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The diversity of animal acoustic signals has evolved due to multiple ecological
processes, both biotic and abiotic. At the level of communities of signaling animals,
these processes may lead to diverse outcomes, including partitioning of acoustic
signals along multiple axes (divergent signal parameters, signaling locations, and timing).
Acoustic data provides information on the organization, diversity and dynamics of an
acoustic community, and thus enables study of ecological change and turnover in a
non-intrusive way. In this review, we lay out how community bioacoustics (the study of
acoustic community structure and dynamics), has value in ecological monitoring and
conservation of diverse landscapes and taxa. First, we review the concepts of signal
space, signal partitioning and their effects on the structure of acoustic communities.
Next, we highlight how spatiotemporal ecological change is reflected in acoustic
community structure, and the potential this presents in monitoring and conservation. As
passive acoustic monitoring gains popularity worldwide, we propose that the analytical
framework of community bioacoustics has promise in studying the response of entire
suites of species (from insects to large whales) to rapid anthropogenic change.

Keywords: community bioacoustics, signal space, acoustic community, passive acoustic monitoring,
conservation

INTRODUCTION

With the ongoing global crisis of biodiversity loss, passive acoustic monitoring has gained
popularity in both aquatic and terrestrial environments (Magurran et al., 2010; Blumstein et al.,
2011; Parks et al., 2014; Linke et al., 2018; Sugai et al., 2019b), employing sound to monitor wildlife.
Animal sounds are diverse and varied, and play a critical role in advertising territories and attracting
mates (Marler and Slabbekoorn, 2004; Bradbury and Vehrencamp, 2011), as well as echolocation in
some species (Griffin, 1958). Acoustic signal parameters and signaling strategies are influenced by
noise from biotic and abiotic sources, structural features of the environment (Morton, 1975; Marten
and Marler, 1977; Wiley and Richards, 1978; Wiley, 1991; Aubin and Jouventin, 1998; Nemeth
et al., 2002; Blumenrath and Dabelsteen, 2004; Brumm and Slabbekoorn, 2005; Bee and Micheyl,
2008; Brumm and Naguib, 2009; Ruppé et al., 2015; Templeton et al., 2016), and the morphological
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constraints imposed by emitter geometry (Podos, 2001; Riede
et al., 2006; Kounitsky et al., 2015). In order to compare
signal parameters of different species, Nelson and Marler (1990)
articulated the concept of “signal space,” where signal parameters
could be quantitatively represented. Multiple factors, both
evolutionary and contemporary, may influence how signals are
distributed in signal space. For example, acoustic competition
(i.e., competition between signalers to communicate without
interference) is predicted to lead to divergence in signal
parameters of coexisting species, particularly those that are
closely related, such that each species in an assemblage occupies a
unique region in signal space [birds: (Planqué and Slabbekoorn,
2008; Luther, 2009; Krishnan and Tamma, 2016; Krishnan, 2019a;
Chitnis et al., 2020), anurans: (Littlejohn, 1959; Duellman and
Pyles, 1983; Chek et al., 2003), insects: (Schmidt et al., 2013;
Jain et al., 2014)]. In a scenario where competition drives signal
evolution, sympatric species may also signal at different times
[birds:(Ficken et al., 1974; Fleischer et al., 1985; Popp et al.,
1985; Brumm, 2006; Luther, 2008; Planqué and Slabbekoorn,
2008), anurans: (Sugai et al., 2021b), fish: (Ruppé et al., 2015)]
or locations in space [birds: (Nemeth et al., 2002; Chitnis
et al., 2020), anurans: (Hodl, 1977), insects: (Diwakar and
Balakrishnan, 2007; Jain and Balakrishnan, 2012), bats: (Kennedy
et al., 2014)]. The distributions of species in signal space represent
a “signature” of each community, a definitive pattern that
can be monitored to track ecological changes. These “acoustic
communities” represent the sum of all sound-producing species
in an aquatic or terrestrial landscape (Drewry and Rand, 1983;
Duellman and Pyles, 1983; Luther, 2009; Sueur and Farina, 2015;
Farina and James, 2016). Community bioacoustics integrates
the signal space of an acoustic community with information
on species composition, diversity and signaling activity to
study spatiotemporal community dynamics (i.e., seasonal and
spatial variation in species composition or phylogenetic diversity)
(Luther, 2008, 2009; Krishnan, 2019a; Lahiri et al., 2021).
The term “acoustic community structure” (Table 1) adapts
the concept of ecological community structure, employing
acoustic parameters and signaling activity as measurable traits
to examine the distribution of sound-producing species in
signal space, together with measures of species composition
and phylogenetic diversity. The wealth of data generated
by passive acoustic monitoring efforts promises valuable
ecological insight, both into the distributions and movements of
individual species as well as community-level processes such as
seasonal turnover.

