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Animals living in anthropogenically disturbed habitats are exposed to environmental
stressors which can trigger physiological reactions, such as chronic elevations of
glucocorticoid hormones. Physiological responses to stressors may induce changes in
the gut microbiome, most likely, facilitated by the gut–brain communication. Although
these effects have been observed in humans and animal models, elucidating gut
bacterial changes in wild animals under natural stressful conditions is still an ongoing
task. Here we analyzed the association between physiological stress related to
anthropogenic forest disturbance and changes in gut bacterial communities of black
howler monkeys (Alouatta pigra) living in forest fragments in Mexico. We measured
individuals’ fecal glucocorticoid metabolites (fGCMs) as an index of physiological stress
and created inventories of fecal bacterial communities sequencing the 16S rRNA gene
to assess gut microbiome change. We evaluated environmental stress by estimating
differences in food availability – feeding tree diversity and biomass – in each group’s
habitat. We found that both fGCMs and food availability indices were related to gut
bacterial community shifts in black howler monkeys. Furthermore, using structural
equation modeling, we found that a decrease in food availability, estimated through
reductions in feeding tree basal area, increased fGCMs, which in turn induced increases
in bacterial richness. Our findings show that the activation of the hypothalamic–
pituitary–adrenal (HPA)-axis, which is a physiological response sensitive to environmental
stressors such as the ecological disturbance of a habitat, contributes to structure the
gut microbiome of arboreal primates in disturbed forests.

Keywords: arboreal primates, microbiome, 16S rRNA, physiological stress, glucocorticoids, tropical forest
disturbance, Mexico
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INTRODUCTION

Wild animals are frequently exposed to adverse conditions in
nature which trigger stress responses of individuals (Wingfield,
2005; Messina et al., 2018). Environmental stressors can be
acute (e.g., predation) or chronic (e.g., habitat degradation),
and predictable (e.g., seasonality) or unpredictable (e.g.,
sudden storms, deforestation) (Wingfield, 2005; Boonstra,
2013), affecting differently the degree of the animal stress
response. While acute stress responses occur on a short-term
scale (e.g., within minutes) and are characterized by the rapid
rise and fall of hormones, suppressing functions that are not
immediately needed like digestion or reproduction, a chronic
stress response develops over a longer-term scale (e.g., weeks
or months) with negative consequences for individuals, such as
immunosuppression or reduced growth (Romero, 2004; Romero
et al., 2009; Sapolsky, 2021). The reaction of the hypothalamic–
pituitary–adrenal (HPA) axis and the resulting release of
glucocorticoids are often measured to assess the physiological
response related to stressful environmental stimuli (Sheriff et al.,
2011), and there is plenty of evidence indicating that animals
inhabiting anthropogenically disturbed habitats tend to have
increased glucocorticoid concentrations possibly reflecting
higher stress levels (Creel et al., 2002; Martínez-Mota et al.,
2007; Balestri et al., 2014; Rehnus et al., 2014; Formenti et al.,
2018; Kleist et al., 2018; Messina et al., 2018; Boyle et al., 2021).
However, determining the effects of stress due to anthropogenic
impact on animal-symbiont associations is still a research area
that needs to be explored in wildlife (Trevelline et al., 2019).

The gut microbiome of vertebrates is shaped by a combination
of intrinsic (e.g., host genetics) and extrinsic (e.g., ecology,
climate) factors which determine the structure, stability,
and dynamics of bacterial communities, including diversity
and function (Douglas, 2018). The host’s physiological stress
response, i.e., physiological reactions to noxious or threatening
physical or psychological stimuli (Romero, 2004; Reeder and
Kramer, 2005), has been recognized as a contributing factor of
microbiome change, mediated in part by interactions within the
gut–brain axis (Foster et al., 2017; Benavidez et al., 2019). That is,
the complex communication between the gastrointestinal tract
and the central nervous system modulates microbiome responses
to stressful stimuli (Foster and McVey Neufeld, 2013; Moloney
et al., 2014).

Traditional models of stress indicate that hosts experiencing
stress-related conditions, such as anxiety or depression triggered
by psychosocial stressful stimuli, frequently suffer gut microbial
dysbiosis (Pierce and Alviña, 2019; Meyyappan et al., 2020).
For example, in rodents in which dominance–subordination
relationships are tested, socially stressed individuals show lower
gut bacterial diversity and alterations in microbial metabolism
related to short-chain fatty acids (SCFAs) compared to controls
(Bharwani et al., 2016). On the other hand, a depauperate
gut microbiome has been linked to exacerbated stress-related
behaviors and physiological stress reactions (Sudo et al., 2004;
Sun et al., 2017), but restoration of microbial communities
alleviates stress perception. This is supported by rodent models
which show reductions in anxiety-like behaviors after receiving

fecal transplants from hosts with an intact gut microbiome (De
Palma et al., 2017; Zhang et al., 2019). Despite the evidence of the
relationship between stress and the microbiome in humans and
animal models, elucidating gut bacterial changes of wild animals
under natural stressful conditions is still an ongoing task in the
scientific community.

