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Aeroscapes—dynamic patterns of air speed and direction—form a critical component
of landscape ecology by shaping numerous animal behaviors, including movement,
foraging, and social and/or reproductive interactions. Aeroecology is particularly critical
for sensory ecology: air is the medium through which many sensory signals and cues
propagate, inherently linking sensory perception to variables such as air speed and
turbulence. Yet, aeroscapes are seldom explicitly considered in studies of sensory
ecology and evolution. A key first step towards this goal is to describe the aeroscapes
of habitats. Here, we quantify the variation in air movement in two successional stages
(early and late) of a tropical dry forest in Costa Rica. We recorded air speeds every
10 seconds at five different heights simultaneously. Average air speeds and turbulence
increased with height above the ground, generally peaked midday, and were higher
overall at the early successional forest site. These patterns of lower air speed and
turbulence at ground level and overnight have important implications for olfactory
foraging niches, as chemotaxis is most reliable when air movement is low and steady.
We discuss our results in the context of possible selective pressures and observed
variation in the foraging ecology, behaviors, and associated morphologies of resident
vertebrates, with a focus on mammals. However, these data also have relevance to
researchers studying socioecology, invertebrate biology, plant evolution, community
ecology and more. Further investigation into how animals use different forest types,
canopy heights and partition activities across different times of day will further inform
our understanding of how landscape and sensory ecology are interrelated. Finally,
we emphasize the timeliness of monitoring aeroecology as global wind patterns shift
with climate change and human disturbance alters forest structure, which may have
important downstream consequences for biological conservation.

Keywords: aeroecology, olfactory ecology, tropical dry forest (bosque seco tropical), air speed, sensory
landscape, sensory evolution

INTRODUCTION

Air is a dynamic and ever-changing medium, and aeroscapes (defined as patterns in air speed
and direction; Vogel, 1996) are an integral part of terrestrial ecosystems. Efforts to integrate
aeroscapes into the study of organismal behavior and ecology (collectively termed aeroecology;
Kunz et al., 2008; Diehl, 2013) have revealed that animals react adaptively to variables such as
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air speed and turbulence (Frick et al., 2013; Diehl et al., 2017).
These same factors are expected to have pronounced effects
on the propagation and uptake of sensory information (Finelli
et al., 2000; Muller-Schwarze, 2006). For example, greater air
speeds will disperse the odors of plants and animals farther,
but the resulting turbulence is likely to disrupt the spatial
distribution of odor plumes, challenging the ability of organisms
to navigate toward the odor source (i.e., anemotaxis; Murlis,
1997; Conover, 2007; Bingman and Moore, 2017). This tradeoff
in signal propagation and efficacy is well-studied in insects,
which optimize their flight paths in response to air speed while
tracking odor plumes (Aluja et al., 1993; Cardé and Willis,
2008; Hennessy et al., 2020). At the same time, many mammals
possess relatively complex olfactory systems, and they, too, are
sensitive to variations in the aeroscape (Moulton, 1967; Svensson
et al., 2014). For example, air speed is known to affect the
olfactory orientation and behavior of carnivorans—red foxes,
striped skunks, raccoons, polar bears, domestic dogs (Ruzicka
and Conover, 2011, 2012; Togunov et al., 2017; Jinn et al., 2020)—
as well as primates, such as ring-tailed lemurs (Cunningham
et al., 2021). Still, there has been little effort to explore the
spatiotemporal factors that govern a given aeroscape, or the
effects of this variability on the aero-sensory ecology of mammals,
especially in forest ecosystems.

Forests are complex habitats in the vertical and horizontal
planes (Ennos, 1997), and this level of heterogeneity is reflected
in the form of highly variable aeroscapes (Baynton, 1969; Heydel
et al., 2014). For example, the understory is essentially sheltered
from the winds affecting the upper canopy, which can create
striking vertical disparities in air speeds (Aoki et al., 1978; McCay,
2003). Scant air movement in the understory is expected to favor
efficient anemotaxis, but the magnitude of vertical variation in
an aeroscape can be offset temporally—e.g., at night, when air
is cooler and moving at diminished speed—or spatially as a
function of standing forest biomass (Murlis et al., 2000; McCay,
2003). The essential limitation is that these factors are rarely
measured simultaneously or folded into our understanding of
mammalian aero-sensory ecology and evolution.