Here, we discuss how ecological processes drive acoustic
community structure, and propose using acoustic communities
to track ecological change. This serves to facilitate non-invasive
biodiversity monitoring and conservation informed by behavior,
ecology and natural history. The ubiquity and diversity of
animal acoustic signals renders them promising indicators of
ecosystem health (Sueur and Farina, 2015; Sugai et al., 2019b).
Most conservation-oriented studies using passive acoustics
typically use either single-species monitoring, or index-driven
approaches. We suggest that biodiversity monitoring programs
incorporate information on acoustic community composition
and spatiotemporal dynamics (Desjonquères et al., 2018;

Gasc et al., 2018; Krishnan, 2019a) to effectively and rapidly
study species distributions and community turnover. This
serves both as an additional use of passive acoustic data, as well
as an alternative to other approaches in the field, depending
on the needs of conservation. Community bioacoustics is
thus potentially valuable to ecologists and conservation
biologists working across scales from individual species to
entire ecosystems.

CONCEPTUAL FOUNDATIONS

Before examining how acoustic communities inform ecological
studies, it is important to understand how ecological processes
drive patterns in acoustic community structure (Krishnan and
Tamma, 2016; Sugai et al., 2021a). To illustrate this concept, we
use some examples from some of the main hypotheses in the
field. For effective communication, a high signal-to-noise ratio
ensures improved detection by the receiver, thus benefiting the
signaler (Endler, 1992; Wollerman and Wiley, 2002; Hart et al.,
2015; Vélez et al., 2017). However, signal efficacy is reduced
by masking interference from competing sound sources, such
as other nearby signalers (Schwartz and Wells, 1983; Narins,
1992; Greenfield, 1994; Aubin and Jouventin, 1998; Bee and
Micheyl, 2008; Balakrishnan et al., 2014). Divergence of signal
properties reduces masking, enables segregation of competing
sound streams (MacDougall-Shackleton et al., 1998; Krishnan,
2019b), and thus reinforces species recognition and premating
isolation between close relatives (Nelson, 1988, 1989; Grant
and Grant, 1996; Qvarnström et al., 2006). In diverse animals
[crickets: (Schmidt et al., 2013), cicadas: (Shieh et al., 2015),
aquatic insects: (Gottesman et al., 2020), fish: (Ruppé et al.,
2015; Bertucci et al., 2020), anurans: (Drewry and Rand, 1983;
Duellman and Pyles, 1983; Narins, 1995; Chek et al., 2003),
birds: (Kirschel et al., 2009b, 2020; Krishnan and Tamma, 2016;
Chitnis et al., 2020), bats: (Heller and von Helversen, 1989;
Kingston et al., 2000; Luo et al., 2019), primates: (Braune
et al., 2008)], closely related sympatric species exhibit divergent
signals, partitioning the acoustic resource to minimize acoustic
competition. Each species is therefore predicted to occupy a
unique region or “niche” in the acoustic resource, a hypothesis
extrapolated from ecological niche theory (Hutchinson, 1957;
Holt, 2009). This realized “acoustic niche” (Farina et al., 2011;
Pijanowski et al., 2011b), in the truest sense also includes
partitioning at the level of receiver perception (Luther, 2008;
Lemmon, 2009; Seddon and Tobias, 2010; Amezquita et al., 2011)
and measurement of signal propagation distance (Marten and
Marler, 1977; Nemeth et al., 2002). The presence of unintended
recipients may alter signaling behavior (Ryan et al., 1982; Zuk
et al., 2006). All of these factors influence the volume over which
the signal elicits a response, or its “active space” (Brenowitz, 1982;
Lohr et al., 2003; Bradbury and Vehrencamp, 2011), and are thus
important in measuring overall signal discriminability. However,
it is not always possible to investigate receiver partitioning in
the field, and most studies of signal partitioning are, therefore,
concerned with divergence at the level of signal parameters and
the spatiotemporal distribution of signalers.
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TABLE 1 | Definitions and discussion of important terms related to
community bioacoustics.

