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High rates of biodiversity loss caused by human-induced changes in the environment
require new methods for large scale fauna monitoring and data analysis. While
ecoacoustic monitoring is increasingly being used and shows promise, analysis and
interpretation of the big data produced remains a challenge. Computer-generated
acoustic indices potentially provide a biologically meaningful summary of sound,
however, temporal autocorrelation, difficulties in statistical analysis of multi-index data
and lack of consistency or transferability in different terrestrial environments have
hindered the application of those indices in different contexts. To address these issues
we investigate the use of time-series motif discovery and random forest classification of
multi-indices through two case studies. We use a semi-automated workflow combining
time-series motif discovery and random forest classification of multi-index (acoustic
complexity, temporal entropy, and events per second) data to categorize sounds in
unfiltered recordings according to the main source of sound present (birds, insects,
geophony). Our approach showed more than 70% accuracy in label assignment in
both datasets. The categories assigned were broad, but we believe this is a great
improvement on traditional single index analysis of environmental recordings as we can
now give ecological meaning to recordings in a semi-automated way that does not
require expert knowledge and manual validation is only necessary for a small subset of
the data. Furthermore, temporal autocorrelation, which is largely ignored by researchers,
has been effectively eliminated through the time-series motif discovery technique applied
here for the first time to ecoacoustic data. We expect that our approach will greatly
assist researchers in the future as it will allow large datasets to be rapidly processed and
labeled, enabling the screening of recordings for undesired sounds, such as wind, or
target biophony (insects and birds) for biodiversity monitoring or bioacoustics research.
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INTRODUCTION

Biodiversity loss is a global environmental issue (Cardinale et al.,
2012), and it is now imperative to develop methods to efficiently
monitor wildlife, accounting for spatial and temporal coverage
(Joppa et al., 2016). Remote sensing techniques are being used
to fill this gap, as they can be applied over large geographic
areas where access may be difficult, allowing for some degree
of unattended monitoring (Kerr and Ostrovsky, 2003). Remote
sensing techniques include a range of technologies, like satellite
imaging (Bonthoux et al., 2018), camera traps (Fontúrbel et al.,
2021), Unmanned Aerial Vehicles (UAVs) (Nowak et al., 2019),
and passive acoustic monitoring (PAM) (Froidevaux et al., 2014;
Wrege et al., 2017).

Passive acoustic monitoring is now routinely used in terrestrial
environments to monitor biodiversity (Gibb et al., 2019) with
several purposes, such as understanding acoustic community
composition of frog choruses (Ulloa et al., 2019), investigating
acoustic species diversity of different taxonomic groups (Aide
et al., 2017), and bird species recognition based on syllable
recognition (Petrusková et al., 2016). Long-term recording can
enable detection of species responses to important environmental
impacts like climate change (Krause and Farina, 2016), and
species recovery following extreme weather events (Duarte et al.,
2021). However, recordings comprise large datasets which can
be challenging to store, access and analyze (Ulloa et al., 2018).
Subsampling is one way of dealing with these constraints, but
it can limit the temporal and/or spatial scale of monitoring,
therefore methods to analyze and filter recordings are necessary.

Currently, analysis of acoustic recordings still heavily relies
on manual listening and inspection of recordings: this greatly
limits the applicability of PAM. One alternative to that is
to summarize acoustic information using acoustic indices,
which mathematically represent different aspects of sound (e.g.,
frequency, intensity, etc.) (Sueur et al., 2014). Acoustic indices
have, in some cases, been inspired by ecological indices. For
example, the acoustic diversity index (Villanueva-Rivera et al.,
2011) is based on the Shannon diversity index (Shannon and
Weaver, 1964). NDSI (Gage and Axel, 2014) measures the ratio
between biophony (biological sounds) and anthrophony (human
and technological sounds) and is derived from NDVI, an index
used in the remote sensing analysis of vegetation (Pettorelli,
2013). Acoustic indices have been used in different contexts such
as to evaluate the differences in faunal beta-diversity between
forests and plantations (Hayashi et al., 2020), to detect rainfall
in acoustic recordings (Sánchez-Giraldo et al., 2020), to examine
differences among indices representing taxonomic groups (e.g.,
birds, anurans, mammals and insects) (Ferreira et al., 2018), to
relate indices with bird diversity (Tucker et al., 2014), and to
identify frog species (Brodie et al., 2020).

Although there are numerous acoustic indices to choose
from, different indices represent different acoustic phenomena
in terrestrial environments, and the translation of acoustic into
ecological information may vary depending on the context
(Machado et al., 2017; Jorge et al., 2018; Bradfer-Lawrence et al.,
2020). While there is no consensus on linking one index to one

taxa, research has shown that combining indices can provide
a good representation of different soundscapes (i.e., sounds in
the landscape), especially across varying environments (Towsey
et al., 2018), and can even be used to recognize different species
(Brodie et al., 2020). Visualization tools such as false-color
spectrograms (FCS) successfully combine three acoustic indices
[Acoustic Complexity Index (Pieretti et al., 2011), Temporal
Entropy (Sueur et al., 2008) and Events per Second (Towsey,
2018)] allowing different sound sources to be identified. The FCS
and its combination of indices have been shown to provide a good
representation of soundscapes in different contexts (e.g., Brodie
et al., 2020; Znidersic et al., 2020). While visual representations
of soundscapes are useful for scanning recordings for different
phenomena (like rain, wind, or a frog chorus, for example),
there is currently no available tool to statistically analyze these
images. The underlying index data used to create the FCS can
be retrieved and analyzed, but the mathematical interpretation of
multiple indices remains a challenge, and therefore the statistical
analysis of single indices is currently the favored approach.
If mass deployments are required, [e.g., Australian Acoustic
Observatory—(Roe et al., 2021)], we need to develop reliable,
reproducible analysis methods with some degree of automation.

Furthermore, most statistical methods used for continuous
recordings require an approach that accounts for temporal
autocorrelation of the data (i.e., most statistical tests applied
in ecology require independence of data). This means that
each minute is not independent of the previous one in a
recording, and this is often ignored in ecoacoustic studies. While
spatial autocorrelation can be dealt with through experimental
design, temporal correlation exists even when data are non-
continuous (e.g., subsampled for example 1 min every 15 min)
or arbitrarily split into time periods (e.g., day/night). Standard
statistical approaches which assume independence of data cannot
be applied for autocorrelated data.