The relationship between changes in glucocorticoids and
shifts in microbial communities has been explored in a limited
number of wild animal systems. While minimal effects of
glucocorticoids on bacterial communities have been found in
lowland gorillas (Vlčková et al., 2018), in other mammals, such
as eastern gray and red squirrels, baseline and stress-induced
glucocorticoids were associated with the structure of fecal
bacterial communities (Stothart et al., 2016, 2019). Moreover,
an experimental study in which yellow-legged gulls received
corticosterone implants provided strong support to the premise
that increased glucocorticoids may induce shifts in the gut
microbiome of wildlife (Noguera et al., 2018).

Wild primates that endure in anthropogenically disturbed
forest fragments are a suitable model to assess the relative effects
of physiological stress on changes in gut bacterial communities.
Canopy dwelling primates rely on trees for daily activities such
as foraging, feeding, traveling, and resting (Hopkins, 2011;
Cartmill, 2017), but forest disturbance is a persistent threat
for primate survival (Estrada et al., 2017). Forest loss and
fragmentation associated with anthropogenic activities tend to
modify the vegetation structure (e.g., tree species composition
and biomass) in forest remnants, reducing the availability of
primary food sources that are energetically and nutritionally
important for frugivorous–folivorous arboreal primates (Arroyo-
Rodríguez and Dias, 2010; Righini et al., 2017). Such disturbance,
i.e., decreased food quantity and quality, has been proposed to
induce physiological stress in species including lemurs (Lemur
catta, Gabriel et al., 2018; Propithecus diadema, Tecot et al.,
2019), colobus (Piliocolobus tephrosceles, Chapman et al., 2006),
and howler monkeys (Alouatta pigra, Behie and Pavelka, 2013).
In addition, lower food availability in fragments has been
related to gut bacterial diversity decreases and shifts in bacterial
communities in primates, reducing the bacterial metabolic
capacity to produce SCFA (Amato et al., 2013; Barelli et al.,
2020), which not only provide energy to the host, but are also
involved in the regulation of neuro-immunoendocrine function
(Silva et al., 2020). This scenario calls for a better understanding
of the additive effects of forest disturbance on changes in the gut
microbiota of primates living in fragments, possibly mediated
and/or exacerbated by the host’s physiological stress response
triggered by deficits in food sources.

Here we aimed to explore the association between
physiological stress related to anthropogenic forest disturbance
and changes in gut bacterial communities of endangered black
howler monkeys (A. pigra) living in forest fragments in the
Yucatan peninsula, Mexico. In this region, some populations
of black howler monkeys can be found in relatively large
protected areas, however, several other populations inhabit
fragmented landscapes characterized by a mosaic of small
vegetation patches. Therefore, studying these remaining
unprotected populations affected by anthropogenic disturbance

Frontiers in Ecology and Evolution | www.frontiersin.org 2 July 2022 | Volume 10 | Article 863242

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-863242 July 1, 2022 Time: 16:4 # 3

Martínez-Mota et al. Stress Effects on Primate Microbiome

can help us elucidate the role of the gut microbiota and the
metabolic and physiological responses of these animals to
changing environments. We assessed the degree of disturbance
of fragments through differences in the forest structure (i.e.,
species diversity and biomass of feeding trees) commonly
used as food sources in primary forests. We hypothesized
that monkeys inhabiting forest fragments with decreased
food availability (i.e., lower feeding tree diversity and basal
area) would show higher stress levels, measured by fecal
glucocorticoid metabolite (fGCM) concentrations, a non-
invasive index of the HPA axis activity (Palme, 2019), and
therefore, alterations in the gut microbiome. To explore this
hypothesis, we tested the direct effects of habitat disturbance
versus the mediating effects of stress reactions using structural
equation modeling. If habitat disturbance has only direct
effects, we predict that as food availability decreases, bacterial
communities would decrease as well, independent of fGCM
concentrations of individuals. In contrast, if microbiome change
is mediated by stress imposed by the habitat condition, we
predict that as food availability decreases, howler monkeys
would show higher fGCM concentrations, inducing a decrease
in bacterial diversity.

MATERIALS AND METHODS

Study Site and Sample Collection
We studied wild black howler monkeys living in fragments of
semi-deciduous tropical forest in the municipality of Escárcega,
State of Campeche, Mexico (18◦36′N, 90◦48′W). Two groups
(G1 and G2) inhabited a large fragment of 2100 ha, where there
were at least other 20 groups. Groups G1 and G2 had defined
territories within the fragment, but occasionally they overlapped
at the boundaries of their home range. We also studied four other
groups (G3–G6) that lived in small highly disturbed fragments
ranging in size from <3 to 9 ha. These groups inhabited one
fragment each, and they did not share the fragment with other
groups or solitary individuals, nor used the landscape matrix
or other fragments for feeding. Groups ranged from 4 to 12
individuals per group, with an average of 2.3 ± 1.4 adult males
and 2.2 ± 0.8 adult females. Group home ranges varied from 0.8
to 14 ha (Table 1).

