RF model divided the multi-
temporal Landsat images into eight classes. The validation was
done using the Kappa coefficient after the temporal Landsat
photos were classified. For the 2018 LULC map, ground truth
samples were obtained from the field. Samples for validating
the LULC maps for 1990 and 2000 were taken from various
bands of specific Landsat images. The data was then retrieved
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from the LULC maps using the sample points as a guide. The
accuracy rating of the LULC maps was then computed using the
kappa coefficient.

We use a Markovian transition matrix to calculate the
dynamics of LULC for various years after validation. It indicates
the estimated number of pixels transformed from one LULC type
to another during the selected time. The probabilities are shown
graphically in the matrix below:

p = pij =

 p11 p12 p1m
p21 p22 p2m
p31 p32 p3m

 (1)

where p represents the state of probability of transition from i to j.
The transition matrix was computed for three times,

such as 1990–2000, 2000–2018, and 1990–2018 using heat
map visualization.

Extraction of Land Surface Temperature
From Thermal Band
The consequences of urbanization could be seen in the variations
in surface temperature. For the LST calculation, we utilized
Landsat imageries that had been corrected. Following Yu et al.
(2014), LST maps were created using the mono window approach
with the thermal infrared band (band 10 of the OLI sensor
and band 6 of the TM sensor; both of which have a spatial
resolution of 30 m) of the Landsat satellite image (1990 and
2000). The same satellite images used to create the land cover
were also utilized to create the LST each year. In LST calculation,
band 10 of the OLI sensor was favored over band 11 due to
anomalies in LST recovery utilizing band 11 (Yu et al., 2014).
The digitized number of pixels in each image was transformed
to top-of-atmosphere (TOA) radiance before being converted
to brightness temperature. These conversions were made using
calibration constants from each image’s metadata file. Finally,
using the NDVI, the brightness temperature image was adjusted
for land surface emissivity (Ghosh et al., 2019; Mallick et al.,
2020).

Extraction of Biophysical Indicators
NDBI Normalized Difference Bareness Index (NDBal)
The NDBI is a crucial indicator for the built-up extract area,
including impervious areas (Chen et al., 2006). Using the
reflectance of Middle Infrared (MIR) and Near Infrared (NIR)
light, it is effective in extracting built-up area from remote sensing
data (Zha et al., 2010). Researchers use it to identify impermeable
surfaces, and it is a frequent and helpful approach (Zhang et al.,
2009; Zha et al., 2010). The equation of NDBI is

NDBI =
MIR− NIR
MIR+ NIR

(2)

MRI stands for medium infrared band (band 5 for TM and band 6
for OLI-8), and NIR stands for the near-infrared band (band 4 for
TM and band 5 for OLI-8). The NDBI value ranges from 1 to+ 1,
with values closer to 0 indicating vegetation cover, negative values
indicating water bodies, and positive values indicating built-up
areas (Zha et al., 2010).

Normalized Difference Vegetation Index
The loss of plant cover can readily be understood as the
constructed area grows, and NDVI is a good approach for
determining the greenness of any region (Sharma et al.,
2015). It is an essential variable in studying urban expansion
and microclimatic phenomena in cities (Chen et al., 2006).
Townshend and Justice (2007) devised a technique for NDVI
extraction based on NIR and red band reflectance (R). It is written
as:

NDVI =
NIR− R
NIR+ R

(3)

where NIR stands for Landsat TM band 4 and OLI-8 band 5,
and R stands for TM band 3 and OLI8 band 4. The NDVI value
ranges between 1 and 1. Large NDVI values imply plant cover,
tiny positive values imply built-up areas or barren terrain, and
negative values, i.e., values near to zero, imply water bodies.

Normalized Difference Water Index
Normalized Difference Water Index is used to estimate the
amount of liquid water in vegetation since NDWI is directly
related to the amount of water in the plant (Chen et al., 2006).
McFeeters (2007) introduced the NDWI equation, which may be
stated as utilizing the reflectance of the Green (G) and NIR bands.
The equation of NDWI is

NDWI =
G− NIR
G+ NIR

(4)

For TM, band 2 is green, and band 4 is NIR, but for OLI-8, band
3 and band 5 are green and NIR, respectively. The NDWI value
ranges from −1 to + 1. In fact, NDWI is more important than
NDVI since it is less affected by air scattering.

Relationship Between Land Surface
Temperature and Urban Biophysical
Parameters
In the present study, several statistical techniques have been
applied to assess the relationship between LST and urban
biophysical parameters.