To contribute toward building this literature, we studied
spatiotemporal variation in the aeroscape of a lowland tropical
dry forest in Costa Rica. We recorded variation in air speed and
turbulence as a function of: (1) vertical position and (2) diel
periodicity. We measured each of these variables at two sites,
chosen to reflect two habitat types—early and late successional
forest. Our goal is to better understand how aeroscapes vary
within a forest, and how this variation might mediate the
distribution of odorant molecules through the aeroscape. This
information is essential for understanding the selective pressures
that have shaped the olfactory anatomy and behaviors of resident
animals, as well as plant reproductive strategies.

MATERIALS AND METHODS

Study Site
We collected data in Sector Santa Rosa of the Área de
Conservación Guanacaste, northwestern Costa Rica. The site is a

tropical dry forest with two distinct seasons: a dry season from
December through May and a wet season from June through
November (Campos, 2018; Janzen and Hallwachs, 2020; Melin
et al., 2020). Sector Santa Rosa forests are primarily secondary,
stemming from restoration and reforestation efforts that began in
the 1970s (Janzen and Hallwachs, 2020), and forest composition
and structure varies between early and late successional stages.
Canopy height ranges from 6 to 15 m depending on successional
stage; the canopy is typically taller in areas of later succession
(Kalacska et al., 2004; Powers et al., 2009).

Data Collection
We used cup anemometers (WL-11; Scarlet Tech, Taipei, Taiwan)
to collect air speed data from May to June 2021. The instruments
have a sensitivity range of 0.6–50 m/s, a resolution of 0.1 m/s, and
an accuracy of ±2%, per manufacturer specifications. We built
and erected two scaffold towers: one in a late successional forest
(10.838617, −85.614283; 1,086 m a.s.l.), and the other in an early
successional forest (10.839383, −85.616383; 906 m a.s.l.). To each
tower, we affixed five anemometers at heights of 0.5, 3.5, 5.5, 7.5,
and 10 m (Figure 1). The devices were set to data-logging mode,
recording average and maximum air speed in 10-s intervals.

Data Analysis
We obtained the mean, median, and standard deviation of air
speed for: (1) each sampling height and (2) time of day. We
calculated air turbulence as standard deviation of air speed/mean
air speed (McCay, 2003). The sensitivity threshold (0.6 m/s) of
our anemometer risks a systematic bias against low air speeds,
especially in the understory. Accordingly, we imputed values
below this limit by using survival analyses, a method developed
for the health sciences but adopted for analyzing environmental
data with detection limits (Helsel, 2004). Using the survival
(Therneau, 2021) and NADA (Lee, 2020) packages in R (v. 4.1.0.,
R Core Team, 2021), we constructed Kaplan–Meier estimates for
data recorded at each site independently for each height and time
of day, considering air speeds ≤0.6 m/s to be left-censored.

To detect significant differences in air speeds and turbulence
as a function of vertical height and time of day, we conducted
Cox proportional hazard modeling via the survival package
in R. As these hazard models are designed for right-censored
data, we transformed our data by using the “flipping” method
of Helsel (2004), which subtracts all observed values from a
constant to convert left-censored data to right-censored. Since
the same column of wind is recorded simultaneously at all
5 observed heights for a given site, there is a high degree
of collinearity between the height and time of day predictor
variables, therefore we modeled each separately and present two
models. To address our first aim, we modeled air speed as a
function of vertical position, based on height from the ground
(“Height”) in two different habitat types. To address our second
aim, we modeled air speed as a function of diel periodicity
(“Time of Day”) in two different habitat types. For both models,
the outcome variable was the Kaplan–Meier estimate of average
wind speed, and an interaction term of study site and height,
or study site and time of day, was included as a predictor
variable. For the Height model, the continuous variable distance
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FIGURE 1 | Scaffold system used to fix five anemometers per tower at heights of 0.5, 3.5, 5.5, 7.5, and 10 m. The anemometers were moved between our early
successional forest site and our late successional forest site at 2 week intervals.