Signal space An abstract multidimensional space described by the
spectral and temporal features of acoustic signals.
More divergent signals are further apart in signal space.
Signal space may be represented at multiple scales,
including for the entire community (see below).

Signal partitioning Signal divergence, putatively to minimize competitive
overlap along multiple axes. This includes divergent
signal parameters, which manifests as overdispersion in
signal space. Additionally, signalers may exhibit
temporal or spatial segregation in signaling activity.

Acoustic
community

The sum total of all signaling species in a study site. As
with an ecological community, acoustic communities
may be defined at different spatial and taxonomic
scales.

Community signal
space

The signal space of the entire acoustic community,
where each species occupies a specific volume, thus
representing the diversity of signals within the
community.

Acoustic
community
structure

The organization of an acoustic community, including
distribution of species in signal space, spatial and
temporal organization of signaling species, species
composition, measures of signaling activity and
phylogenetic diversity.

Competition, however, is not the only factor influencing
signal evolution, and thus acoustic traits within communities of
species. For example, habitat constraints on sound transmission
are predicted to drive signal convergence toward parameters
optimal for transmission in a certain habitat (the acoustic
adaptation hypothesis, where acoustic signals adapt toward
maximized transmission in a particular habitat) (Morton, 1975;
Marten and Marler, 1977; Wiley, 1991; Snell-Rood, 2012). In
bats, where time-frequency parameters of echolocation pulses
have a significant effect on perception and navigation, species
occupying the same habitat may possess convergent signals
(Parsons and Jones, 2000; Jones and Holderied, 2007). Other
vocalizations may also converge owing to conserved function,
including alarm calls that are critical for survival (Marler and
Slabbekoorn, 2004; Braune et al., 2008). Acoustic adaptation
remains debated in the field (Ey and Fischer, 2009), and more
studies are necessary to elucidate how ecological processes
drive acoustic signal evolution. Patterns of divergence or
convergence of signals may also be driven by other factors.
For example, sexual selection may drive signal divergence by
female choice (Seddon et al., 2013), whereas communication
between competing species (extended communication networks)
may drive signal convergence (Tobias et al., 2014). Alternatively,
neutral processes may drive entirely different patterns in signal
evolution, such as signals resembling each other on account of
phylogenetic relatedness (Wilkins et al., 2013). Thus, although
we discuss patterns of divergence or convergence as examples
to illustrate our analytical framework, we note that the drivers
of these patterns are diverse. Regardless of this, the patterns in
acoustic community structure may themselves provide valuable
information, and we use the examples discussed above to
illustrate the utility of this approach.

A FRAMEWORK TO QUANTIFY
ACOUSTIC COMMUNITY STRUCTURE

The first step in understanding acoustic community structure
is to quantify the acoustic traits of all species in a community.
The concept of signal space provides a means to quantitatively
interrogate whether the signals of coexisting species overlap.
Broadly, signal space encompasses spectral and temporal
properties of a sound (Figure 1), by quantifying parameters
of a vocal unit, for example, a note (parameters include
peak frequency and note duration, to name a few) and
representing them as a point in multidimensional space. The