Pearson’s Correlation Coefficient
We converted the 2018 LST raster into a point-based vector
file, yielding almost 1.6 million points in our research. We then
retrieved the values of LST and biophysical parameters (NDWI,
NDBI, and NDVI) from 1990 to 2018 based on the point file.
We loaded the vector file into the GeoDA program. Then, using
Pearson’s correlation coefficient, a correlation matrix was used to
investigate the relationship between LST and urban biophysical
characteristics. As a result, it can analyze the link between LST
and biophysical parameters across the research region.

Bivariate Morain’s I
We employed bivariate Moran’s I to investigate spatial dispersion
between LST and urban biophysical parameters. The global
bivariate Moran’s I is the type of bivariate Morain’ I, applied
in this study. Moran’s I bivariate global analyses if and to what
degree there are spatial connections between LST and urban
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biophysical characteristics throughout the entire region (Anselin
et al., 2014). The following are the calculating formulae we used:

Ieu =
N

∑N
i

∑N
j6=iWijZe

i Z
u
j

(N − 1)
∑N

i
∑N

j6=iWij
(5)

Ieu is the global bivariate Moran’s I for LST and biophysical
parameters. The total number of spatial units is denoted by the
letter N. Wij is an N-by-N spatial weight matrix created using
queen contiguity weight with the first order of neighbor in a 3
3 matrix (Anselin et al., 2014) to measure the spatial correlation
between the ith and jth spatial unit. For the ith spatial unit, Ze

i
is the standardized value of LST derived using Eq. (1). For the
jth geographical unit, Zu

j is the standardized value of each urban
biophysical parameter computed using Eq. (1).

Ieu has a range of values from 1 to 1. A positive Ieu value
shows that the LST and biophysical parameters have a positive
spatial correlation, implying that a pixel with a high LST value
is likely to be surrounded by pixels with high values of urban
biophysical characteristics. A negative Ieu indicates a negative
spatial correlation, showing that pixels with high LST values
are more likely to be surrounded by pixels with low values of
urban biophysical characteristics. The better the geographical
connection between LST and biophysical parameters, the higher
the absolute value of Ieu. Permutation tests are performed to
determine the statistical significance of bivariate Moran’s I; 999
permutations were utilized in this research (Anselin, 1995).

Parallel Coordinate Plot
A Parallel Coordinates Plot (PCP) is a multivariate numerical
data analysis visualization approach. It lets data analysts
compare many quantitative variables to seek patterns and
linkages. It is useful for comparing many numerical variables
simultaneously, especially when the magnitudes (scales) and
units of measurement are different. In multidimensional datasets,
the goal is to uncover patterns, similarities, clusters, and positive,
negative, or no particular associations. Each variable has its
axis in a Parallel Coordinates Plot, and all the axes are parallel
to each other. Because each variable uses a distinct unit of
measurement, each axis may have a separate scale, or all the axes
can be normalized to keep all the scales consistent. The data is
represented as lines that link all the axes. This indicates that each
line comprises a group of points on each axis that have been
linked together.

Three urban biophysical measures, such as NDWI, NDVI,
NDBI, and LST, were analyzed to identify a link and a data pattern
utilizing PCP in this work. The data has been overlaid with the
LST data pattern.

Conditioning Map
As explained in detail in Carr and Pickle (2010), this kind of map
is also known by the names “conditional choropleth map” and
“micro-map matrix.” As defined by the conditioning variables on
the horizontal and vertical axes, a micro-map matrix is a matrix of
maps that corresponds to a subset of the observations. Each map
depicts the geographical distribution of the variable of interest,

but only for observations that fall into the conditional variables’
categories shown on the corresponding map.

One of the primary goals of this conditioning procedure is
to identify any possible interactions between the conditioning
factors and the issue of interest in the concern. The reference
point (also known as the null hypothesis) assumes no interaction.
If this is the case, then the patterns on all the micro-maps should
be roughly the same. If there is an interaction between the
variables of interest and the conditioning variables, then high or
low values of the variable of interest would be regularly correlated
with specific categories of the conditioning variables.