Aiming to address the different challenges faced by researchers
when analyzing recordings, we present a novel workflow for
analyzing multi-index acoustic data. Our goal was to provide
a tool that can be used by ecologists in a rapid assessment
of terrestrial acoustic recordings. By having such a tool,
ecologists can forward recordings of interest (i.e., for species
identification) to specialists more efficiently, but also have quick
metrics to compare ecosystems and/or recordings from different
points in time. To deal with autocorrelated data capturing
repeated patterns in acoustic indices is an alternative. Using the
Hierarchical Based Motif Enumeration (HIME) (Gao and Lin,
2017) of acoustic indices, repetitive patterns of the data were
detected (here referred to as motifs) in continuous recordings. As
the algorithm searches for repetition of patterns in the time-series
(Zolhavarieh et al., 2014) it was expected that noisy minutes (i.e.,
non-signal) would be excluded from the results as they tend to be
random and not have a structure that repeats across time. Here we
outline a semi-supervised method to classify the motifs according
to dominant sounds. We demonstrate the transferability of the
analysis in different environments and timescales with two case
studies using data from two distinct ecosystems and recorded
with different sampling schemes and devices.
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MATERIALS AND METHODS

Acoustic Analysis
The recordings were analyzed using AnalysisPrograms.exe
(Towsey et al., 2020) three indices were used to create
FCS (Towsey et al., 2014). These indices are: (1) Acoustic
Complexity – quantification of relative changes in amplitude
(Pieretti et al., 2011); (2) Temporal Entropy – concentration of
energy overall the amplitude envelope (Sueur et al., 2008); (3)
Events Per Second – number of acoustic events that exceeds 3dB
per second (Towsey, 2018). FCS have been used successfully to
represent a range of different soundscapes (Brodie et al., 2020;
Gan et al., 2020; Indraswari et al., 2020; Znidersic et al., 2020),
and provide a visual tool to aid in the identification of sounds,
reducing the time required for verification of data.

The analysis was done directly on the unprocessed recordings,
meaning that no noise (unwanted sounds) was removed
beforehand. Acoustic data will have different sound sources and
the presence of noise is common. Moreover, pre-processing can
be time consuming, and so we tested the method without any type
of pre-processing (i.e., cleaning up) of the data.

All analyses were performed using R and scripts are available
at http://doi.org/10.5281/zenodo.4784758 (Scarpelli, 2021).

The HIME algorithm was applied to find significant motifs
in variable length time-series. This algorithm was used because
it accounts for temporal structure in data. It is widely used
in other fields, including medical research (Liu et al., 2015),
weather prediction (McGovern et al., 2011), and animal behavior
(Stafford and Walker, 2009). The algorithm works by applying a
moving window along the time-series and searching for repetitive
sequences. The user sets the minimum window length, which will
be the starting point and the length will progressively increase.
There is a compromise between the window length and the
motifs’ identification: small windows are more likely to have
a pair, but not with necessarily meaningful patterns while big
windows are less likely to have a matching sequence.

The analysis process can be seen in Figure 1 and detailed steps
are presented in the text below.

Subsequence Time-Series Search
The step-by-step process of the sub-sequence search is described
in Table 1.

Feature Extraction and Random Forest
Model
Wavelet transform (Lau and Weng, 1995) and feature extraction
were then performed on individual motifs (which are also
time-series). Wavelets was used so both frequency and time
information were preserved when extracting features. Each time-
series was treated as an individual sample for feature extraction,
training, and testing. Based on the extracted features, a Random
Forest (RF) classification model was trained using manually
labeled data and then the classification model was used to
discriminate between sound categories within motifs, attributing
ecological meaning to the motifs. RF classification is a supervised
machine learning technique (Breiman, 2001), and has been used

in numerous research fields such as genomics (Díaz-Uriarte and
Alvarez de Andrés, 2006), satellite image classification (Pal, 2005),
and soundscape analysis (Buxton et al., 2018). The algorithm
classifies the data into groups using different combinations of
features. It has been reported to perform well because it uses an
ensemble learn strategy by combining different methods during
the learning process, providing more accurate and generalized
results (Cutler et al., 2012). In this study all the motifs were
labeled. It was necessary to first test the testing sample size
that maximized accuracy, while avoiding overfitting. This was
done by progressively increasing training samples and measuring
accuracy at each round. Accuracy was not greatly improved
using more than 30% labeled data, and so this threshold was
established. It was important that motifs were labeled using
their corresponding spectrogram to show exactly what sound
the index was capturing. In cases where the signal was unclear,
these recordings were sound-truthed. This allowed maximizing
label information, while keeping some generalization (i.e., not
identifying species, for example). More categories of labels can
increase training difficulty because categories become similar,
making it difficult for the algorithm to discriminate between
them. Additionally, biophony is now classified according to their
soundtope (Farina, 2014). Soundtopes are the collective sounds
produced by biophony at the same time.

Table 2 describes each step of the process and the
expected output.

Case Study
One of the limitations of using acoustic indices as a measure
of biodiversity is that recent studies have shown variable
success, that is largely context-dependent. In this case study,
we demonstrate how our novel method overcomes this issue
by testing and validating our approach in two very different
ecosystems, including varying background noise and different
acoustic recorders.

Dataset 1: Bowra
Data were collected at Bowra Wildlife Sanctuary in semi-arid
western Queensland, Australia (Figures 2A,B). The sanctuary is
owned by the Australian Wildlife Conservancy, and it is known
for its abundant birdlife. The property covers more than 14,000
hectares in the Mulga Lands Bioregion of Australia (Figure 2B).
The topography is mostly flat, and the vegetation is dominated
by Acacia woodlands, Mitchell tussock grasslands, and Coolabah
(Eucalyptus coolabah) woodlands along ephemeral creek lines.
The region has very low annual precipitation rates, with an
annual mean of 373.3 mm (Australian Government Bureau of
Meteorology, 2020).

Audio Sampling
Data were acquired using 12 SongMeter four recorders (Wildlife
Acoustics), with a sampling rate of 44.1 kHz and 16 bits in stereo.
Recorders were placed 200 m apart, (Figures 2B,C), operating
continuously for approximately 40 h/sampling point. Sampling
points were selected across a gradient of different vegetation
communities and proximity to creek lines. To demonstrate the
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FIGURE 1 | Flowchart with the analysis steps and expected results.

TABLE 1 | Description of the steps to be followed to perform subsequence motif search, actions that should be done by the user and expected output.

Step Action Output

1.1 Structure acoustic indices
values as time-series

Order acoustic indices as a time series (i.e., date, time, and minute). One time-series per index/location, resulting in
three files (one per index) per location.

1.2 Motif search algorithm Set start window length. Motifs start, end, length and distance metric.

1.3 Process motif results Using the output from the motif search and provided parameters,
overlapping sequences were identified and removed, retaining only
non-overlapping patterns. This is conducted for each index and
location because different indices measure different aspects of sound,
and therefore overlaps in time were permitted across different indices.

Unique sequences, i.e., non-overlapping patterns

1.4 Crop spectrograms using
motif parameters

Cut spectrograms corresponding to each index (provided by
AnalysisPrograms.exe) according to each motif to provide images for
each sequence.

One image per motif

methods in a graphical way, one sampling point was chosen
(white square in Figure 2C) for data visualization.

The data collection period coincided with a dust storm with
high wind speeds, so recordings were very noisy and biophony
was masked for large recording segments (pink/purple across all
frequency bands in Figure 4A). While noise presents a challenge
for data analysis, environmental conditions vary and are beyond
researcher control, thus it is important that the method presented
here is tested under varied and real circumstances.

Dataset 2: Samford Ecological Research Facility
The second dataset used was 1 month of data (March 2015) from
the Samford Ecological Research Facility (SERF), a SuperSite in
the Terrestrial Ecosystem Research Network (TERN). The TERN
initiative established in 2009 monitors terrestrial ecosystem
attributes over time at a continental scale. The data collected
through this initiative are freely available through the TERN
data portal1.