FIGURE 1 | Signal space (top right), derived using principal components
analysis on acoustic signal parameters of diverse species (A–F, top left)
enables study of acoustic communities across spatiotemporal scales,
including different seasons (color codes). Signal space for each species is
represented as the volume occupied by the entire repertoire (larger circles,
with the smaller point representing the centroid). Bottom panels: Acoustic
community structure varies along both spatial and temporal axes (color codes
represent different seasons). This figure loosely depicts some bird species
from an acoustic community in western India for illustrative purposes,
demonstrating seasonal turnover, with species replacing each other, and
spatial segregation, with each species singing from a preferred location in
space (Krishnan, 2019a).
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entire repertoire forms a cloud of such points, the volume of
which represents each species’ signal space (Nelson and Marler,
1990), which is constrained both by physical characteristics and
the transmissibility of sound (Wilkins et al., 2013). Signal space
of diverse sensory signals can be examined at scales ranging
from individual species to entire communities or lineages,
analogous to a functional trait space in community ecology
(Endler, 1992; Stoddard and Prum, 2008; Luther, 2009; Krishnan,
2019a; Chitnis et al., 2020; Krishnan et al., 2020; Lahiri et al.,
2021). As an outcome of diverse ecological processes, an acoustic
community exhibits organization within signal space. Using the
tools of community ecology and community phylogenetics, we
may obtain a series of metrics that quantitatively represent the
acoustic community, and we lay these out below.

At the outset, it is important to quantify species diversity and
signal space of any acoustic community. For the first, a census of
species detected in an acoustic dataset, together with measures
of how frequently their vocalizations are detected, provides an
estimate of community diversity. In order to quantify community
signal space, a call library consisting of the signals of each
species is digitized to extract signal parameters (Luther, 2009;
Krishnan, 2019a; Lahiri et al., 2021), which are then ordinated
using multivariate methods such as principal components or
linear discriminant analysis. Thus, all sounds in a community
are represented as points in signal space. Ideally, the digitized
signals should represent intra- and interspecific variability in
signals within the population under consideration, and may be
obtained either directly from passive recordings or by making
focal recordings to build a call library before passive sampling.
The latter is more reliable in poorly studied areas, as it enables
researchers to match vocalizations to species before passive
sampling.

Signal partitioning is an example of a process which is
predicted to lead to overdispersion, where points representing
the different acoustic signals are further apart than expected
by chance (Chek et al., 2003). The converse is true in case of
signal convergence, where clustering around a central tendency
is predicted. Clustering may also arise due to phylogenetic
relatedness of coexisting species, as the signals of close relatives
are likely to resemble each other (i.e., they are phylogenetically
conserved) (Figure 2), and quantifying the phylogenetic signal
in acoustic traits provides a way to test these hypotheses. Studies
have uncovered significant overdispersion in some bird acoustic
communities (Luther, 2009; Krishnan, 2019a; Chitnis et al.,
2020). These studies hypothesize that acoustic competition may
drive the structure of the acoustic community by divergence
of time-frequency parameters. Other studies, however, suggest
that environmental filtering (for example, acoustic adaptation to
habitat features) may result in community convergence instead
(Planqué and Slabbekoorn, 2008; Cardoso and Price, 2010). These
examples illustrate how the various drivers of signal evolution
may lead to distinct patterns in the signal space of a community.

In order to statistically examine overdispersion versus
convergence in signal space, studies typically employ null model
tests (Chek et al., 2003; Chitnis et al., 2020; Sugai et al., 2021a).
Null model tests in community ecology compare observed
interspecific trait differences or co-occurrence patterns to those
in randomly distributed “null” communities (Harvey et al., 1983;
Gotelli, 2000; Gotelli and Entsminger, 2001; Gotelli and McCabe,
2002). These tests thus inform us whether species are more
likely to co-occur, or certain community trait values are more
likely to exist than expected by chance. When studying acoustic
communities, null model tests are employed to detect whether
species are further apart or closer in signal space than expected