RESULTS

Land Use Land Cover Mapping,
Validation and Dynamics
Random forest was used to classify the Abha-Khamis Mushyet
twin city region’s LU/LC for 1990, 2000, and 2018. Built-up areas,
water bodies, dense vegetation, sparse vegetation, agricultural
land, scrubland, bare soil, and exposed rock were all identified on
the LULC maps (Supplementary Figure 1). The area covered by
LULC maps from 1990 to 2018 was calculated. According to the
1990 LULC map, scrubland covers the most area of the study area
(47,730 hectares), followed by exposed rock (45,061 hectares),
bare soil (17,217 hectares), sparse vegetation (8,530 hectares),
and built-up (6,246 hectares), while dense vegetation covers the
least area (128 hectares), followed by water bodies (136 hectares),
and agricultural land (2,821 hectares). With the LULC of 2000,
the exposed rock covered the most area of the total study
area (52,973 hectares), followed by scrubland (36,136 hectares),
bare soil (20,302 hectares), and built-up (10,520 hectares),
while the water bodies covered the least area (113 hectares),
followed by dense vegetation (267 hectares), agricultural
land (2,245 hectares), and sparse vegetation (5,312 hectares).
Furthermore, the exposed rock covered 45,808 hectares for the
2018 LULC map, followed by scrubland (33,203 hectares), built-
up area (27,145 hectares), and bare soil (11,394 hectares), while
water bodies covered 52 hectares, followed by dense vegetation
(944 hectares), agricultural land (1,775 hectares), and sparse
vegetation (7,547 hectares). As a result, the built-up area has
increased dramatically in the last 28 years.

After three classification periods, the LULC maps are subjected
to accuracy assessment. As a result, during 2018, we gathered field
data and Google Earth imagery. In contrast, the field survey and
Google Earth image for 1990 and 2000 are not accessible. We
used proxy data to validate the LULC maps for these years. We
gathered ground truth using layer stacked multispectral images
(seven bands of Landsat 4-5TM) for 1990 and 2000. Then, we
acquired ground truth from each band for both years except
for band 6 (the thermal band). We verified the LULC maps
from 1990 to 2000 in this way. We also gathered samples from
multispectral images and six bands for the 2018 LULC map to
keep the analysis consistent. According to the accuracy evaluation
results, the LULC of 2018 achieved an overall accuracy of 87.2
percent from the ground truth, including a field survey and a
Google Earth image. While the overall accuracy for the layer
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FIGURE 2 | Transition probabilities of different LULC classes between the
period of (A) 1990–2000, (B) 2000–2018, and (C) 1990–2018.

stack multispectral band was 86.4 percent, the overall accuracy for
bands 2 (blue), 3 (green), 4 (red), 5 (near-infrared), 6 (shortwave
infrared-I), and 7 (shortwave infrared-II) were 85.3 percent, 84.71
percent, 86.63 percent, 85.1 percent, 84 percent, and 84.8 percent.
The validation of the LULC map for the year 2000 shows that
the overall accuracy for the samples of the multispectral band
was 84 percent, while the accuracy for the samples of band
1, band 2, band 3, band 4, band 5, and band 7 were 82.5
percent, 82.8 percent, 83.4 percent, 83.64 percent, 81.6 percent,
and 80.4 percent, respectively. The overall accuracy of the LULC
map for the year 1990 was 81.6 percent for the samples of
the multispectral band, while the overall accuracy of band 1,
band 2, band 3, band 4, band 5, and band 7 was 80.5 percent,
81.2 percent, 79.5 percent, 80.5 percent, 79.2 percent, and 81
percent, respectively.

A Markovian transitional probability matrix was used to
analyze the LULC change trend quantitatively. It reflects the
probability that each cell in a land-use category will be changed
into another land-use type. Using Equation 1, the current study
generated the transitional probability matrices for 1990–2000,
2000–2018, and 1990–2018. A heatmap depicted the LULC
transition throughout multiple periods (Figure 2). Figure 2A
depicts a heat map of the transitional probability matrix between
the LULCs of 1990 and 2000. The hues yellow to light orange
and deep brown on the heat map depict the chance of remaining
unaltered over time. For example, exposed rock (represented
by the deep brown color) has 85.8 percent likelihood, bare soil
(represented by the deep brown color) has 81 percent probability,
and built-up (represented by the orange color) has 74.7 percent
probability. Agricultural land (shown in yellow) has a 34.7
percent likelihood.

A score of 0 indicates that the land has not been moved to
a different land-use type. Figure 3A shows that water bodies
have the most zero values, showing that the transformation from
water bodies to other land uses nil, followed by dense vegetation
(one zero), bare soil (one zero), agricultural land (three close
to zero values), and built-up, scrubland, and exposed rock (no
zero values). The result shows that built-up areas, scrubland,
and exposed rocks are highly vulnerable to conversion into other
land uses throughout this period. Water (2.2 percent), scrubland
(4.8 percent), sparse vegetation (4.6 percent), exposed rock (3
percent), thick vegetation (0.2 percent), bare soil (9.6 percent),
and agricultural land are all possibilities for the built-up region
(5 percent). The prospect of converting from water bodies to
other land uses was limited throughout this time, with just
a 0.3 percent chance of being converted to heavy vegetation.
Dense vegetation has a meager chance of being converted to
other land uses. Sparse vegetation has a 62 percent chance of
converting into dense vegetation, but it has little chance of
transitioning into other land uses. Agricultural land has a meager
chance (less than 10%) of being converted to another land use
over this period.