Samford Ecological Research Facility is situated approximately
20 km from Brisbane in the South-East Queensland Bioregion,
Australia (Figure 3). The region experiences a sub-tropical

1https://portal.tern.org.au

climate and high levels of forest fragmentation and urbanization
(Figure 3). The topography is gently undulating, and the
vegetation consists of Eucalypt open forest (dominated by
Eucalyptus tereticornis, Eucalyptus crebra and Corymbia species)
and notophyll vine forest.

Audio Sampling
The audio was collected continuously for 1 month using one
SongMeter2 (Wildlife Acoustics) at 22,050 Hz, in WAV format.
The sampling point was located on the edge of the property as
demonstrated in Figure 3.

RESULTS

Different lengths and minimum window sizes were tested for
the two datasets and the minimum length selected was 30 min
for both datasets. From an ecological perspective, 30 min of
recording provides good resolution of fine-scale phenomena (e.g.,
a single species calling). Moreover, it can reveal soundscape
changes throughout a day as the HIME progressively increases
the window size. Having the same window length for both
datasets is an advantage as it allows future comparisons to be
made between results. All the selected motifs were labeled for
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TABLE 2 | Description of the steps to be followed to random forest classification, actions that should be done by the user and expected output.

Step Action Output

2.1 Feature
extraction

Wavelet transform was used to extract the discriminant features of the motifs (dwt function in wavelets
package in R (Aldrich, 2020), with haar filter applied and periodic boundary)

Individual time-series transformed

2.2 Labeling
the data

Data was labeled using two categories of sounds:
Class, representing the dominant sound present (i.e., bird, insect, wind, silence), and
Component, representing the category the Class belongs to in the soundscape context (i.e., geophony,
biophony or silence).
A set of labeling rules was followed to standardize the process, minimize biases and simplify data input into
the RF algorithm. The motifs were labeled according to the predominant sound visualized on the
corresponding spectrogram. For motifs with more than one sound source, the dominant sound in terms of
duration and/or intensity was chosen as its corresponding label. Motifs that were predominantly quiet but
with a minimum presence of any sound type, were labeled accordingly. New label categories were only
created if the label was persistent throughout the dataset, providing enough samples for training and
testing.

30% of dataset labeled

2.3 RF—
component

Classification was first run based on Component, splitting the data into bigger groups, and then categorized
into constituent Classes. Preference was given to maintaining a similar number of labels per category, index,
and location, so that the training set contains most of the expected variation. However, depending on the
amount of variation within each Class, it may be necessary to have more labels in one Class than another.
To maintain balance between Classes and the need to prioritize labels in a certain Class, labeling and
training was undertaken iteratively. That is, a small subset of labels were created (approximately 10%), the
RF model run, accuracy checked (count of correctly assigned labels), and the process repeated. In each
round, the new labels were taken from the random sample pool but because balance plays a significant
role, if a category needed more labels (i.e., accuracy was much lower than other categories), they were
“arbitrarily” selected from the pool. The “out-of-bag” method of selecting predictors used in the RF
algorithm usually results in overfitting avoidance (Genuer et al., 2010), nevertheless, overfitting can still occur
if run without splitting the data into training and testing. Therefore, training was kept between 60–70%, and
testing between 40–30%.

Best number of features to be
used, mean decrease in accuracy
(based on Gini coefficient) and
overall accuracy of the classification
model (n labels correctly assigned/n
labels incorrectly assigned)

2.4
RF—optimizing
Component

The first run of the complete model was undertaken with default parameters and then optimized by finding
the hyperparameters, i.e., the number and type of wavelet features that contribute the most to improving
accuracy. The number of decision trees was 500. The parameters were optimized by using the function
tuneRF in package randomForest in R (Liaw and Wiener, 2003) and by selecting the variables with mean
decrease accuracy > 0. If accuracy was improved with optimized parameters, this version was retained.
Lastly, the model was run for the entire dataset to classify unlabeled data.

All motifs with component labels

2.5 RF—class Repeat steps from the Component model using only data that had been labeled by the algorithm as
biophony (unwanted Classes from the previous labeling—wind, rain, and silence—were now filtered). In
addition, the accuracy across Classes was iteratively checked, and if unbalanced, more motifs were labeled.

Best number of features to be
used, mean decrease in accuracy
(based on Gini coefficient) and
overall accuracy of the classification
model (n labels correctly assigned/n
labels incorrectly assigned)

2.6
RF—optimizing
classes

The first run of the complete model was undertaken as described above in 2.4. All motifs with Classes labeled

both datasets so that the model accuracy could be measured, and
sample size could be correctly estimated. The Bowra dataset had
549 selected motifs with a mean distance of 3.88 ± 1.24 and a
mean length (in minutes) of 35.14 ± 3.88. The SERF dataset had
789 selected motifs with a mean distance of 4.28 ± 0.81 and a
mean length (in minutes) of 36.02 ± 2.83. SERF dataset had 10%
more hours than Bowra (542 and 494, respectively) and 43% more
selected motifs.

Dataset 1: Bowra
Figures 4C,E,G show the motifs found (in color) for
each index in relation to the whole time-series for one
sampling point at Bowra. These figures reveal that for
all three indices, the hours of the day that correspond to
dawn (5:15–5:16 h) and dusk (6:49–6:50 h) most motifs
were identified, while almost none in the middle of the
day. It can also be seen on the gray-scale spectrograms

how each index is capturing slightly different soundscape
components, although all of them recorded wind in the
middle of the day (blurred sections) (Figures 4B,D,F). It
is also evident different motifs identified across indices
(Figures 4C,E,G).

Component Classification
The Component classification had an overall accuracy of 75%.
The accuracy per category and overall misclassifications can be
seen in Figure 5. The model correctly identified most biophony
(94%) motifs while geophony motifs were less accurately
identified (45%).

Class Classification
The overall accuracy of the Class labels was 70%. The model
performed better for birds (80%) than insects (59%) for this
dataset (Figure 6).
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FIGURE 2 | (A) Queensland map indicating Brisbane and Bowra. (B) shows in orange the transect inside the property and (C) show the transects and a Google
satellite layer with the different vegetation communities across the transect. The white square highlights the point that will be used here as an example for figures.

Dataset 2: Samford Ecological Research
Facility
Figures 7C,E,G shows 1 day of the complete time-series with
the motifs identified in color. The false-color spectrogram can be
seen in Figure 7A and the corresponding gray-scale spectrograms
can be seen in Figures 7B,D,F. As seen for Bowra, some segments
were interpreted as significant by the motif search algorithm,
whereas others were not.

Component Classification
The overall accuracy of the model classification was 73% and the
performance per Component can be seen in Figure 8. The model
misclassified motifs primarily due to the presence of geophony
alongside “dominant sounds” in the recordings. In these cases,
the algorithm has identified segments as geophony, whereas the
researcher has not.

Class Classification
The overall accuracy for the Classes was 81%. The individual
accuracies for the Classes can be seen in Figure 9. There were
three classes for this dataset: birds, insects and “both,” as there

were motifs with both insects and birds, especially during the
dawn and dusk choruses.