FIGURE 2 | Community phylogenetic analyses and signal space. Phylogenetic information is an important component in our understanding of acoustic community
assembly and structure. In a hypothetical, simplified series of communities drawn from the phylogeny on the left [inspired by the principles of community
phylogenetics (Webb, 2000; Cavender-Bares et al., 2004)], phylogenetic overdispersion or clustering combined with similar patterns in signal space suggest that
phylogenetic relationships drive acoustic community structure (top left and bottom right squares), whereas other patterns may be driven by signal partitioning or
convergence, among other processes (top right and bottom left).
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by chance (Chek et al., 2003). Interspecific distances greater than
those in the null communities are consistent with overdispersion,
or signal divergence, whereas clustering is consistent with
signal convergence or phylogenetic conservatism (Planqué and
Slabbekoorn, 2008; Cardoso and Price, 2010; Schmidt et al., 2013;
Tobias et al., 2014).

With detailed phylogenetic information now available for
many taxa that produce acoustic signals (Jetz et al., 2012; Shi
and Rabosky, 2015), the tools of community phylogenetic
analysis (Webb, 2000; Cavender-Bares et al., 2004; Kembel
et al., 2010) help us test hypotheses about the role of processes
such as competition or environmental filtering in driving the
distribution of points in signal space (Figure 2). These methods
combine quantification of community phylogenetic structure
and diversity with trait space patterns to understand community
assembly and organization. For example, overdispersion
in signal space coupled with phylogenetic clustering is a
pattern consistent with signals of close relatives within a
community diverging, potentially to minimize competitive
overlap. Conversely, phylogenetic overdispersion coupled with
clustering in signal space is consistent with the hypothesis of
community convergence. Measures of community phylogenetic
dissimilarity and beta-diversity (Ives and Helmus, 2010) may also
be used to quantify species turnover in acoustic communities.
Although care should be applied when interpreting patterns in
community phylogenetics (Gerhold et al., 2015), these analyses
provide a preliminary understanding of the relationship between
phylogenetic structure and signal space (Lahiri et al., 2021).
Additionally, by comparing phylogenetic community structure
to different trait spaces, we may investigate the contribution of
indirect effects (such as morphological divergence) to acoustic
community structure (Krishnan and Tamma, 2016). These
indirect effects may be important, particularly in light of the
relationship between morphological characters and acoustic
traits. Phylogenetic analysis thus opens up important avenues
in community bioacoustics, and when combined with trait
data, provides insight into the organization and turnover of
acoustic communities.

SPATIAL AND TEMPORAL DIMENSIONS
OF THE ACOUSTIC COMMUNITY

Divergent signal parameters represent only one aspect of acoustic
signal partitioning. In addition, many organisms also signal
at different times (temporal partitioning, distinct from the
temporal properties of the notes themselves, which are used to
calculate signal space) or locations in space (spatial partitioning).
Temporal partitioning may involve fine-scale adjustments to
signal timing and repetition rate, resulting in interdigitation of
the signals of different individuals [birds: (Cody and Brown,
1969; Ficken et al., 1974; Fleischer et al., 1985; Popp et al.,
1985; Brumm, 2006)]. Alternatively, both terrestrial and aquatic
species may simply signal at different times of the day from
each other, or even in different seasons [birds: (Luther, 2008;
Krishnan, 2019a), bats: (Adams and Thibault, 2006; Mancina
et al., 2012), fish: (Ruppé et al., 2015; Bertucci et al., 2020),