Similarly, except for agricultural land (16.8 percent), barren
land has a slim possibility of being changed into another land use
(10 percent). Scrubland has a high possibility of being changed
into other land uses, such as agricultural land (37.1 percent),
sparse vegetation (30.5%), and water bodies (18.5%), whereas
other land uses have a risk of conversion of less than 10%.
Similarly, exposed rock has a 24.3 percent chance of transforming
into scrubland with little flora (17.7 percent).

Figure 2B depicts a heat map of the transitional probability
matrix between the LULCs of 2000 and 2018. The heatmap’s
varied color sheds represent the strength of the odds of remaining
unchanged throughout the period 2000–2018 (blue color band to
brown color band). According to the findings, built-up regions
had the highest likelihood of remaining unmodified to other land
uses (83.7 percent), followed by exposed rock (75.5 percent),
scant vegetation (59.2 percent), and scrubland (53.7 percent).
In comparison, agricultural land had the lowest chance of
remaining constant (20.7 percent), followed by thick vegetation
(37.5 percent), bare soil (43.1 percent), and bodies of water
(43.1 percent) (43.8 percent). Similarly, un-convertible land uses,

Frontiers in Ecology and Evolution | www.frontiersin.org 7 April 2022 | Volume 10 | Article 878375

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-878375 April 22, 2022 Time: 12:14 # 8

Mallick et al. Modeling Relationship Between LST-Biophysical Parameters

FIGURE 3 | The transition during the period of 1990–2018 for (A) LST, and urban biophysical parameters, like (B) NDBI, (C) NDVI, and (D) NDWI.

such as water bodies, thick vegetation, and bare soil, cannot be
converted to other land uses and have a very low possibility of
being converted to other land uses since the probability for these
land uses approaching zero. Sparse vegetation and scrubland are
more likely to be converted to agricultural land (17.6%), thick
vegetation (30.5%), agricultural land (33.3%), bare soil (32.1%),
and sparse vegetation (32.1%) (19.1 percent).

Figure 2C depicts a heatmap of the long-term transitional
probability matrix between the LULCs of 1990 and 2018. Built-
up areas have the highest long-term probability of remaining
unchanged to other land uses (83.7 percent), followed by exposed
rock (75.1 percent), dense vegetation (53.4 percent), and sparse
vegetation (47.8 percent). In contrast, agricultural land has the
lowest long-term probability of remaining unchanged (15.3%),

followed by water (35.1 percent), bare soil (43 percent), and
scrubland (47.8 percent) (43 percent). For example, forty-five
percent of water bodies, agricultural land, and bare soil are less
likely to be changed to other land uses (less than 10 percent).
Scrubland and sparsely vegetated areas are more likely to be
converted to agricultural land or urban development.

Extraction of Land Surface Temperature
and Urban Biophysical Parameters and
Their Dynamics
The present study extracted the LST three times, such as 1990,
2000, and 2018 using the mono-window algorithm. Then, the
LST models’ quality was cross-examined based on the field
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FIGURE 4 | The correlation coefficient analysis between LST and urban biophysical parameters for (A) 1990, (B) 2000, and (C) 2018.
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measurement. The temperature was collected from different
land-use features, and then the temperature was obtained from
the satellite measurement at the corresponding location. The
results showed a very high correlation between satellite and
ground measurement (r: 0.99 at the significance level of 0.001).
The spatial and temporal distribution of LST in the Abha-Khamis
Mushyet twin city area is shown in Supplementary Figure 2.
When the figure was examined, it was shown that the LST had
grown dramatically in the Abha-Khamis Mushyet twin city area
between 1990 and 2018.