These monkey groups were part of a longer term behavioral
and ecological research project of black howler monkeys living in
a fragmented landscape, in which study subjects were individually
recognized and monitored for more than a year (January 2011–
March 2012; Martínez-Mota et al., 2017, 2021). Intense forest loss
and fragmentation is occurring since the 1970s in this region,
where close to 3,000,000 ha of deciduous and semi-deciduous
forests have been lost between 1978 and 2000 (Díaz-Gallegos
et al., 2010). At a small scale, deforestation has induced constant
changes in size and shape of the studied fragments, mostly
because these small vegetation patches are privately owned, and
subjected to slash and burn agriculture and timber extraction
for subsistence of local people. Moreover, road construction and
a massive and controversial railroad megaproject (“The Maya
Train”) are currently happening, threatening biodiversity and

wildlife, including the black howler populations at these sites
(Pérez Ortega and Gutiérrez Jaber, 2022).

Fresh fecal samples (N = 61) were collected immediately after
defecation from adult male (N = 10) and female individuals
(N = 13) in rainy (August and October) and dry (February and
March) months (exact fecal sample sizes per group are provided
in Supplementary Table 1). We sampled individuals belonging
to a particular group within the same day. When we missed an
individual, its feces were collected 2 or 3 days after the collection
of the rest of the group. We used different days within each
sampling month to complete our sampling across groups. We
previously found weak to no effects of seasonality on bacterial
diversity of these individuals (Martínez-Mota et al., 2021);
therefore, seasonal effects are not considered as a contributing
factor of microbial change in this study. Sampled individuals were
at least 3 years old, and based on no signs of sickness or evident
morbidity, they were considered healthy. We collected ∼3 fecal
samples per individual (mean 2.7 ± 0.5 SD), and the number
of sampled individuals per group is provided in Table 1. Two
aliquots were obtained for each sample to be used for microbiome
and fGCM analyses: 5 g of feces were stored in Falcon tubes with
96% ethanol and kept in a refrigerator at 4◦C over 3–11 months
until shipping to the United States for microbiome analysis. Upon
arrival to the United States these samples were stored at −80◦C
over 6 months until processing. The other aliquot (2 g of fresh
feces) was stored in 20 ml scintillation vials at −4◦C during
2–3 days until fGCM extraction was conducted in the field lab.

Microbial and Glucocorticoid Analyses
Sample processing for microbial analysis were conducted at
Northwestern University in the Amato lab. DNA was extracted
from fecal samples using MOBio PowerSoil kits. The V4–
5 hypervariable region of the bacterial/archaeal 16S rRNA
gene was amplified using a two-step PCR (Earth Microbiome
Project primers 515F/926R and Fluidigm Access Array primers
containing sample-specific barcodes) as described in Mallott and
Amato (2018). PCR products were purified and normalized using
a SequalPrep Normalization Plate and sequenced on the Illumina
MiSeq V3 platform to produce 2× 250 bp paired-end reads at the
University of Illinois-Chicago DNA Services Facility.

Bacterial/archaeal sequences were processed in the
Quantitative Insights into Microbial Ecology 2 (QIIME 2)
bioinformatics platform, version qiime2-2020.2 (Estaki et al.,
2020). We first removed primers using the q2-cutadapt plugin.
Later, single-end sequences were subjected to quality control
including denoising, merging, and chimera removal using the
DADA2 pipeline (Callahan et al., 2016). Microbial reads were
then assigned as amplicon sequence variants (ASVs; Callahan
et al., 2017) using the q2-dada2 plugin. Sequence taxonomic
assignment was performed using the naive Bayes classifier trained
on the SILVA 132 99% OTUs sequence reference (Quast et al.,
2013). We also performed filtering of chloroplast, mitochondria,
and doubletons. To control for the effects of variable sequencing
depth, samples were rarefied to 16,600 sequences prior to
downstream alpha and beta diversity analyses, and no samples
were excluded by the rarefaction step.
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TABLE 1 | Size of fragments, home range, number of individuals, and concentrations (ng/g) of fecal glucocorticoid metabolites (fGCMs) of six groups of black howler
monkeys (Alouatta pigra) from Escárcega, State of Campeche, Mexico.

Fragment
area (ha)

Group ID Group home
range

Group size Number of
adult males in

the group

Number of
adult females
in the group

Sampled
individuals

Males

Females fGCMs

Mean ± SE Median Min–max

2100 G1 14.8 12 5 3 4 3 885 ± 154 704 173–2450

2100 G2 4.3 6 2 2 1 2 731 ± 187 800 69–1663

2.6 G3 0.8 4 1 1 1 1 484 ± 183 327 41–1216

2.4 G4 2.3 8 2 2 1 2 1299 ± 359 925 446–3619

5.0 G5 2.7 6 2 2 2 2 249 ± 56 217 31–420

9.0 G6 4.7 11 2 3 1 3 665 ± 159 519 85–1722

Fecal glucocorticoid metabolites were extracted from feces
in the field laboratory following the methods described in
Palme et al. (2013). For each sample, 5 ml of 80% methanol
was added to 0.5 g wet weight of feces. The suspension was
vortex-mixed for 10 min, and then centrifuged at 1600 × g
for 20 min. One milliliter of the supernatant was diluted in
9 ml of distilled water. Diluted extracts were passed slowly
through solid-phase extraction (SPE) cartridges (MaxiClean
Prevail C18 SPE Cartridges Alltech R©). SPE cartridges were air-
dried and stored at 4◦C until shipping to the Department
of Biomedical Sciences, University of Veterinary Medicine,
Vienna, Austria.