DISCUSSION

The approach proposed here using time-series motif discovery
and random forest classification represents a significant
improvement in how acoustic indices are currently analyzed for
terrestrial soundscapes. It resolves some major challenges and
constraints associated with acoustic data analysis including: (1)
accounts for temporal autocorrelation of acoustic data, which
violates most statistical test assumptions; (2) combines more than
one index to assign soundscape components; and (3) performs
in different contexts, as demonstrated by the finding that the
same set of indices identified the same soundscape components
in different ecosystems surveyed at different times, using varying
recording schemes.

Acoustic recording and indices are now routinely used to
monitor biodiversity (Doohan et al., 2019; Moreno-Gómez et al.,
2019), but statistical analysis of recordings is problematic due
to temporal autocorrelation. By using sub-sequence time-series
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FIGURE 3 | (A) Location map of Samford Ecological Research Facility (SERF) in Australia. (B) SERF in relation to Brisbane CBD and great Brisbane. (C) Shows the
property and the pink dot corresponding to the sampling point.

search, we were able to group sequences of minutes with
repetitive patterns across the recordings, reducing the number of
consecutive minutes analyzed as independent samples.

Acoustic data analysis approaches are varied and include
linear mixed models (Francomano et al., 2020), mean differences
(Carruthers-Jones et al., 2019), manual inspection and tagging
species or groups of interest (Ferreira et al., 2018) or using
non-index based metrics (like amplitude and frequency) direct
from sound files (Furumo and Aide, 2019). Despite the variety
of ways to analyze sound data, single index approach is still
one of the most common approaches. As previously stated,
single index data can be problematic because they cannot be
consistently interpreted across different taxonomic groups or
environments. For example, studies using ACI have shown that
this index was positively correlated with bird species (Jorge
et al., 2018; Mitchell et al., 2020), but also rain and wind
(Duarte et al., 2015). Acoustic entropy has been found to have
higher values in biodiversity rich habitats (Sueur et al., 2008),
although higher values in quiet recordings and lower values in
recordings dominated by insects have also been documented
(Bradfer-Lawrence et al., 2019). Other studies have also tried to
find a direct relationship between one index and one taxonomic
group (Brown et al., 2019; Indraswari et al., 2020) but this

relationship often does not hold across environments. From
these findings we can conclude that a single index provides
only a crude or obscure representation of biodiversity and is
context-dependant. However, in our study, we have developed,
validated and tested a new workflow that can be used in
different terrestrial environments. This is particularly important
because with recent advances in development of cost-effective
ecoacoustic technology, passive acoustic recording is becoming
a commonplace ecological survey approach worldwide. It is
important that analytical tools are developed to meet this need,
and are transferable across environments, providing standardized
outputs for comparison or benchmarking.

An alternative to analyzing single index data is to combine
indices, but this has been rarely attempted. One study used
clusters to combine indices and classify major soundscape
components (Phillips et al., 2018). However, their method still
relies on listening to many recording minutes, which is extremely
time-consuming and usually not feasible for large datasets.
Another study combined indices using RF models to predict
avian species richness (Buxton et al., 2018) and revealed that
acoustic entropy and ACI were among the best predictors of
avian biodiversity. But still, their aim was to link indices to a
specific taxonomic group. Our approach is different because it
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FIGURE 4 | Visualizations of data from Bowra. The dotted lines are marking midnight. (A) False-color Spectrogram; (B) ACI gray-scale spectrogram; (C) ACI
time-series and motifs (purple); (D) ENT gray-scale spectrogram; (E) ENT time-series with motifs (blue); (F) EVN gray-scale spectrogram; (G) EVN time-series with
motifs (green).

shifts the focus from the index itself, to instead examine what
is being captured by it. While often the focus of an ecological
study is a target species or taxonomic group, soundscapes can
provide valuable insights on processes (such as geophony and
anthropophony) that may influence biodiversity. Until now, no
analytical approach exists that can efficiently extract soundscape
components in a semi-supervised and transferable way.

Using index-based spectrograms for visual inspection of
recordings, we were able to accurately assign sound labels to
motifs, extrapolating these labels to the whole data. Although a
certain level of generalization was required when using multiple
indices and automated classification techniques, this approach
represents a progression from single indices and the manual
identification of sounds or calls. Along with the generalization

required, there were also issues with misclassifications by
the algorithm. Nevertheless, inspection of misclassified motifs
showed that, for example, some of them that were not classified
as wind, did have wind present. The labeling process was based
on the most predominant sound, which does not exclude the
possibility of having more than one sound present at a given
motif. In fact, the presence of more than one soundscape
component is quite common, and for the SERF data here
presented an additional label had to be created to address multiple
dominant sounds in one motif. Ecosystems are complex and
biodiversity is subject to a variety of influencing factors that will
change according to geography and its features (Gaston, 2000).
This variation challenges the use of automatic analyses, and it
also makes it harder to compare different contexts. Nevertheless,
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FIGURE 5 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the component in
the Bowra dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per class is also shown in the figure.

FIGURE 6 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the classes in the
Bowra dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per class is also shown in the figure.

it is necessary to establish a baseline for analysis so recordings can
be effectively used for environmental and temporal comparisons.
Moreover, it highlights the importance of the label process
that provides the researcher with the opportunity to adjust the
method to the context.

As the two study sites were in different ecoregions (Bowra
is classified under the Temperate Grasslands, Savannas and
Shrublands while SERF is Temperate Broadleaf and Mixed

Forest (Environment Australia, 2000), it was expected that their
soundscapes would vary due to the distinct biodiversity, ecology,
and environmental conditions. Besides expected differences, the
SERF dataset had 10% more minutes than Bowra, but 43% more
motifs. Potential explanations include that SERF has a more
complex soundscape, or more likely that the increase may be
attributed to the lack of wind at SERF relative to Bowra, resulting
in more minutes with signal and less noise.

Frontiers in Ecology and Evolution | www.frontiersin.org 9 December 2021 | Volume 9 | Article 738537

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-738537 December 13, 2021 Time: 12:52 # 10

Scarpelli et al. Multi-Index Analysis for Sound Classification

FIGURE 7 | Visualizations of data from 1 day (10/03/2015) of SERF dataset. The dotted lines are marking midday and midnight as reference. (A) False-color
Spectrogram; (B) ACI gray-scale spectrogram; (C) ACI time-series and motifs (purple); (D) ENT gray-scale spectrogram; (E) ENT time-series with motifs (blue);
(F) EVN gray- scale spectrogram; (G) EVN time-series with motifs (green).

Although soundscapes are known to vary between different
environments, major soundtopes (Farina, 2014) were still
expected to be found in both ecosystems (e.g., dawn and
dusk choruses). Daily cycles were evident across the month at

SERF, although variation could still be detected. This reflects
environmental processes which also vary naturally across days.
For example, areas near urban settlements, such as SERF, traffic
noise can exhibit differences between weekdays and weekends.
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FIGURE 8 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the components
in the SERF dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per Class is also shown in the figure.