Figure 3A revealed that the LST was higher over built-up areas
and also higher over bare soil and exposed rock surfaces. This is
owing to the fact that heat is stored fast on exposed rocky surfaces
and is released slowly from bare soil because of the high heat
absorption capacity and low albedo of exposed rocky surfaces and
bare soil, respectively (Trlica et al., 2017; Shahfahad et al., 2021).
Abha-Khamis Mushyet twin city area observed significant levels
of LST in 1990, particularly in the northern, north-central, and
east-central regions of the region. LST was low to moderate in
much of the western, southern, and northern sections in 1991,
compared to the rest of the country. It was found that between
2000 and 2017, the LST has increased significantly, particularly in
the north-eastern, eastern, and south-eastern areas of the region.
The growing LST in the eastern and north-eastern sections of the
Abha-Khamis Mushyet twin city area may be attributed to the
large-scale conversion of natural land cover types, particularly
scrublands and croplands, to built-up surfaces in the eastern and
north-eastern parts of the region. During the period 1990–2017,
the increase in LST in the Abha-Khamis Mushyet twin city region
can be divided into two phases, namely, in 2000, the maximum
increase in LST was observed in the north-eastern and northern
parts of the region, and in 2017, the maximum increase in LST
was observed in the eastern and southern parts of the region. In
contrast to this, the region’s southwestern areas did not suffer a
statistically significant rise in LST between 1990 and 2017. This
is because of the dominance of the plant cover (both thick and
sparse) in this study area.

In the Abha-Khamis Mushyet twin city region, three
biophysical indicators were used to investigate the association
between landscape pattern and LST: the NDWI, the NDBI, and
the NDVI (Natural Diversity Index). According to the NDVI
and NDWI analyses, the region’s plant density and water bodies
had a minor but significant decline between 1990 and 2017
compared to the previous decade (Supplementary Figure 3).
In accordance with the NDWI dynamics, the number of water
bodies in the region has fallen dramatically between 1990 and
2017 (Figure 3D). Furthermore, the decline in the NDWI from
2000 to 2017 was larger than the decline from 1990 to 2000.
High and low NDWI values were 0.476 and −0.59 in 1990,
then dropping to 0.471 and −0.63 in 2000 and 0.407 and −0.69
in 2017. The high and low NDWI values in 1990 were 0.476
and −0.59. In the Abha-Khamis Mushyet twin city region,
the northern and central portions have experienced the most
significant decrease in NDWI, while the southern and eastern
sections have experienced a minor increase in NDWI.

The NDVI, like the NDWI, shows a significant but modest
change in the Abha-Khamis Mushyet twin city area between

1990 and 2017 (Supplementary Figure 4). It was found that
between 1990 and 2017, the NDVI in the southwestern areas
of the region was high, while the NDVI in the center and
northern regions of the region was low. It is important to
note that, despite the fact that the statistics of high and
low NDVI show an increasing trend from 1990 to 2017, the
spatial pattern of NDVI shows a decrease in the region’s
vegetation density. As of 1990, the highest and lowest values
for the NDVI were 0.646 and −0.34, respectively. Since
then, the values have increased to 0.682 and −0.53 in 2000,
0.775 and −0.32 in 2017 (Figure 3C). When looking at
the southern and southwestern portions of the area, the
NDVI suggested a minor but significant decline in vegetation
between 2000 and 2017.

While the NDWI and NDVI in the Abha-Khamis Mushyet
twin city region suggest a substantial shift from 1990 to 2017,
the NDBI in the same area reveals a considerable change from
1990 to 2017. In 1991, the NDBI was highest in the central
and northern sections of the region, while it was lowest in the
southern, eastern, and western parts of the region. The results
of NDBI report a significant increase in built-up density in the
southern and eastern sections of the Abha-Khamis Mushyet twin
city region between 2000 and 2017. As reported by the results of
NDBI, the peak and low NDBI in 1991 were 0.407 and −0.51,
respectively. These values increased to 0.70 and −0.47 in 2000,
before decreasing to 0.451 and −0.54, respectively, in 2018.
However, the NDBI value decreased in 2018 does not mean that
the built-up area has been decreased.

In contrast, the area coverage of the NDBI or built-up
area has been increased. Nevertheless, the intensity has been
decreased, which can be meant for the decreasing tendency of
sky-scraper building construction and the increasing tendency of
the horizontal expansion. Also, Figure 3B shows that the number
of pixels of the built-up area was huge under the NDBI value of
0.01 rather than a higher value, which shows the construction
of the new building in open spaces, where no built-up was there
previously. This indicates the horizontal expansion of the urban
area of the urbanization process.