marine mammals: (De Vreese et al., 2018)]. Further research
is required to understand if diel-scale temporal partitioning
results indirectly from ecological separation in foraging time, or
by adjustments to the presence of competing signalers. Spatial
partitioning, on the other hand, involves divergence in the
locations from which the signal is emitted (Hodl, 1977; Bee,
2008). Segregation in space or stratification of singing heights
have been documented in diverse taxa [insects: (Diwakar and
Balakrishnan, 2007; Jain and Balakrishnan, 2012), birds: (Nemeth
et al., 2002; Chitnis et al., 2020), bats: (Kalko and Handley,
2001; Kennedy et al., 2014)]. This pattern is putatively linked to
maximizing sound transmission at a particular location (Miller
and Degn, 1981; Dabelsteen et al., 1993; Nemeth et al., 2002;
Marler and Slabbekoorn, 2004; Mathevon et al., 2005; Barker
and Mennill, 2009; Kirschel et al., 2009a; Sprau et al., 2012;
Núñez et al., 2019), or to indirect partitioning as a result of other
ecological processes (Jain and Balakrishnan, 2012; Kennedy et al.,
2014; Chitnis et al., 2020). For example, competition for resources
may also drive signal partitioning as a by-product (Aldridge
and Rautenbach, 1987; Norberg and Rayner, 1987; Kingston
et al., 2000; Kingston and Rossiter, 2004; Siemers and Schnitzler,
2004; Kirschel et al., 2009b; Mancina et al., 2012; Krishnan and
Tamma, 2016; Roemer et al., 2019). On the other hand, acoustic
adaptation is hypothesized to lead to convergence, where species
with similar signals occupy similar regions in physical space to
maximize sound transmission (Boncoraglio and Saino, 2007).
Patterns such as these highlight how distinct ecological processes
may both directly and indirectly (Wilkins et al., 2013) drive
signal partitioning, and thus acoustic community structure, along
multiple axes. These axes range from signal parameters (and
thus distributions of species in signal space) to the spatial and
temporal distribution of signaling species.

Finally, the radiation and propagation patterns of emitted
sound are an oft-ignored aspect of signal partitioning. Radiation
patterns are shaped dynamically by the morphology of the
sender aperture (Feng et al., 2012; Kounitsky et al., 2015), and
emitted sounds are directed by the aim of the head (Ghose and
Moss, 2003). Directionality of the signal impacts the perceived
amplitude (Naguib, 1995), and aiming competing signals away
from each other may further reduce interference, enabling
signalers to avoid overlap in their active spaces. Signal amplitude
is highly consequential for signal perception and attention
(Dantzker et al., 1999; Greenfield and Rand, 2000; Brumm and
Todt, 2003; Patricelli et al., 2007; Yorzinski and Patricelli, 2010),
and for targeting biosonar in bats (Surlykke et al., 2012; Jakobsen
et al., 2013). However, relatively few studies have quantified signal
directionality and aiming in the field. This is in part because one
requires an array of calibrated microphones, as well as estimates
of distance from the source, head aim, horizontal and vertical
angles to measure sound directionality accurately in the field
(Blumstein et al., 2011). By quantifying signal directionality,
the principles of engineering acoustics are directly applied in
ecological studies to, for example, understand whether behavioral
changes (such as aiming of signals in different directions) reduce
the overlap of competing signals in certain environments. In
addition, the use of multiple microphones to study these patterns
may also prove useful in estimating the relative numbers of
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different signaling species using triangulation (Blumstein et al.,
2011; Mennill et al., 2012). Although sound propagation patterns
may differ in aquatic environments, similar general principles
and techniques may be used to quantify both signal partitioning
(Ruppé et al., 2015; Bertucci et al., 2020) and acoustic community
structure (Hannay et al., 2013; De Vreese et al., 2018; Desiderà
et al., 2019; Mooney et al., 2020). Using community structure
and composition, including the distributions of species in signal
space, we may obtain valuable ecological and conservation
insight from non-invasive acoustic data, and we explore these
possibilities in the sections below.