At the University of Veterinary Medicine, steroid
extracts were eluted from SPE cartridges using methanol.
Concentrations of fGCMs were measured with a group
specific 11-oxoetiocholanolone enzyme immunoassay
(EIA) that quantifies glucocorticoid metabolites with a
5β-3α-ol-11-one structure (Möstl et al., 2002). Successful
validation of this EIA to evaluate adrenocortical activity
in black howler monkeys has been already conducted
(Martínez-Mota et al., 2008). Sensitivity was 5 ng/g. Intra-
and inter-assay coefficient of variation for a high and low
concentration pool sample was 2.6 and 2.9% (intra), and 9.7
and 12.5% (inter), respectively. Concentrations are reported in
ng/g wet weight.

Assessment of Feeding-Tree Diversity
and Biomass in Fragments
To assess the impact of forest disturbance on food availability in
fragments, we estimated the diversity of tree species used as food
sources by our study groups. This information was based on a
14-month study on the feeding ecology of black howler monkeys
conducted simultaneously in the largest fragment (Righini et al.,
2017). We chose 15 arboreal taxa as baseline (Table 2), which
represented the most consumed tree species that accounted for
>85% of the howler monkey diet in a relatively less disturbed
area (Righini, 2014; Righini et al., 2017). First, we established 10
Gentry’s belt transects of 50 × 2 m within each group’s home
range. This technique is a reliable method since it has been shown
by numerous studies in the tropics that 1000 m2 represents an
adequate sample size to calculate plant species diversity within
a community (Gentry, 1982). On each transect we recorded all
trees with diameter at breast height >10 cm and identified each
tree to species level. We then calculated species diversity and

TABLE 2 | Frequency of 15 arboreal taxa used as feeding trees by 6 groups
(G1–G6) of black howler monkeys (Alouatta pigra).

Species1,2 Common name G1 G2 G3 G4 G5 G6

Brosimum alicastrum Ramon 2 2 0 0 1 1

Manilkara zapota Chico zapote 13 6 1 0 2 1

Metopium brownei Chechen 6 17 6 0 5 0

Vitex gaumeri Ya’axnik 2 4 1 8 3 5

Acacia usumacintensis Subin 0 0 2 3 0 9

Bursera simaruba Mulato 4 7 8 9 12 6

Lysiloma latisiliquum Dzalam 3 7 33 1 8 0

Pseudolmedia oxyphyllaria Mamba 5 0 0 0 2 0

Dendropanax arboreus Sac-chacah 3 6 2 1 6 1

Guettarda combsii Popistle negro 7 2 1 0 0 0

Protium copal Copal blanco 0 0 1 0 1 1

Trophis racemosa Ramon colorado 1 0 2 0 4 0

Simarouba glauca Pasa’ak 3 1 5 1 2 0

Pouteria campechiana K’anixte 1 5 2 1 4 0

Swartzia cubensis K’atalox 0 0 0 2 0 0

1Tree taxa were chosen as representative based on the top 15 most consumed tree
species by black howler monkeys inhabiting a relatively continuous forest (Righini,
2014; Righini et al., 2017).
2Frequency of feeding tree taxa was recorded in 1000 m2 for each
howler home range.

TABLE 3 | Number of trees, species, total basal area, and diversity indices of
feeding trees registered in the home range of six groups (G1–G6) of black howler
monkeys (Alouatta pigra) at Escárcega, State of Campeche, Mexico.

G1 G2 G3 G4 G5 G6

N 50 57 64 26 50 24

Feeding tree taxa 12 10 12 8 12 7

Total basal area (m2/ha) 49.0 71.8 65.3 22.1 61.7 27.5

Shannon index 2.23 2.06 1.72 1.68 2.24 1.57

Evenness index 0.78 0.78 0.46 0.66 0.77 0.69

assessed equitability of feeding trees for each sampled home
range, using the Shannon diversity and Pielou’s evenness indices,
respectively (Magurran, 1988). These indices were calculated in
the Past 3 software (Hammer et al., 2001). We also estimated food
biomass per howler home range, by quantifying the basal area of
feeding tree species sampled in the established transects (Table 3).
Basal area is used as surrogate for tree biomass and is correlated
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with food productivity of primates (Chapman et al., 1992, 1994;
Ganzhorn, 2003).