from the ground (in meters) was used, while for the Time of
Day model, because of the circular nature of temporal data, we
employed a sinusoidal model with separate cos and sin terms
(Simmons, 1990; Cazelles et al., 2008). Code for all analyses can
be found at https://github.com/allegradepasquale/wind_speed_
project.git.

RESULTS

Vertical Variation
Air speeds increased as a positive function of vertical height,
and mean air speeds differed between the study sites, with
greater mean speeds recorded in the early successional forest
(Figure 2 and Table 1). The interaction term of study site and

height was also significant (Table 1). Variation in air turbulence
followed a similar pattern: mean air turbulence scores varied
as a positive function of vertical height and were greater in
the early successional forest (Figure 2). Site differences in our
measure of air turbulence were pronounced near ground level
(0.5 m), but values tended to converge with increasing vertical
height (Figure 2).

Temporal (Diel) Variation
Air speed varied significantly with time of day: winds were
stronger from late morning to early afternoon and were lowest
overnight (Figures 3, 4). As with our analyses of height, the
main effect of study site, as well as the interaction between
study site and time of day, were also significant (Figure 4
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FIGURE 2 | Average air speeds (±standard deviation) and turbulence score at different heights from the ground for our early successional and late successional
forest sites, generated from Kaplan–Meier estimates.

TABLE 1 | Results of cox proportional hazard models for mean air speed by vertical position and time of day (i.e., diel cycle).

Model Coefficient Hazard ratio Std. error Z-Score Lower 95% Upper 95% P-value

Height model

Height 0.078143 1.0812778 0.000611 127.74 1.08 1.0826 <2e-16*

Site −1.07235 0.3422013 0.006444 −166.3 0.3379 0.3466 <2e-16*

Height:Site 0.002447 1.0024507 0.001013 2.415 1.0005 1.0044 0.0158*

Time of day model

Site −1.077947 0.340294 0.003573 −301.70 0.3379 0.3427 <2e-16*

Time of day (sin function) −0.277369 0.757775 0.002983 −92.97 0.7534 0.7622 <2e-16*

Time of day (cos function) −0.477793 0.620151 0.003117 −153.28 0.6164 0.6240 <2e-16*

Time of day (sin function):Site −0.068203 0.934071 0.004753 −14.35 0.9254 0.9428 <2e-16*

Time of day (cos function):Site −0.233284 0.791928 0.004983 −46.82 0.7842 0.7997 <2e-16*

Asterisks represent statistical significance (p < 0.05).

and Table 1). Turbulence scores were highest at midday and
lowest overnight.

DISCUSSION

Air movement is a dynamic aspect of landscape ecology that
shapes the way animals experience the world. In this study, we
quantified air movement in a tropical dry forest as a function
of vertical position and diel periodicity in two forest types. We
found that air speed and turbulence increased with height, peaked

midday, and were lower in the late successional forest. Taken
together, our findings suggest spatiotemporal predictability in the
aeroscape of a tropical forest and motivate a discussion of how
animals adapt to and exploit these patterns.