ACOUSTIC COMMUNITY STRUCTURE
AS A BAROMETER OF ECOLOGICAL
CHANGE

The patterns and processes discussed above imply that each
acoustic community is likely to possess a distinct structure,
driven both by the diversity of signals (and their distributions in
signal space) as well as the spatial and temporal distributions of
signaling species. Because communities are not static, ecological
changes (spatial and temporal) are likely to be reflected in
acoustic community structure, and we may thus use this
framework to quantify and detect these changes. For example,
seasonal changes such as hibernation or migration may alter
the composition and phylogenetic diversity of both terrestrial
and marine acoustic communities (Hannay et al., 2013; Putland
et al., 2017; De Vreese et al., 2018; Krishnan, 2019a). Additionally,
acoustic communities may exhibit small and large-scale spatial
heterogeneity, because habitat preferences of signaling species
drive differences in distribution (Van Parijs et al., 2001; Figure 3).
Quantifying signal space helps us understand seasonal dynamics
and habitat occupancy of acoustic communities, providing real-
time information on species distributions and movements. This
data potentially enables us to detect arrivals and departures both
along migration routes and wintering grounds by measuring
turnover in the acoustic community. Further studies could then
use multi-year acoustic data to quantify the effects of extensive
urbanization or shipping traffic on the migration and community
structure of birds, bats and marine mammals. Human impacts are
predicted to profoundly affect migrant numbers and timing of
arrival, and community bioacoustics provides an early warning
of these changes for terrestrial and aquatic ecosystems (Sanders
and Mennill, 2014). Studies have quantified phenology (Buxton
et al., 2016), or seasonal ecological patterns in bird communities
over large geographical areas. Many studies of this variety utilize
ecoacoustic or soundscape indices to quantify broad changes
in sound profiles (Villanueva-Rivera et al., 2011; Sueur and
Farina, 2015). Indices typically either quantify attributes of a
recording, or compare recordings to each other in a manner
similar to quantifying beta-diversity (Villanueva-Rivera et al.,
2011; Desjonquères et al., 2020). Although useful for rapid
assessments, they do not provide species-level information,
and may sometimes provide conflicting results with census
methodologies (Lellouch et al., 2014; Krishnan, 2019a). Thus,
studies operating at multiple scales should combine the use

of ecoacoustic indices with more detailed analyses of the kind
we propose here. The quantification and utility of soundscape
indices has been covered in multiple reviews and publications
(Farina et al., 2011; Pijanowski et al., 2011a,b; Sueur and Farina,
2015; Gasc et al., 2017; Buxton et al., 2018a,b; Gibb et al., 2019),
and the two approaches are compared and contrasted in Table 2.
Thus, although our review focuses more on the use of acoustics
to study community ecology and change, using the acoustic
community as a unit, a combination of different approaches may
prove fruitful for future studies.

For instance, by combining indices with census of changes
in species composition, together with change in the community
signal space, we can detect the effects of migration on community
structure (Krishnan, 2019a). The strength of community
bioacoustics lies in providing detailed single-species information
as well as data on overall community diversity (Table 2).
Gathering these data across seasons or multiple years provides
a non-invasive way to track temporal community change. In
addition to migration, many bat species enter hibernation
in inclement weather, resulting in their absence from the
acoustic community. Hibernating bats are very sensitive to
environmental changes (Fenton, 2012; Nocera et al., 2019). Long-
term community acoustic data potentially provides information
on whether individual species are declining, on changes
to hibernation timings, and changes in overall community
diversity over time.

Heterogeneity in habitat and species distributions across
a landscape is also putatively reflected in a corresponding
heterogeneity of acoustic communities (Luther, 2009). Acoustic
monitoring has proved very useful in understanding occupancy
of species which are hard to detect using traditional survey
methods (Weller and Baldwin, 2012; Kalan et al., 2015;
Campos-Cerqueira and Aide, 2016; Law et al., 2018; Gibb
et al., 2019; Abrahams and Geary, 2020), and this provides
a starting point to quantify spatial structure in the acoustic
community. Occupancy, or the proportion of sites occupied
by a species of interest, provides a quantitative estimate of
the distribution and spread of a species. Dynamic multispecies
occupancy models enable quantitative description of spatial
heterogeneity in the acoustic community, as well as detection of
the effects of environmental change on the relative distributions
of species (Dorazio et al., 2010; Iknayan and Beissinger,
2018). There is a need for more large-scale multispecies
occupancy studies using acoustics, in order to comprehensively
quantify spatial community structure. This, together with
metrics of community beta-diversity (Avolio et al., 2019),
enables site-by-site spatial diversity comparisons. We may then
test two contrasting hypotheses: does signal similarity drive
spatial segregation in species distributions, or does habitat
structure indirectly structure the acoustic community (Sugai
et al., 2021a)? Similar analyses have also proved useful in
understanding how isolation on islands influences the acoustic
community, and thus signal partitioning in birds (Robert
et al., 2019). This study framework therefore has great value
in understanding the relationship between biogeography and
acoustic community structure. Combining data from multiple
recorders with triangulation algorithms will enable estimates
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FIGURE 3 | Ecological changes are reflected in the acoustic community. Spatiotemporal change in a hypothetical bat acoustic community (consisting of resident
and migrant species). Each habitat within this landscape is represented by a square, with colors representing different habitat types. Each bat species calls at a
distinct frequency (see key on the left), and species composition in each cell changes with seasonal transitions (top row). Recorders placed in each square are
predicted to detect spatiotemporal changes in acoustic community structure (bottom row), serving as a framework for long-term monitoring. Similar changes may
also occur due to hibernation or seasonal differences in signaling activity.