Data Analyses
We assessed changes in bacterial alpha diversity related to
physiological stress and food availability in disturbed forest
fragments with generalized linear mixed models (GLMMs), using
the glmmADMB package (Skaug et al., 2018) in the R software
(R Core Team, 2020). Three metrics of bacterial alpha diversity
were estimated for each sample in QIIME 2, including Faith’s
phylogenetic diversity, Shannon diversity, and Pielou’s evenness
indices; these indices were used as response variables. Faith’s
phylogenetic diversity index and the Shannon index followed
a normal distribution (Shapiro–Wilk test: P > 0.05); therefore
GLMMs were fitted with a Gaussian distribution and identity
function. Values of the evenness index range from 0 to 1,
therefore, this index was fitted with a beta distribution and a
logit function. fGCMs (i.e., physiological stress index), feeding
tree diversity indices and basal area of feeding trees (i.e., food
availability indices) were used as predictors. We tested for
multi-collinearity between predictors using variance inflation
factors (VIFs) in the car package (Fox and Weisberg, 2019), and
found that all variables maintained low values (i.e., VIF = 1).
The individual ID was set as a random factor to control for
repeated measures.

For each alpha diversity metric, we first created a
full model that included an interaction term between
stress and food availability indices (i.e., response
variable ∼ tree_diversity_shannon + tree_diversity_evenness +
tree_basal_area + fGCMs + tree_diversity_shannon × fGCMs +
tree_diversity_evenness × fGCMs + tree_basal_area × fGCMs
+ random term). We then ran a model selection command
using the dredge function of the MuMIn package (Barton,
2009). All generated models are shown in Supplementary
Table 2. We selected the best models based on AICc criterion,
1AIC, and model weight (Wagenmakers and Farrell, 2004).
Effects of predictors for the best model were generated with the
anova function using the car package. P-values were adjusted
with Benjamini–Hochberg false discovery rate (fdr, Benjamini
and Hochberg, 1995). To examine in more detail causal
relationships between food availability, stress, and bacterial
diversity, we conducted a structural equation modeling using
the lavaan package (Rosseel, 2012). In this analysis we used
bacterial richness (i.e., observed ASVs) as a response variable
(Supplementary Table 3).

We tested for the effects of stress and its interaction with food
availability indices on bacterial community composition, using
permutational multivariate analysis of variance (PERMANOVA).
These analyses were run in R, using the function adonis2
implemented in the vegan (Oksanen et al., 2019) and qiimer
(Bittinger, 2016) packages. Predictors were concentrations of
fGCMs, feeding tree diversity, evenness, and basal area, and
the interaction between these predictors. Jaccard and Bray–
Curtis distance matrices were used as measures of bacterial beta
diversity (Knight et al., 2018). We tested first the effects of
predictors and their interactions, and later ran again a reduced
model discarding non-significant interaction terms. We also

tested for within-group dispersion using the betadisper function.
Bacterial community shifts were visualized through non-metric
multidimensional scaling (NMDS).

We analyzed bacterial taxonomic changes related to the
observed community shifts using Count Regression for
Correlated Observations with Beta-Binomial (corncob) analyses
(Martin et al., 2020). This method tests for the effects of covariates
on microbial relative abundances accounting for the correlational
structure of microbiome data. For these analyses we removed
ASVs present in less than 10% of samples and those with less
than 20 reads. P-values were adjusted with Benjamini–Hochberg
fdr to a cutoff = 0.01. These models were run using corncob
(Martin et al., 2021) and phyloseq packages (McMurdie and
Holmes, 2013) in R.

Permits
This research complied with legal requirements of Mexico
(SEMARNAT−DGVS/09084/10) and was approved by the
Institutional Animal Care and Use Committee of the University
of Illinois (protocols #10054 and #10062).

RESULTS

The 16S rRNA gene sequencing effort yielded 1,400,816 sequence
reads with an average of 22,964± 5240 SD sequences per sample.
After filtering we obtained a total of 1741 bacterial/archaeal ASVs
with an average of 189 ± 32 SD ASVs per sample. The median
value of fGCMs was 512 ng/g, ranging from 31 to 3619 ng/g.
Mean, median, and minimum and maximum values of fGCMs
per group are shown in Table 1.

Effects of Stress and Food Availability
Indices on Bacterial Diversity
We found that bacterial alpha diversity metrics of black howler
monkeys were influenced differently by the stress index and
the three indices of food availability in forest fragments. The
best models for each bacterial diversity metric are shown in
Table 4. Bacterial diversity estimated through the Shannon index
was predicted by the two indices of food availability (feeding
tree Shannon diversity F1,56 = 19.3, fdr P < 0.001; feeding tree

TABLE 4 | Best model based on AICc, 1AIC, and model weight for each alpha
bacterial diversity of black howler monkeys (Alouatta pigra) inhabiting forest
fragments at Escárcega, State of Campeche, Mexico.

Response
variable

Predictors AICc 1 AIC Weight

Bacterial diversity
(Shannon)

Tree_diversity_shannon +
tree_diversity_evenness

59.6 0.0 0.35

Bacterial
phylogenetic
diversity

Tree_diversity_shannon +
tree_diversity_evenness +
fGCMs +
tree_diversity_shannon
× fGCMs

229.9 0.6 0.12

Bacterial evenness Tree_diversity_evenness +
tree_basal_area

−220.5 0.0 0.16
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FIGURE 1 | Changes in bacterial alpha diversity associated with variation in food availability indices and physiological stress of black howler monkeys (Alouatta pigra)
inhabiting disturbed forest fragments at Escárcega, State of Campeche, Mexico. (A) Boxplots show that bacterial diversity is negatively related to feeding tree
diversity estimated with the Shannon index, and positively related to feeding tree evenness. (B) Scatterplot shows the effects of an interaction between fecal
glucocorticoid metabolites (fGCMs) and diversity of feeding trees estimated with the Shannon index on bacterial phylogenetic diversity. (C) Boxplot shows that
bacterial evenness negatively relates to basal area of feeding trees.