Vertical Variation in Aeroscapes
We detected a steep increase in air speeds as a function of
vertical height, a result that replicates findings from other
forest ecosystems (Baynton, 1969; Oliver and Mayhead, 1974;
Aoki et al., 1978; Kruijt et al., 2000; McCay, 2003). The prevailing
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FIGURE 3 | Maximum air speeds in meters per second at our early and late successional sites over the diel cycle. Black dots represent turbulence scores.

explanation for this pattern is that air movement is impeded near
the ground by understory vegetation, tree trunks, and surface
topography; however, the implications of such a gradient for
olfactory ecology are underexplored. Fruits, for example, emit
odors (generally lightweight, ephemeral volatile and semivolatile
organic compounds) that are easily dispersed by air movement
(Rodríguez et al., 2013; Nevo et al., 2018, 2020), although
excessive air speeds can over-disperse odor compounds and
disrupt anemotaxis (Svensson et al., 2014). Still, it follows that
the vertical position of fruit will determine the probability and
efficiency of long-distance odor detection and foraging by seed-
dispersing mutualists (Santana et al., 2021). Anemotaxis toward
food resources is well-studied among invertebrates (Zjacic and
Scholz, 2022) and increasingly so among mammals. For example,
experiments with bats have elicited klinotaxis in response to
fruit odors (Thies et al., 1998; Korine and Kalko, 2005; Leiser-
Miller et al., 2020; Brokaw et al., 2021; Brokaw and Smotherman,
2021), and a field experiment by Fleming et al. (1977) found
that bats will deviate from their flyways by as much as 50 m to
acquire fruits mounted to 1.5-m poles set up moments before
sunset. Further, experiments with coatis and ring-tailed lemurs
have shown that they can detect fruit from distances up to 20 m
(Hirsch, 2010; Cunningham et al., 2021). These findings suggest
that aero-sensory ecology via stimulus response can complement
and extend the critical importance of spatial memory to the
localization of foods (Janson, 1998; Janmaat et al., 2014; Dahmani
et al., 2018). Looking forward, it stands to reason that our
understanding of cognitive ecology will only be strengthened as
we incorporate and integrate the systematic study of aeroscapes
and other sensory landscapes into research frameworks.

Many animals use olfactory signals to communicate with
one another for reproduction, dominance, and territory defense,
as well as to discriminate conspecifics from heterospecifics.
In mammals, these occur mainly through the deposition of
scent marks (Johnson, 1973; Irwin et al., 2004; Kollikowski
et al., 2019). Our results suggest that olfactory signals may
remain more localized when deposited nearer to the ground
than higher in the canopy. It is noteworthy, then, that olfactory
communication appears to be particularly prevalent in terrestrial
mammals, which have olfactory receptor gene repertoires that
have undergone three times as much gene duplication than
those of volant, arboreal, and aquatic mammals (Hughes et al.,
2018). At the same time, low air speeds will limit long-distance
dispersal of odors. It is possible that species and habitat-specific
optima for olfactory signal height exist and may vary across
taxa. For example, Ethiopian wolves, gray wolves, and pine
martens use raised-leg urination, a behavior thought to reinforce
territorial boundaries by dispersal of urinary odor plumes. Urine
deposition above, rather than on, the ground may improve
scent dispersal (Peters and Mech, 1975; Macdonald, 1980;
Pulliainen, 1981; Alberts, 1992; Sillero-Zubiri and Macdonald,
1998). Turning to another mammalian radiation, many primate
species that have evolved glands dedicated for scent deposition,
including ring-tailed lemurs, mandrills, drills, and sifakas, are
largely terrestrial (Delbarco-Trillo et al., 2011; Drea, 2015;
Vaglio et al., 2016). Systematic study of olfactory signaling and
receiving behaviors, along with investigation of co-occurring
anatomical and genetic variation, in taxa occupying different
vertical niches will allow this hypothesis to be tested. In
general, the intersection of sensory and aeroecology holds
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FIGURE 4 | Mean air speeds at two forest sites as a function vertical height and diel periodicity. The x-axis begins at 00:00 h (midnight) and ends at 23:00 h (11:00
pm).

untapped potential for better understanding the wide variation
in animal sensory traits.