Relationship Between Land Surface
Temperature and Biophysical
Parameters at Temporal Scale
This study examined the relationships between LST and urban
biophysical variables, including NDBI, NDVI, and NDWI. As
is widely known, the land cover change affects the NDBI,
NDVI, and NDWI. We used biophysical parameters instead
of LULC maps to get parameter intensity values that cannot
be obtained from LULC maps. So we tried to highlight the
connection in new and effective ways in the present work. So
we applied sophisticated statistical techniques to study the LST-
urban biophysical variables connection. This study examined
the relationships between 1990, 2000, and 2018 using Pearson’s
correlation approach (Figures 4A–C). It was discovered in 1990
that the correlation coefficient between the NDBI and LST is
0.276, meaning that urban areas have a higher effect on LST
than rural areas.
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FIGURE 5 | Global bivariate Moran’ I spatial correlation between (A) LST-NDBI, (B) LST-NDVI, (C) LST-NDWI for 1990, (D) LST-NDBI, (E) LST-NDVI, (F) LST-NDWI
for 2000, (G) LST-NDBI, (H) LST-NDVI, (I) LST-NDWI for the year 2018.

On the other hand, LST exhibits a statistically significant
negative association with NDVI and NDWI, with a 0.001
correlation coefficient. The correlation research of LST and urban
biophysical parameters provides the same results as previous
studies, consistent with previous findings. NDBI has a statistically
negligible but statistically significant positive relationship with
LST, which shows that urbanization affects LST. In urban
regions, land use (e.g., forest clearing) appears to have a more
substantial impact on LST, as shown by the statistically significant

negative relationship between LST and NDVI and NDWI at
the significance level of 0.001. This shows that the urban heat
island in the research region has been increasing since 2000,
but that it has increased significantly since last year. The global
bivariate Moran’s I results showed significantly positive spatial
correlations between LST and NDBI, i.e., urban areas (Moran’s
I: 0.415) at a significance level of 0.01 for the year 1990
(Figure 5A). This means that, overall; urbanization increases the
land surface temperature. In this case, the temperature rises not
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FIGURE 6 | Parallel coordinate plot for establishing relationship between LST and urban biophysical parameters for the year (A) 1990, (B) 2000, and (C) 2018.

just because of the higher number of people and poor housing
conditions but also because of heat generating infrastructure
and transport networks that release heat for hours. Therefore,
the urban heat island effects have been created. On the other
hand, the LST has a strongly negative spatial correlation with
NDVI, i.e., vegetation cover for 1990 (Moran’ I: −0.592) at a
significance level of 0.01 (Figure 5B). In fact, the higher the
vegetation cover, the less the surface temperature increases. This
is because the dominant heat absorption of vegetation effectively
reduces the temperature increase. Therefore, it is believed that
the LST values were largely affected by the larger vegetation
cover in 1990. In addition, we found a positive spatial correlation
between LST and water bodies (NDWI) (Moran’s I: 0.542) at a
significance level of 0.01 (Figure 5C). But this result is inverse
to the hypothetical assumption that there should be a negative
correlation between LST and NDWI as water bodies absorb the
heat, which reduces the surface temperature. The present study

area covers a negligible number of water bodies, while the study
area comprises over 1.6 million pixels and is used for correlation.
This could be the reason. However, this situation needs to be
explained further as to why it happened.

It has also been reported that identical findings have been
obtained for different periods, such as 2000 and 2018. For 2000
and 2018, a positive spatial association was discovered between
LST and urban areas (Moran’ I: 0.367 and 0.352) (Figures 5D,G).
On the other hand, a negative correlation has been discovered
between LST and vegetation cover (Moran’ I: −0.614 and
−0.573), indicating that the two variables are negatively related
(Figures 5E,H). The positive association between NDWI and
LST, on the other hand, was discovered (Figures 5F,I). We
need to go into further detail about what happened in order
to understand. Therefore, rather than using an overall analysis,
we employed a parallel coordinate map to describe how all data
patterns relate to one another.
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FIGURE 7 | (A–I) Conditional map of LST based on NDBI and NDVI for 1990.

Because we discovered that the LST and NDWI showed a
positive spatial correlation, we used the parallel coordinate plot
to compare all data structures to one another (Figure 6). The
parallel coordinate plot combines the study of the LST data
pattern and urban biophysical factors into a single graph. The
LST and three biophysical characteristics were displayed on four
axes, with the LST or research of interest superimposed on
top. The whole LST dataset (about 1.6 million pixels) has been
categorized into percentile order, such as 1%, 1–10%, 10–50%,
50–90%, 90–99 percent, and >99 percent. For the year 1990,
the percentile data has a distinct range of LST values, such as 1
percent data has ranged the LST between 20.35–29.64, followed
by 1–10 percent (29.65–36.48), 10–50 percent (36.48–43.27), 50–
90 percent (43.27–48.86), 90–99 percent (48.86–52.68), and >99
percent (52.68–57.65) (Figure 6A). This categorization has
evolved throughout time. The link was then established using
several sets of LST data and relevant urban biophysical data.
The 1990 results suggest that up to the 50th percentile (LST
ranges 20–43) has a favorable association with built-up regions.
A modest negative link was discovered between higher LST (over
43) and urban areas. This scenario must also be discussed in
more detail. Overall, there was a favorable link between the