Pielou’s evenness F1,56 = 8.8, fdr P < 0.01); while bacterial
diversity was negatively related with feeding tree diversity, it
was positively related with feeding tree evenness (Figure 1A).
The Faith’s phylogenetic diversity of bacteria was affected by
the feeding tree diversity (F1,54 = 25.6, fdr P < 0.001) and its
interaction with the stress index (F1,54 = 4.6, fdr P = 0.035);
bacterial phylogenetic diversity increased with concomitant
increases in diversity of feeding trees and fGCM (Figure 1B).
However, feeding tree evenness had marginal effects on bacterial

phylogenetic diversity (F1,54 = 3.9, fdr P = 0.053). Basal area
of feeding trees (F1,56 = 13.9, fdr P < 0.001) was negatively
associated with bacterial evenness (Figure 1C) and feeding tree
evenness did not have significant effects on bacterial evenness as
a single term (F1,56 = 2.7, fdr P = 0.10), despite the fact that it was
included as predictor in the best model selection.

Using structural equation modeling, we found that feeding
tree diversity influenced bacterial richness in a direct way
(estimate = −77.0, SE = 16.5, z = −4.7, P < 0.001). A negative
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FIGURE 2 | Path diagram from structural equation modeling, showing direct
and indirect effects of food availability and physiological stress indices on
bacterial richness of black howler monkeys (Alouatta pigra) inhabiting
disturbed forest fragments at Escárcega, State of Campeche, Mexico.
Standardized regression coefficients of significant paths are shown.

relationship between feeding tree diversity and bacterial richness
was found. Moreover, feeding tree basal area directly and
negatively affected fGCMs (estimate =−0.02, SE = 0.01, z =−2.3,
P = 0.02), which in turn influenced positively bacterial richness
(estimate = 6.6, SE = 3.2, z = 2.1, P = 0.04); however, the
effects of feeding tree diversity on bacterial richness were stronger
compared to those of fGCMs (Supplementary Table 3 and
Figure 2).

Stress and food availability indices were related to gut bacterial
community shifts in black howler monkeys. PERMANOVAs
using either Jaccard or Bray–Curtis distance matrices revealed
that the interaction between fGCMs and basal area of feeding
trees was related to bacterial community changes in these
primates (Jaccard: pseudo-F1,53 = 1.4, P = 0.014, R2 = 0.021;
Bray–Curtis: pseudo-F1,53 = 1.6, P = 0.018, R2 = 0.024),
although the effect size was modest. Black howler monkeys
inhabiting forest fragments characterized by feeding trees with
lower basal area showed increased concentrations of fGCMs
which influenced to some extent bacterial community structure
(Figure 3). However, the interaction between fGCMs and feeding
tree diversity or evenness had no effects on bacterial community
shifts. After running again a reduced model discarding non-
significant interactions, we found that feeding tree diversity and
evenness also had significant effects on community changes,
both as single terms (tree diversity: Jaccard, pseudo-F1,55 = 2.9,
P = 0.001, R2 = 0.043; Bray–Curtis, pseudo-F1,55 = 3.0, P = 0.001,
R2 = 0.044; tree evenness: Jaccard, pseudo-F1,55 = 2.4, P = 0.001,
R2 = 0.035; Bray–Curtis, pseudo-F1,55 = 1.9, P = 0.002, R2 = 0.030;
Supplementary Figures 1A,B). Within-group dispersion was
not significant for fGCMs (Jaccard, P = 0.32; Bray–Curtis,
P = 0.65), but significant for feeding tree diversity, evenness,
and basal area (Supplementary Table 4). This indicates that the
significant effects of fGCMs on community structure found in the
PERMANOVAs were not due to heterogeneity of variance.

Bacterial Taxonomic Changes Related to
Stress and Food Availability Indices
We found taxonomic changes in gut bacterial communities of
black howler monkeys related to stress and food availability

indices. Corncob analysis indicated that fGCMs significantly
predicted changes in relative abundance of bacterial taxa
(Estimate = −7.1e−04, SE = 2.4e−04, t-value = −2.9, fdr
P < 0.05), and that the interaction between fGCMs and feeding
tree basal area also influenced taxonomic change, although
these effects were marginally significant (Estimate = 1.7e−05,
SE = 8.8e−06, t-value = 1.9, fdr P = 0.056). Overall, howler
monkeys inhabiting fragments characterized by lower
feeding tree basal area showed higher fGCM levels (1000–
2000 ng/g) and had higher relative abundance of ASVs
belonging to Anaerostipes, Bacteroidales, Prevotellaceae,
Lachnospiraceae, and Clostridiales vadin BB60 compared to
individuals experiencing lower fGCMs (<500 ng/g) in areas
with higher feeding tree basal area (Figure 4). Moreover,
feeding tree diversity (Estimate = 16.3, SE = 3.7, t-value = 4.4,
fdr P < 0.001) and evenness (Estimate = 25.8, SE = 7.2,
t-value = 3.6, fdr P < 0.001) significantly predicted bacterial
change but only as single terms. Howler monkeys inhabiting
areas with higher feeding tree diversity showed increased relative
abundance of several ASVs assigned to Bacteroidia, Clostridia,
and Erysipelotrichia (Figure 5).