FIGURE 9 | Alluvial graph showing proportions and number of motifs of manual labels on the left-hand and model labels on the right-hand side for the classes in the
SERF dataset. The lines in the middle going from manual to model labels indicate the misclassification. The accuracy per Class is also shown in the figure.

Biophony is also expected to change in response to temperature,
rainfall, sunlight, and many other environmental factors that
influence animal behavior (Pijanowski et al., 2011). The
differences found here among and within ecosystems emphasizes
again the importance of labeling motifs by a researcher before
running the algorithm. Each recording will have distinct features
that need to be addressed before data analysis. Furthermore, it
provides an opportunity for the researcher to understand patterns
and to become acquainted with the data specific to the site. It is
also important to keep in mind that like other sampling methods,

acoustic surveys are a snapshot of the moment in which the
recordings were made. In order to track changes and effectively
use this method as a biodiversity monitoring tool, it is important
to establish sampling schemes that can capture different moments
in time so that natural variation can be examined (Metcalf et al.,
2020), as well as man-made impacts.

The labels in this study were generalized, however, future
research could attempt to create more specific categories. At the
same time, we argue that keeping upper levels of categories is
important for model optimization, but it also might be useful
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when comparing results across datasets and studies. For example,
every environment might have different species assemblages
but similar patterns of biophony. For this reason, we believe
the method presented here will help standardize analyses in
ecoacoustics research. Another improvement that can be done is
to assign more than one soundscape category per motif, creating
a rank of sound presence. In this way, the misclassifications could
be measured more accurately and potentially improved.

CONCLUSION

Ecoacoustics is a promising tool which is widely used to monitor
biodiversity, and it has increased even more with the advent
of acoustic indices. Nevertheless, until now there has been no
consensus on how to transform acoustic indices into broad,
transferrable ecological information, especially when combining
indices. It is crucial to have an approach that standardizes and
enables rapid assessment of terrestrial soundscapes. Although the
analysis presented here treats indices separately as independent
time series, there is no distinction between them for classification.
This is important because it addresses the narrow assumption
that each index serves as a good proxy for measuring specific
taxonomic groups, and that these relationships will hold in
different contexts. By combining different analysis techniques
(time-series motif discovery and RF model classification), we
were able to label grouped minutes of recordings translating
acoustic indices into important components of the soundscape.
We tested this approach on two datasets acquired using different

recording devices and from different environments, providing
strong evidence that this method can capture important
temporal patterns in insect and bird biodiversity, as well as
environmental geophonic sounds across environments. Given
the global biodiversity loss that we are currently facing in the
Anthropocene (Johnson et al., 2017), it is even more important
that monitoring and methods of analysis are developed allowing
to track changes in biodiversity.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://doi.org/10.
5281/zenodo.4784758.

AUTHOR CONTRIBUTIONS

MS, SF, and BL conceived the ideas. MS and DT collected the
data. MS and BL designed the methodology and analyzed the
data. All authors contributed to data interpretation, drafts, critical
revision and gave final approval for submission.

ACKNOWLEDGMENTS

MS acknowledges QUT for funding; AWC for access to the
sanctuary and Brendan Doohan for assistance with fieldwork.

REFERENCES
Aide, T. M., Hernández-Serna, A., Campos-Cerqueira, M., Acevedo-Charry, O.,

and Deichmann, J. L. (2017). Species richness (of insects) drives the use
of acoustic space in the tropics. Remote Sens. 9:1096. doi: 10.3390/rs911
1096

Aldrich, E. (2020). Wavelets: Functions for Computing Wavelet Filters, Wavelet
Transforms and Multiresolution Analyses. Available online at: https://cran.r-
project.org/package=wavelets. (accessed Feb 17, 2020).

Australian Government Bureau of Meteorology (2020). Graphical Climate Statistics
for Australian Locations. Available online at: http://www.bom.gov.au/jsp/ncc/
cdio/cvg/av?p_stn_num=044026&p_prim_element_index=18&p_display_
type=statGraph&period_of_avg=ALL&normals_years=allYearOfData&
staticPage= (accessed April 20, 2020).

Bonthoux, S., Lefèvre, S., Herrault, P.-A., and Sheeren, D. (2018). Spatial and
temporal dependency of NDVI satellite imagery in predicting bird diversity
over france. Remote Sens. 10:1136. doi: 10.3390/rs10071136

Bradfer-Lawrence, T., Bunnefeld, N., Gardner, N., Willis, S. G., and Dent,
D. H. (2020). Rapid assessment of avian species richness and abundance
using acoustic indices. Ecol. Indic. 115:106400. doi: 10.1016/j.ecolind.2020.10
6400

Bradfer-Lawrence, T., Gardner, N., Bunnefeld, L., Bunnefeld, N., Willis, S. G., and
Dent, D. H. (2019). Guidelines for the use of acoustic indices in environmental
research. Methods. Ecol. Evol. 10, 1796–1807. doi: 10.1111/2041-210x.13254

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1201/
9780429469275-8

Brodie, S., Allen-Ankins, S., Towsey, M., Roe, P., and Schwarzkopf, L. (2020).
Automated species identification of frog choruses in environmental recordings
using acoustic indices. Ecol. Indic. 119:106852. doi: 10.1016/j.ecolind.2020.
106852

Brown, A., Garg, S., and Montgomery, J. (2019). Automatic rain and cicada chorus
filtering of bird acoustic data. Appl. Soft Comput. J. 81:105501. doi: 10.1016/j.
asoc.2019.105501

Buxton, R. T., Agnihotri, S., Robin, V. V., Goel, A., and Balakrishnan, R. (2018).
Acoustic indices as rapid indicators of avian diversity in different land-use types
in an Indian biodiversity hotspot. J. Ecoacoustics 2:8. doi: 10.22261/jea.gwpzvd

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P.,
et al. (2012). Biodiversity loss and its impact on humanity. Nature 486, 59–67.
doi: 10.1038/nature11148

Carruthers-Jones, J., Eldridge, A., Guyot, P., Hassall, C., and Holmes, G. (2019).
The call of the wild: investigating the potential for ecoacoustic methods
in mapping wilderness areas. Sci. Total Environ. 695:133797. doi: 10.1016/j.
scitotenv.2019.133797

Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). “Random forests,” in Ensemble
Machine Learning, eds C. Zhang and Y. Ma (Boston, MA: Springer US),
157–175. doi: 10.1007/978-1-4419-9326-7_5

Díaz-Uriarte, R., and Alvarez de Andrés, S. (2006). Gene selection and classification
of microarray data using random forest. BMC Bioinformatics 7:3. doi: 10.1186/
1471-2105-7-3

Doohan, B., Fuller, S., Parsons, S., and Peterson, E. E. (2019). The sound of
management: acoustic monitoring for agricultural industries. Ecol. Indic. 96,
739–746. doi: 10.1016/j.ecolind.2018.09.029

Duarte, M. H. L., Sousa-Lima, R. S. S., Young, R. J., Vasconcelos, M. F., Bittencourt,
E., Scarpelli, M. D. A., et al. (2021). Changes on soundscapes reveal impacts of
wildfires in the fauna of a Brazilian savanna. Sci. Total Environ. 769:144988.
doi: 10.1016/j.scitotenv.2021.144988