Temporal (Diel) Variation in Aeroscapes
We detected pronounced variation across the 24-h day, with peak
and nadir air movements at midday and overnight, respectively.
This pattern is almost certainly due to ambient temperature
flux because warmer air moves faster and is less stable (Pleijel
et al., 1996; McCay, 2003; Monteith and Unsworth, 2013; but
c.f. Baynton, 1968, 1969; Rapp and Silman, 2012 for other
patterns). Following similar arguments to those concerning
vertical variation, nocturnal aeroscapes may be preferential for
animals that detect and localize scents. Many nocturnal animals
rely more on olfaction than vision, but the reasons are usually
couched in the language of constraint—there is scant light at
night, so vision is limited (Barton et al., 1995; Balkenius et al.,
2006; Borges, 2018; Niimura et al., 2018). Underappreciated,
however, is the idea that olfaction is more effective at night

due to the relative stillness of air, especially in the understory,
where air speeds and turbulence tend to be lowest (Murlis, 1997;
Muller-Schwarze, 2006). Lack of wind produces a high signal-
to-noise ratio for a given odor plume, resulting in a stronger
olfactory signal. This nocturnal environment may thus select for
olfactory-driven ecologies and social interactions, perhaps even
in the absence of selection driven by the loss of visual ability
(Drea et al., 2019).

Spatiotemporal Interactions
Vertical and diel variation interact to create diverse aeroscapes,
ranging from the windiest and most turbulent environment of
the upper canopy at midday, to the comparative stillness of
the understory at night. Such interactions create opportunities
for convergence. We found that aeroscapes in the daytime
understory are comparable to those in the canopy at night,
which raises the possibility of convergent olfactory signals and
sensitivities in the animals that occupy these distinct niches
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(Barton, 2006; Valenta et al., 2013; Brokaw and Smotherman,
2020; Nevo and Ayasse, 2020). Interestingly, the olfactory ecology
of nocturnal terrestrial frugivores may depend in part on wind-
mediated fruit falls during daytime, suggesting vertical day-night
integration of aeroecologies (Augspurger and Franson, 1987;
Borah and Beckman, 2021). The upshot is that daytime canopy
conditions are suboptimal for anemotaxis in the service of
frugivory and seed dispersal, which may explain why so-called
“bird-fruits” in the upper canopy emit little scent (Gautier-Hion
et al., 1985; Howe, 1986; Lomáscolo et al., 2010; Valenta et al.,
2018; Valenta and Nevo, 2020).

Some angiosperm plants, including Ficus and Nicotiana,
exhibit diurnal rhythms in fruit and flower chemistry (Raguso
et al., 2003; Borges et al., 2011; Burdon et al., 2015; Ripperger
et al., 2019; Balducci et al., 2020) timed to maximize their
availability and attractiveness for pollinators and seed dispersers.
These diurnal rhythms may have evolved in response to diurnal
patterns in air movement, such that compounds produced
during the day may be heavier and more robust against
turbulent conditions than those produced at night, which may
be lighter and more easily propagated under calmer conditions
(Alberts, 1992; Muller-Schwarze, 2006). Flowers, which are
generally more delicate and ephemeral than fruits, are often
produced early in the morning, which may reflect a compromise
between protection from wind-damage and availability to vision-
mediated pollinators such as bees and birds (Herrera, 1990;
Bloch et al., 2017). Setting aside the aeroecology of frugivory
and pollination, aeroscapes are also essential to another aspect
of plant reproductive biology: wind dispersal (Kennedy, 1978;
Friedman and Barrett, 2008). Flowering and the eventual
abscission of wind-dispersed seeds is greatest at midday, when air
movement is highest, which suggests some level of aerosensation
(Bohrer et al., 2008; Wright et al., 2008; Caplat et al., 2012). Such
hypotheses invite future testing.