DISCUSSION

We hypothesized that black howler monkeys inhabiting
anthropogenically disturbed forest fragments would show
changes in gut bacterial communities, most likely related to
physiological stress imposed by deficits in food availability. To
test this, we measured fGCMs as an index of physiological stress
and collected data on feeding tree diversity and biomass to assess
food availability and found that both alpha and beta bacterial
diversity were associated with these indices. Interestingly, the
interaction between a metric of food biomass (i.e., feeding tree
basal area) and fGCMs significantly affected bacterial community
shifts and diversity, supporting our hypothesis, although in a
different direction than our prediction. Our findings show that
the activation of the HPA-axis, which is a physiological response
sensitive to environmental stressors such as forest disturbance
(Martínez-Mota et al., 2007; Rangel-Negrín et al., 2014a; Boyle
et al., 2021), contributes to some extent to structure the gut
microbiome of arboreal primates in disturbed habitats.

The degree of disturbance in each forest fragment affected
vegetation composition, thus the availability and abundance
of food sources for black howler monkeys. This most likely
influenced food and nutrient intake, impacting gut bacterial
community diversity and structure of these primates. In this
regard, variation in dietary breadth and macronutrient intake
are contributing factors that shape gut microbiomes in human
and animal hosts (David et al., 2014; Yang et al., 2020).
Black howler monkeys are selective feeders that feed daily on
different food items switching from fruit to leaves or other
plant parts to maintain a balance between protein and non-
protein energy intake (Righini, 2014; Aristizabal et al., 2017;
Righini et al., 2017), and this behavioral feeding strategy induces
changes not only in the composition and function of the
primate gut microbiome (Amato et al., 2014, 2015), but also in
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FIGURE 3 | Bacterial community shifts associated with variation in a food availability index and physiological stress of black howler monkeys (Alouatta pigra)
inhabiting disturbed forest fragments at Escárcega, State of Campeche, Mexico. Bacterial community shifts were influenced by higher stress levels of individuals
inhabiting fragments with lower basal area of feeding trees. MDS plots based on Jaccard and Bray–Curtis distance matrices.

the physiological stress response (Martínez-Mota et al., 2016).
For example, a negative relationship between protein intake
and fGCMs was found in black howler monkeys (Martínez-
Mota et al., 2016), suggesting that the HPA-axis responds to
fluctuations in macronutrient intake.

A limitation in our study was that we neither quantified food
nor macronutrient intake to directly assess variability in energy
acquisition in black howler monkeys; this approach would have
allowed to address more directly the impact of nutritional deficits
on stress and bacterial diversity changes. However, the structural
equation modeling analysis suggests that such effects could be
taking place, since there is an interplay between changes in fGCM
and gut bacterial diversity in howler monkeys that inhabit forest
fragments characterized by a reduction of food biomass.

Moreover, using GLMMs and structural equation modeling
we found that feeding tree diversity was negatively associated
with bacterial richness. This contrasts with previous findings in
mammals which reported positive relationships between dietary
diversity and microbial diversity (Amato et al., 2013; Barelli et al.,
2020; Wastyk et al., 2021; Weinstein et al., 2021). Although
the small forest fragments in our study were characterized
by a low feeding tree diversity, these areas presented high
abundance of lianas and vines compared to the largest fragment;
these vegetation forms are associated with disturbance such
as forest edges and canopy gaps (Gómez-Marín et al., 2001;
Martins, 2009). Howler monkeys in these areas may have

supplemented their diets with these vegetation forms increasing
gut bacterial richness. In other A. pigra populations inhabiting
disturbed fragments in Southern Mexico, these primates obtain
the majority of their mineral intake from vines and epiphytes,
which are significantly higher in Ca and P and lower in fiber
than plants from less disturbed forests (Aristizabal, 2013). Thus,
the contribution of the phytochemical and fiber content of vines,
lianas, and epiphytes to howler monkeys’ diet in small fragments,
could have affected gut bacterial communities, possibly adding
to the differences found between the study groups living in
contrasting habitats.

Independent of the physiological stress response, our results
indicated that, at a taxonomic level, bacterial abundance was
also predicted by feeding tree diversity. The relative abundance
of bacteria belonging to Clostridia and Erysipelotrichia was
increased in areas of higher feeding tree diversity. The metabolic
activity of these bacterial taxa has recently been linked to sugar
alcohol metabolism from fermentable complex carbohydrates
(Tiffany et al., 2021). It is possible that howlers living in habitats
which offered a higher diversity of feeding trees, had access to
more variable food items rich in non-digestible fiber and sugar
(e.g., young and mature leaves, ripe and unripe fruits, flowers),
which can be used by these bacteria with capabilities of degrading
complex carbohydrates.