urban area and the LST. In the case of NDVI, all data patterns
displayed a substantially negative connection with LST, with
the exception of the LST range 36–43. In the case of NDWI,
the LST range of 20.35–29.65 (<1 percentile) demonstrated
a strong favorable connection with LST. Other data patterns
have a negative correlation. The identical pattern of relationship
has been found for the years 2000 and 2018 (Figures 6B,C).
This unfavorable condition must be explained spatially as to
why it occurred.

The preceding analysis discussed the relationship between
LST and biophysical parameters using both overall and stratified
datasets. We discovered that the overall dataset can correctly
explore the relationship between NDBI and NDVI, whereas we
obtained the opposite relationship between LST and NDWI.
As a result, we employed stratified datasets to dig further into
the link between LST and urban biophysical characteristics.
We discovered that the link between LST, NDBI, and NDVI is
true, except for a few datasets that produced inverted findings.
While the relationship between LST and NDWI was correct,
except for the data with a value range of 0–0.2, which showed
a positive relationship. Then, we cross-checked with the field
and discovered that the locations with NDWI values ranging
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FIGURE 8 | (A–I) Conditional map of LST based on NDBI and NDVI for 2000.

from 0 to 0.2 are not really water bodies, but mud, sand, and
bare soil around the water bodies that absorb heat and raise
the temperature nearby. As a result, the association between
LST and NDWI is illustrated. Furthermore, several issues with
NDBI and NDVI exist, which may be explained using spatial
analysis. As a result, we utilized a conditional map to describe
the link between LST, NDBI, and NDVI for 1990, 2000, and 2018
(Figures 7–9), and we skipped NDWI for further study since it is
already well defined.

There are nine maps in total in the conditional map, with
the intersection of two biophysical components as independent
variables (NDVI on the vertical axis and NDBI on the horizontal
axis) and LST (which is superimposed on the map based on
the hinge 1.5) being emphasized on the first two maps. GeoDa
software is used to determine the contiguity and clustering
patterns of components across space in this map-based decision
support tool. Using a fuzzy membership function, conditional
mapping displays how many variables of each component were
geographically divided into distinct spatial zones, which aids in
the standardization of elements. Figures 7–9 depict a statistically
significant clustering of LST in locations with high NDBI and
low NDVI, respectively. Thus, our data lend credence to the
hypothesis that greater NDBI sites have higher LST, as well as
exposed rock. Higher NDVI areas have lower LST because of

the cooling process and heat absorption. Co-analysis of NDBI
and NDVI findings can aid in the identification of the primary
elements that contribute to the formation of LST hot spots in each
geographic zone.

DISCUSSION

In this paper, we have explored the spatio-temporal dynamics
of LULC and its relationship with the LST through the urban
biophysical parameters using sophisticated statistical techniques.
Most previous research has used all the pixels in the study area
and applied regression to investigate the relationship between
LST and urban biophysical parameters. This paper investigated
the relationship between LST and biophysical parameters
straightforwardly. For example, we used all the pixels for all
the parameters for three periods to show the relationship using
Pearson’s correlation coefficient technique and highly standard
global bivariate Moran’ I techniques. However, the ties using all
the data as a whole did not provide satisfactory results. Therefore,
we stratified all the pixels using the percentile technique and a
parallel coordinate plot to show the relationship between LST and
each pixel containing urban biophysical parameters. Also, minor
errors were observed for stratified-based analysis.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 April 2022 | Volume 10 | Article 878375

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-878375 April 22, 2022 Time: 12:14 # 15

Mallick et al. Modeling Relationship Between LST-Biophysical Parameters

FIGURE 9 | (A–I) Conditional map of LST based on NDBI and NDVI for 2018.

Consequently, we used a decision-making process-based
conditional map based on urban biophysical parameters at a
spatial scale. To the best of the author’s knowledge, this type of
study has not been conducted so far. Therefore, our proposed
research will be helpful for urban planning, the sustainable
development of cities, and decision support systems.