Intraforest Variation
We recorded higher air speeds and greater turbulence in the
early successional habitat compared to the later one, possibly
reflecting the lower levels of standing biomass. This pattern
is expected for habitats with greater levels of anthropogenic
disturbance that have caused vegetative loss (Raynor, 1971;
Muller-Schwarze, 2006; Klein et al., 2021). Such results have
potentially important implications. For example, increased air
movement may affect the relative colonization of wind-dispersed
versus animal-dispersed plants in disturbed areas (Cadenasso
and Pickett, 2001; Cubiña and Aide, 2006; Nathan et al., 2008),
altering community dynamics, habitat suitability to frugivores,
and reforestation efforts (Janzen, 1988; Vieira and Scariot, 2006;
de la Peña-Domene et al., 2018; Camargo et al., 2020). Greater air
movement and turbulence are also expected to negatively affect
animals that rely on odor plumes (Shukla et al., 1990; Zhang et al.,
1996; Gandu et al., 2004). Consequences include impediments to
animal foraging and communication, as discussed above, as well
as effects on predator-prey networks.

Sensory detection of predators often involves scent, and
many species are particularly attuned to the odors of their
relevant predators (Weldon, 1990; Kats and Dill, 1998;

Apfelbach et al., 2005). Rats are particularly sensitive to
2,4,5-trimethylthiazoline, a component of red fox anal gland
secretions (Laska et al., 2005) and mice, rats, and stoats, for
example, have been shown to avoid carnivore and apex predator
odors (Ferrero et al., 2011; Garvey et al., 2016). Indeed, higher
wind speeds have been found to impede predator detection
by mule deer (Bowyer et al., 2001) and other mammal species
(Cherry and Barton, 2017). The sensory impact of air movement
can be further compounded by spillover to the other senses:
wind creates acoustic and visual noise, which may reduce
detection of stimuli by other senses, further impeding predator
detection (Hayes and Huntly, 2005; Carr and Lima, 2010;
Francis et al., 2012). Overall, future work could usefully address
the diverse ways that anthropogenically modified aeroscapes
affect the aero-sensory ecology and habitat use of resident flora
and fauna (Damschen et al., 2008). As these influences could
ultimately affect species distributions (Bowyer and Kie, 2009;
Breitbach et al., 2012), we urge the incorporation of aeroscapes
into existing conservation and evolutionary frameworks (e.g.,
assessment of “edge effects” and “landscapes of fear”) and general
inclusion into future studies of anthropogenic disturbance and
deforestation/reforestation dynamics (Laundre et al., 2010).

Limitations and Future Directions
Our results offer insight into the variability of air movement
within a heterogeneous landscape, although some caution must
be noted. First, due to equipment limitations, we were unable
to sample early and late successional forest sites simultaneously,
and instead sampled them sequentially. This serial approach
raises the possibility that temporal differences in climate,
not habitat heterogeneity, were driving the difference that
we observed between sampling locations. Further, due to
the logistical challenges of erecting scaffolds in a protected
habitat, we were unable to sample replicates of early and late
successional forest conditions. The extent to which our two
study locations exemplify such habitat conditions is therefore
uncertain, and could usefully be explored in greater detail
in future studies sampling multiple locations per forest type.
Lastly, the detection limits of our anemometers prohibited direct
measurement of the slowest air speeds. While prohibitively
expensive for our study design, solid-state anemometers have the
advantage of greater measurement range. Future studies may also
benefit from incorporating variation in wind direction, as this
also has important implications for olfactory-based orientation
(Kennedy, 1978; Togunov et al., 2017; Jinn et al., 2020).

Our study contributes to the emerging field of aeroecology
by quantifying variation in the aeroscape of a lowland
tropical dry forest and drawing attention to the implications
for sensory signal propagation, plant reproduction, and
mammalian sensory evolution. This topic is timely as
shifting air movement patterns due to anthropogenic climate
change may disrupt aeroecological interactions, with the
potential far-reaching effects on animal behavior, population
dynamics, and species distributions (Usbeck et al., 2010;
McInnes et al., 2011; Young et al., 2011; Lewis et al., 2015).
Understanding the impacts of aeroscapes on sensory
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ecology and evolution will be key for predicting how animals will
respond to changing environments.
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