The patterns we report here provide important foundational
knowledge regarding the interactions between the environment,

Frontiers in Ecology and Evolution | www.frontiersin.org 8 July 2022 | Volume 10 | Article 863242

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-863242 July 1, 2022 Time: 16:4 # 9

Martínez-Mota et al. Stress Effects on Primate Microbiome

FIGURE 4 | Changes in proportional abundance of bacterial taxa related to fecal glucocorticoid metabolites of black howler monkeys (Alouatta pigra) and to variation
in feeding tree basal area. The increase in bacterial abundance is represented by size of dots, and changes in fGCM levels are represented from color transition from
blue to red.

diet, stress, and the microbiome. However, we acknowledge that
the relatively small sample size and sparse longitudinal sampling
constrain our ability to disentangle some of the measured
variables. The logistics of sampling known individuals in different
forest fragments limited the quantity and type of data that we
could obtain. Moving forward, studies should further explore
relationships of interest reported here, choosing forest fragments
representing a gradient of ecological attributes that are identified
a priori and sampling individuals more frequently over time.

It will also be important to explore the extent to which
the magnitude of these effects varies across different host
species and the physiological pathways that contribute to

this variation. Although several populations of black howler
monkeys inhabit highly disturbed tropical forests (Pozo-Montuy
et al., 2011; Rangel-Negrín et al., 2014b; Klass et al., 2020;
Martínez-Mota et al., 2021) and are most likely exposed to
environmental stressors (Martínez-Mota et al., 2007; Behie
and Pavelka, 2013; Rangel-Negrín et al., 2014a), these primates
might have coping mechanisms to deal with food availability
deficits resulting from forest loss and fragmentation. For
instance, Amato et al. (2015) found that SCFA produced
by gut bacteria of howler monkeys were increased during
periods of low energy intake, which suggests that microbial
metabolism may support energy availability under critical
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FIGURE 5 | Changes in proportional abundance of bacterial taxa of black howler monkeys (Alouatta pigra) related to variation in measures of food availability (i.e.,
feeding tree diversity and evenness).

periods of low food intake. This agrees with our findings which
revealed that black howler monkeys showing increased fGCM
levels and living in fragments characterized by lower food
biomass showed increased abundance of fermenting bacteria
such as Prevotellaceae, Ruminococcaceae, Lachnospiraceae,
and Faecalibacterium. Given the communication between
the brain and the gut (i.e., brain–gut axis, Foster et al.,
2017), testing whether environmental stress perception and
physiological stress responses of black howler monkeys
serve as cues to their gut microbiome to respond and
provide energy, or whether gut microbial changes signal a
significant challenge that threatens black howler monkeys, will
be important for understanding primate adaptation to changing
environments. Similarly, data describing these relationships
in other wild animals will allow a broader understanding of
environment–microbiota-physiology dynamics.

Several studies have attempted to determine whether
perceived environmental stressful conditions (e.g., habitat
disturbance, food availability constraints) and the concomitant
physiological stress reactions affect health and predict survival
of wild animals (Romero and Wikelski, 2001). However, it is
still unclear if such physiological responses result in pathologies
or even fitness reduction in wildlife, including free-ranging
primates (Bonier et al., 2009; Boonstra, 2013; Beehner and
Bergman, 2017). Our results of the interaction effects between
an index of stress and one aspect of habitat disturbance (i.e.,
food availability) on bacterial community shifts and richness,
indicate that animal’s physiological responses to environmental
challenging conditions may affect other body systems, like
the gut microbiome. Whether the complex interplay between

stress reactions and dysbiosis in wild animals contributes to a
fitness decline or a detrimental health state should be further
explored in nature.

Studies investigating the interplay between stress reactions
and the gut microbiome in wildlife are still limited, but
an emerging field exploring the communication between
endocrine and gut microbiome systems in free ranging animals
is currently developing (see Benavidez et al., 2019). Stress
responses may induce intestinal disorders affecting microbial
structure and/or metabolism in wild and domestic animals
(Söderholm et al., 2002; Li et al., 2018; Yan et al., 2021).
For instance, correlations between stress biomarkers, such as
glucocorticoids, and gut bacterial abundance were found in
eastern gray squirrels, pangolins, yellow-legged gulls, and western
lowland gorillas (Noguera et al., 2018; Vlčková et al., 2018;
Stothart et al., 2019; Yan et al., 2021); however, the size
of effects varied according to the host species. Our results
support this trend, in which only the relative abundance
of certain bacterial taxa was associated with changes in the
host’s fGCM levels.

Hypothetical models of host–microbiome interaction point
out that environmental and host-related factors work in concert
to sculpt bacterial communities in wild primates (Amato
and Righini, 2015; Benavidez et al., 2019). Supporting this
notion, here we showed that gut bacterial communities of
black howler monkeys living in disturbed forest fragments
could be influenced not only by food availability (as a
surrogate of diet), which is a significant ecological factor
contributing to shape wildlife microbiomes, but also by the host
endocrine physiology.
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