Because of the physical importance of vegetation to the LST,
the LST-NDVI relationship has been a contentious research
issue (Guo et al., 2015; Wu et al., 2019). However, NDVI and
LST have a significant negative association with a “temperature
edge” (Figures 5–9). Li et al. (2011), who investigated the whole
city of Shanghai, obtained a similar outcome. Surprisingly, we
discovered that the LST-NDBI link had a “temperature edge,”
with a correlation almost as strong as between LST and NDVI
(Figures 7–9). Given the yearly fluctuation of NDVI, NDBI
can be used as a supplement to LST investigations. Non-
linearity and seasonal changes in the link between urban LST
characteristics (i.e., LST NDVI, LST–NDBI) have been recorded.
This makes quantifying LST fluctuations difficult, particularly
in geographically varied environments like our research areas.
Various models have been used in recent research to study the
influence of biophysical factors on LST (Mathew et al., 2017;

Liu et al., 2018; Weng et al., 2019). Recent research has often
employed regression models with regional optimization, which
is a significant restriction (Guo et al., 2015; Xiang et al., 2021).
This work used global bivariate Moran’s I to analyze LST and
biophysical parameter fluctuations in the temporal dimension
at the pixel scale. In addition, we classified all the pixels in the
research region and determined their relationships. Finally, a
conditional map was utilized to illustrate the relationship based
on urban biophysical factors spatially. The research provided new
knowledge on the overall LST variations and LGI, i.e., urban
parameters influencing LST variation, during 28 years periods.
Also, the study intends to promote the application of remote
sensing data in environmental governance, especially for urban
hydro-meteorological adaptation.

In general, a heterogeneous spatiotemporal distribution of
surface biophysical factors such as brightness, greenness, and
wetness of the area could lead to a heterogeneous LST
distribution (Yang et al., 2017; Sattari et al., 2018). This would
be due to the fact that the incoming shortwave radiation, which
is nearly constant at a single point in space, can be absorbed
differently by different types of surface biophysical features (Fu
and Weng, 2016; Guha et al., 2018; Peng et al., 2018). For
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example, an individual site’s heterogeneity of surface biophysical
characteristics (e.g., areas with different albedos, vegetation, and
soils) may cause a spatio-temporal heterogeneous LST at the
corresponding locations (Tran et al., 2017; Guha et al., 2018).
The impacts of climatic conditions and topographic factors such
as lapse rate and downward radiation to the surface should
be investigated further in regions with diverse topography. He
et al. (2018) discovered a complicated relationship between
topography factors and LST in mountainous areas. As a result, the
downward radiation from the surface should be approximated
on a pixel scale (Malbéteau et al., 2017; He et al., 2018). The
amount of overcast sky, the weather, the time of day and year, the
latitude and longitude of the surface, the albedo of the surface,
and the topographical characteristics of the surface and the
surrounding area impact the downward radiation to the surface.
Research is necessary to accurately replicate the impact of various
topographic characteristics and identities outlined above on the
surface temperatures at the surface level.

CONCLUSION

The LST significantly affects the interchange and interaction of
energy fluxes between the ground surface and the atmosphere.
Understanding the relationship between LST and urban surface
features is critical for developing efficient UHI mitigation
methods. The new strategy of combining geostatistical and
machine learning algorithms was employed to extract LULC,
LST, and urban biophysical characteristics. Then, using
multiple complex methodologies not previously investigated, we
measured the non-linear associations between LST and NDVI,
NDBI, and NDWI in the research region. We discovered that
NDVI and NDBI are negatively linked with LST; the former
mitigate UHI while the latter increase it.

As a consequence, NDVI and NDBI are both powerful
predictors of UHI. Furthermore, we discovered that the NDWI,
like the NDVI, has a “temperature edge” connection with the
LST. Because there are so few bodies of water in the research
region, the findings were inverted. We employed a parallel
coordinate plot via categorized datasets to properly investigate
it. We discovered that most data is negatively associated with
LST, which is conceptually correct, but specific datasets have a
positive relationship. Around the water bodies, such places were
characterized by sand, exposed rock, and bare soil, which resulted
in greater temperatures. Compared to typical multiple linear
regressions, conditional maps produced enhanced results for
investigating non-linear correlations between LST and landscape
features. The comprehensive study of LST’s interaction with all
of the other bio-physical components reveals that they have a
very intricate connection. The outcome of this research would
provide helpful information for mitigating the consequences

of urban heat islands, which have been expanding because
of climate change.

Although the present study uses sophisticated techniques to
provide comprehensive insights into the relationship between
LST and land use biophysical parameters, the research has some
limitations, such as the use of course resolution images for
LULC mapping and a weak representation of the relationship
between LST and biophysical parameters. These challenges may
be avoided by combining spatial clustering mapping with a
bivariate LISA model, high-resolution satellite images, and the
addition of machine learning.
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