Duarte, M. H. L., Sousa-Lima, R. S., Young, R. J., Farina, A., Vasconcelos, M.,
Rodrigues, M., et al. (2015). The impact of noise from open-cast mining on
Atlantic forest biophony. Biol. Conserv. 191, 623–631. doi: 10.1016/j.biocon.
2015.08.006

Frontiers in Ecology and Evolution | www.frontiersin.org 12 December 2021 | Volume 9 | Article 738537

https://doi.org/10.5281/zenodo.4784758
https://doi.org/10.5281/zenodo.4784758
https://doi.org/10.3390/rs9111096
https://doi.org/10.3390/rs9111096
https://cran.r-project.org/package=wavelets
https://cran.r-project.org/package=wavelets
http://www.bom.gov.au/jsp/ncc/cdio/cvg/av?p_stn_num=044026&p_prim_element_index=18&p_display_type=statGraph&period_of_avg=ALL&normals_years=allYearOfData&staticPage=
http://www.bom.gov.au/jsp/ncc/cdio/cvg/av?p_stn_num=044026&p_prim_element_index=18&p_display_type=statGraph&period_of_avg=ALL&normals_years=allYearOfData&staticPage=
http://www.bom.gov.au/jsp/ncc/cdio/cvg/av?p_stn_num=044026&p_prim_element_index=18&p_display_type=statGraph&period_of_avg=ALL&normals_years=allYearOfData&staticPage=
http://www.bom.gov.au/jsp/ncc/cdio/cvg/av?p_stn_num=044026&p_prim_element_index=18&p_display_type=statGraph&period_of_avg=ALL&normals_years=allYearOfData&staticPage=
https://doi.org/10.3390/rs10071136
https://doi.org/10.1016/j.ecolind.2020.106400
https://doi.org/10.1016/j.ecolind.2020.106400
https://doi.org/10.1111/2041-210x.13254
https://doi.org/10.1201/9780429469275-8
https://doi.org/10.1201/9780429469275-8
https://doi.org/10.1016/j.ecolind.2020.106852
https://doi.org/10.1016/j.ecolind.2020.106852
https://doi.org/10.1016/j.asoc.2019.105501
https://doi.org/10.1016/j.asoc.2019.105501
https://doi.org/10.22261/jea.gwpzvd
https://doi.org/10.1038/nature11148
https://doi.org/10.1016/j.scitotenv.2019.133797
https://doi.org/10.1016/j.scitotenv.2019.133797
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1016/j.ecolind.2018.09.029
https://doi.org/10.1016/j.scitotenv.2021.144988
https://doi.org/10.1016/j.biocon.2015.08.006
https://doi.org/10.1016/j.biocon.2015.08.006
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-738537 December 13, 2021 Time: 12:52 # 13

Scarpelli et al. Multi-Index Analysis for Sound Classification

Environment Australia (2000). Revision of the Interim Biogeographic
Regionalisation for Australia (IBRA) and Development of Version 5.1
Summary Report. Available online at: http://www.environment.gov.au/
system/files/resources/401ff882-fc13-49cd-81fe-bc127d16ced1/files/revision-
ibra-development-5-1-summary-report.pdf (accessed Nov 20, 2001).

Farina, A. (2014). Soundscape Ecology: Principles, Patterns, Methods and
Applications. Dordrecht: Springer Science+Business Media, doi: 10.1007/978-
94-007-7374-5

Ferreira, L. M., Oliveira, E. G., Lopes, L. C., Brito, M. R., Baumgarten, J., Rodrigues,
F. H., et al. (2018). What do insects, anurans, birds, and mammals have to
say about soundscape indices in a tropical savanna. J. Ecoacoustics 2:VH6YZ.
doi: 10.22261/JEA.PVH6YZ

Fontúrbel, F. E., Orellana, J. I., Rodríguez-Gómez, G. B., Tabilo, C. A., and Castaño-
Villa, G. J. (2021). Habitat disturbance can alter forest understory bird activity
patterns: a regional-scale assessment with camera-traps. For. Ecol. Manage.
479:118618. doi: 10.1016/j.foreco.2020.118618

Francomano, D., Gottesman, B. L., and Pijanowski, B. C. (2020). Biogeographical
and analytical implications of temporal variability in geographically diverse
soundscapes. Ecol. Indic. 112:105845. doi: 10.1016/j.ecolind.2019.105845

Froidevaux, J. S. P., Zellweger, F., Bollmann, K., and Obrist, M. K. (2014).
Optimizing passive acoustic sampling of bats in forests. Ecol. Evol. 4, 4690–4700.
doi: 10.1002/ece3.1296

Furumo, P. R., and Aide, M. T. (2019). Using soundscapes to assess biodiversity
in Neotropical oil palm landscapes. Landsc. Ecol. 34, 911–923. doi: 10.1007/
s10980-019-00815-w

Gage, S. H., and Axel, A. C. (2014). Visualization of temporal change in soundscape
power of a Michigan lake habitat over a 4-year period. Ecol. Inform. 21, 100–109.
doi: 10.1016/j.ecoinf.2013.11.004

Gan, H., Zhang, J., Towsey, M., Truskinger, A., Stark, D., van Rensburg, B. J., et al.
(2020). Data selection in frog chorusing recognition with acoustic indices. Ecol.
Inform. 60:101160. doi: 10.1016/j.ecoinf.2020.101160

Gao, Y., and Lin, J. (2017). “Efficient discovery of time series motifs with
large length range in million scale time series,” in Proceedings of the IEEE
International Conference on Data Mining (ICDM) 2017-Novem, New Orleans,
LA, 1213–1222. doi: 10.1109/ICDM.2017.8356939

Gaston, K. J. (2000). Global patterns in biodiversity. Nature 405, 220–227. doi:
10.1038/35012228

Genuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010). Variable selection using
random forests. Pattern Recognit. Lett. 31, 2225–2236. doi: 10.1016/j.patrec.
2010.03.014

Gibb, R., Browning, E., Glover-Kapfer, P., and Jones, K. E. (2019). Emerging
opportunities and challenges for passive acoustics in ecological assessment and
monitoring. Methods Ecol. Evol. 10, 169–185. doi: 10.1111/2041-210X.13101

Hayashi, K., Erwinsyah, Lelyana, V. D., and Yamamura, K. (2020). Acoustic
dissimilarities between an oil palm plantation and surrounding forests: analysis
of index time series for beta-diversity in South Sumatra, Indonesia. Ecol. Indic.
112:106086. doi: 10.1016/j.ecolind.2020.106086

Indraswari, K., Bower, D. S., Tucker, D., Schwarzkopf, L., Towsey, M., and Roe,
P. (2020). Assessing the value of acoustic indices to distinguish species and
quantify activity: a case study using frogs. Freshw. Biol. 65, 142–152. doi: 10.
1111/fwb.13222

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun,
L., et al. (2017). Biodiversity losses and conservation responses in the
Anthropocene. Science 356, 270–275. doi: 10.1126/science.aam9317

Joppa, L. N., O’Connor, B., Visconti, P., Smith, C., Geldmann, J., Hoffmann, M.,
et al. (2016). Filling in biodiversity threat gaps. Science 352, 416–418. doi:
10.1126/science.aaf3565

Jorge, F. C., Machado, C. G., da Cunha Nogueira, S. S., and Nogueira-Filho, S. L. G.
(2018). The effectiveness of acoustic indices for forest monitoring in Atlantic
rainforest fragments. Ecol. Indic. 91, 71–76. doi: 10.1016/j.ecolind.2018.04.001

Kerr, J. T., and Ostrovsky, M. (2003). From space to species: ecological applications
for remote sensing. Trends Ecol. Evol. 18, 299–305. doi: 10.1016/S0169-5347(03)
00071-5

Krause, B., and Farina, A. (2016). Using ecoacoustic methods to survey the impacts
of climate change on biodiversity. Biol. Conserv. 195, 245–254. doi: 10.1016/j.
biocon.2016.01.013

Lau, K. M., and Weng, H. (1995). Climate signal detection using wavelet transform:
how to make a time series sing. Bull. - Am. Meteorol. Soc. 76, 2391–2402.

Liaw, A., and Wiener, M. (2003). Classification and regression by random forest. R
News 2, 18–22.

Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., and Zhou, M. (2015). Efficient motif
discovery for large-scale time series in healthcare. IEEE Trans. Ind. Informatics
11, 583–590. doi: 10.1109/TII.2015.2411226

Machado, R. B., Aguiar, L., and Jones, G. (2017). Do acoustic indices reflect the
characteristics of bird communities in the savannas of Central Brazil? Landsc.
Urban Plan. 162, 36–43. doi: 10.1016/j.landurbplan.2017.01.014

McGovern, A., Rosendahl, D. H., Brown, R. A., and Droegemeier, K. K. (2011).
Identifying predictive multi-dimensional time series motifs: an application to
severe weather prediction. Data Min. Knowl. Discov. 22, 232–258. doi: 10.1007/
s10618-010-0193-7

Metcalf, O. C., Barlow, J., Devenish, C., Marsden, S., Berenguer, E., and Lees,
A. C. (2020). Acoustic indices perform better when applied at ecologically
meaningful time and frequency scales. Methods Ecol. Evol. 2020, 421–431. doi:
10.1111/2041-210x.13521

Mitchell, S. L., Bicknell, J. E., Edwards, D. P., Deere, N. J., Bernard, H., Davies, Z. G.,
et al. (2020). Spatial replication and habitat context matters for assessments
of tropical biodiversity using acoustic indices. Ecol. Indic. 119:106717. doi:
10.1016/j.ecolind.2020.106717

Moreno-Gómez, F. N., Bartheld, J., Silva-Escobar, A. A., Briones, R., Márquez, R.,
and Penna, M. (2019). Evaluating acoustic indices in the Valdivian rainforest,
a biodiversity hotspot in South America. Ecol. Indic. 103, 1–8. doi: 10.1016/j.
ecolind.2019.03.024

Nowak, M. M., Dziób, K., and Bogawski, P. (2019). Unmanned Aerial Vehicles
(UAVs) in environmental biology: a review. Eur. J. Ecol. 4, 56–74. doi: 10.2478/
eje-2018-0012

Pal, M. (2005). Random forest classifier for remote sensing classification. Int. J.
Remote Sens. 26, 217–222. doi: 10.1080/01431160412331269698

Petrusková, T., Pišvejcová, I., Kinštová, A., Brinke, T., and Petrusek, A. (2016).
Repertoire-based individual acoustic monitoring of a migratory passerine bird
with complex song as an efficient tool for tracking territorial dynamics and
annual return rates. Methods Ecol. Evol. 7, 274–284. doi: 10.1111/2041-210X.
12496

Pettorelli, N. (2013). The Normalized Difference Vegetation Index. Oxford: Oxford
University Press.

Phillips, Y. F., Towsey, M., and Roe, P. (2018). Revealing the ecological content
of long-duration audio-recordings of the environment through clustering
and visualisation. PLoS One 13:e0193345. doi: 10.1371/journal.pone.019
3345

Pieretti, N., Farina, A., and Morri, D. (2011). A new methodology to infer
the singing activity of an avian community: the acoustic complexity
index (ACI). Ecol. Indic. 11, 868–873. doi: 10.1016/j.ecolind.2010.11.
005

Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L.,
Napoletano, B. M., et al. (2011). Soundscape ecology: the science of sound in the
landscape. Bioscience 61, 203–216. doi: 10.1525/bio.2011.61.3.6

Roe, P., Eichinski, P., Fuller, R. A., McDonald, P. G., Schwarzkopf, L., Towsey, M.,
et al. (2021). The Australian acoustic observatory. Methods Ecol. Evol. 2021, 1–7.
doi: 10.1111/2041-210X.13660

Sánchez-Giraldo, C., Bedoya, C. L., Morán-Vásquez, R. A., Isaza, C. V., and Daza,
J. M. (2020). Ecoacoustics in the rain: understanding acoustic indices under
the most common geophonic source in tropical rainforests. Remote Sens. Ecol.
Conserv. 6, 248–261. doi: 10.1002/rse2.162

Scarpelli, M. D. A. (2021). Release for Multi-Index Ecoacoustics Analysis.
Shannon, C. E., and Weaver, W. (1964). The Mathematical Theory of

Communication. Urbana: University of Illinois Press, doi: 10.1109/TMAG.1987.
1065451

Stafford, C. A., and Walker, G. P. (2009). Characterization and correlation of
DC electrical penetration graph waveforms with feeding behavior of beet
leafhopper, Circulifer tenellus. Entomol. Exp. Appl. 130, 113–129. doi: 10.1111/j.
1570-7458.2008.00812.x

Sueur, J., Farina, A., Gasc, A., Pieretti, N., and Pavoine, S. (2014). Acoustic indices
for biodiversity assessment and landscape investigation. ACTA Acust. United
With Acust. 100, 772–781. doi: 10.3813/AAA.918757

Sueur, J., Pavoine, S., Hamerlynck, O., and Duvail, S. (2008). Rapid acoustic
survey for biodiversity appraisal. PLoS One 3:e4065. doi: 10.1371/journal.pone.
0004065

Frontiers in Ecology and Evolution | www.frontiersin.org 13 December 2021 | Volume 9 | Article 738537

http://www.environment.gov.au/system/files/resources/401ff882-fc13-49cd-81fe-bc127d16ced1/files/revision-ibra-development-5-1-summary-report.pdf
http://www.environment.gov.au/system/files/resources/401ff882-fc13-49cd-81fe-bc127d16ced1/files/revision-ibra-development-5-1-summary-report.pdf
http://www.environment.gov.au/system/files/resources/401ff882-fc13-49cd-81fe-bc127d16ced1/files/revision-ibra-development-5-1-summary-report.pdf
https://doi.org/10.1007/978-94-007-7374-5
https://doi.org/10.1007/978-94-007-7374-5
https://doi.org/10.22261/JEA.PVH6YZ
https://doi.org/10.1016/j.foreco.2020.118618
https://doi.org/10.1016/j.ecolind.2019.105845
https://doi.org/10.1002/ece3.1296
https://doi.org/10.1007/s10980-019-00815-w
https://doi.org/10.1007/s10980-019-00815-w
https://doi.org/10.1016/j.ecoinf.2013.11.004
https://doi.org/10.1016/j.ecoinf.2020.101160
https://doi.org/10.1109/ICDM.2017.8356939
https://doi.org/10.1038/35012228
https://doi.org/10.1038/35012228
https://doi.org/10.1016/j.patrec.2010.03.014
https://doi.org/10.1016/j.patrec.2010.03.014
https://doi.org/10.1111/2041-210X.13101
https://doi.org/10.1016/j.ecolind.2020.106086
https://doi.org/10.1111/fwb.13222
https://doi.org/10.1111/fwb.13222
https://doi.org/10.1126/science.aam9317
https://doi.org/10.1126/science.aaf3565
https://doi.org/10.1126/science.aaf3565
https://doi.org/10.1016/j.ecolind.2018.04.001
https://doi.org/10.1016/S0169-5347(03)00071-5
https://doi.org/10.1016/S0169-5347(03)00071-5
https://doi.org/10.1016/j.biocon.2016.01.013
https://doi.org/10.1016/j.biocon.2016.01.013
https://doi.org/10.1109/TII.2015.2411226
https://doi.org/10.1016/j.landurbplan.2017.01.014
https://doi.org/10.1007/s10618-010-0193-7
https://doi.org/10.1007/s10618-010-0193-7
https://doi.org/10.1111/2041-210x.13521
https://doi.org/10.1111/2041-210x.13521
https://doi.org/10.1016/j.ecolind.2020.106717
https://doi.org/10.1016/j.ecolind.2020.106717
https://doi.org/10.1016/j.ecolind.2019.03.024
https://doi.org/10.1016/j.ecolind.2019.03.024
https://doi.org/10.2478/eje-2018-0012
https://doi.org/10.2478/eje-2018-0012
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1111/2041-210X.12496
https://doi.org/10.1111/2041-210X.12496
https://doi.org/10.1371/journal.pone.0193345
https://doi.org/10.1371/journal.pone.0193345
https://doi.org/10.1016/j.ecolind.2010.11.005
https://doi.org/10.1016/j.ecolind.2010.11.005
https://doi.org/10.1525/bio.2011.61.3.6
https://doi.org/10.1111/2041-210X.13660
https://doi.org/10.1002/rse2.162
https://doi.org/10.1109/TMAG.1987.1065451
https://doi.org/10.1109/TMAG.1987.1065451
https://doi.org/10.1111/j.1570-7458.2008.00812.x
https://doi.org/10.1111/j.1570-7458.2008.00812.x
https://doi.org/10.3813/AAA.918757
https://doi.org/10.1371/journal.pone.0004065
https://doi.org/10.1371/journal.pone.0004065
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-09-738537 December 13, 2021 Time: 12:52 # 14

Scarpelli et al. Multi-Index Analysis for Sound Classification

Towsey, M. (2018). The Calculation of Acoustic Indices Derived from Long-Duration
Recordings of the Natural Environment. Brisbane, QLD: QUT ePrints.

Towsey, M., Truskinger, A., Cottman-Fields, M., and Roe, P. (2020).
QutEcoacoustics/Audio-Analysis: Ecoacoustics Audio Analysis Software
v20.11.2.0. doi: 10.5281/ZENODO.4274299

Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., and Roe, P.
(2014). Visualization of long-duration acoustic recordings of the environment.
Proc. Comput. Sci. 29, 703–712. doi: 10.1016/j.procs.2014.05.063

Towsey, M., Znidersic, E., Broken-Brow, J., Indraswari, K., Watson, D. M., Phillips,
Y., et al. (2018). Long-duration, false-colour spectrograms for detecting species
in large audio data-sets. J. Ecoacoustics 2:6. doi: 10.22261/JEA.IUSWUI

Tucker, D., Gage, S. H., Williamson, I., and Fuller, S. (2014). Linking ecological
condition and the soundscape in fragmented Australian forests. Landsc. Ecol.
29, 745–758. doi: 10.1007/s10980-014-0015-1

Ulloa, J. S., Aubin, T., Llusia, D., Bouveyron, C., and Sueur, J. (2018). Estimating
animal acoustic diversity in tropical environments using unsupervised
multiresolution analysis. Ecol. Indic. 90, 346–355. doi: 10.1016/j.ecolind.2018.
03.026

Ulloa, J. S., Aubin, T., Llusia, D., Courtois, ÉA., Fouquet, A., Gaucher, P.,
et al. (2019). Explosive breeding in tropical anurans: environmental triggers,
community composition and acoustic structure. BMC Ecol. 19:28. doi: 10.1186/
s12898-019-0243-y

Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J., and Pekin, B. (2011). A
primer of acoustic analysis for landscape ecologists. Landsc. Ecol. 26, 1233–
1246. doi: 10.1007/s10980-011-9636-9

Wrege, P. H., Rowland, E. D., Keen, S., and Shiu, Y. (2017). Acoustic
monitoring for conservation in tropical forests: examples from forest

elephants. Methods Ecol. Evol. 8, 1292–1301. doi: 10.1111/2041-210X.1
2730

Znidersic, E., Towsey, M., Roy, W. K., Darling, S. E., Truskinger, A., Roe, P.,
et al. (2020). Using visualization and machine learning methods to monitor low
detectability species—The least bittern as a case study. Ecol. Inform. 55:101014.
doi: 10.1016/j.ecoinf.2019.101014

Zolhavarieh, S., Aghabozorgi, S., and Teh, Y. W. (2014). A review of subsequence
time series clustering. Sci. World J. 2014:312521. doi: 10.1155/2014/31
2521

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Scarpelli, Liquet, Tucker, Fuller and Roe. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 December 2021 | Volume 9 | Article 738537

https://doi.org/10.5281/ZENODO.4274299
https://doi.org/10.1016/j.procs.2014.05.063
https://doi.org/10.22261/JEA.IUSWUI
https://doi.org/10.1007/s10980-014-0015-1
https://doi.org/10.1016/j.ecolind.2018.03.026
https://doi.org/10.1016/j.ecolind.2018.03.026
https://doi.org/10.1186/s12898-019-0243-y
https://doi.org/10.1186/s12898-019-0243-y
https://doi.org/10.1007/s10980-011-9636-9
https://doi.org/10.1111/2041-210X.12730
https://doi.org/10.1111/2041-210X.12730
https://doi.org/10.1016/j.ecoinf.2019.101014
https://doi.org/10.1155/2014/312521
https://doi.org/10.1155/2014/312521
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Multi-Index Ecoacoustics Analysis for Terrestrial Soundscapes: A New Semi-Automated Approach Using Time-Series Motif Discovery and Random Forest Classification
	Introduction
	Materials and Methods
	Acoustic Analysis
	Subsequence Time-Series Search
	Feature Extraction and Random Forest Model
	Case Study
	Dataset 1: Bowra
	Audio Sampling

	Dataset 2: Samford Ecological Research Facility
	Audio Sampling



	Results
	Dataset 1: Bowra
	Component Classification
	Class Classification

	Dataset 2: Samford Ecological Research Facility
	Component Classification
	Class Classification


	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