of density and relative numbers of each signaling species
in the community, and even open up the possibility of
tracking local movements of taxa such as marine mammals
(Blumstein et al., 2011).

CURRENT LIMITATIONS IN COMMUNITY
BIOACOUSTICS, AND POSSIBLE
SOLUTIONS

In spite of the usefulness of community bioacoustics, certain
limitations must be considered as areas for future streamlining
and improvement. Firstly, scientific studies undertaking
biodiversity inventories including passive acoustics should be
mindful of taxa that are silent or infrequently vocal, and use
a combination of survey methods to detect all species (Darras
et al., 2018; Wheeldon et al., 2019). For example, relatively

silent birds such as storks, or fruit bats that do not produce
echolocation calls, may be more reliably detected by visual
surveys. Thus, the acoustic community is best treated as a
surrogate of the ecological community, and as an indicator of
its diversity rather than an exact inventory. Secondly, censusing
massive acoustic data to quantify community structure can
be labor-intensive. Recent advances in automated species
recognition provide hope of a streamlined analytical pipeline
(Mac Aodha et al., 2018; Ulloa et al., 2018; Stowell et al., 2019).
However, in understudied tropical regions, comprehensive
call libraries are a relatively recent phenomenon, and there is
a global paucity of information on many taxa (Chakravarty
et al., 2020; Desjonquères et al., 2020). More data is needed
to improve automated recognition, particularly in high-noise
environments where the sounds from multiple vocal species
may result in masking that interferes with many recognition
algorithms. In the meantime, researchers in these regions should
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TABLE 2 | Comparison of the information provided by quantifying acoustic community structure using census methodology versus quantifying acoustic diversity using
ecoacoustic indices.

Census-based measurements of acoustic
community structure

Measuring ecoacoustic indices from audio
files

What are these measurements? The composition and organization of species in
an acoustic community, over space and time.

Metrics of diversity in the acoustic spectrum
calculated directly from recorded sound files.

What is calculated? Involves quantifying signal space, species and
phylogenetic diversity, and measurements of
signaling activity for the acoustic community.

Involves calculating indices of acoustic
complexity within an audio recording, or
between recordings from different sites.

What sounds do they measure? Census methodology only includes biotic
sounds.

Indices may be influenced by both abiotic and
anthropogenic sound as well as biotic sounds.

What sort of data do they provide? Provides single-species spatiotemporal data as
well as community-level information on
phenomena such as seasonal migration.

Provides broad information on soundscapes
and overall spatiotemporal changes in the
acoustic spectrum at the level of landscapes.

What additional data is required? Census of large datasets requires a reference
library for identification.

Analyses are carried out directly on recordings
and do not use a reference library.

How might these different analyses support conservation? Provides natural history information for
detecting movements and quantifying
distributions of suites of species, and
monitoring both individual threatened species
and entire ecosystems.

Provides rapid, large-scale assessment at a
relatively coarse resolution, typically at the
landscape level.

consider randomized subsampling of large datasets, (Krishnan,
2019a) which may provide a more tractable method to census
the acoustic community. This approach will also reduce the
computational power required.

Another issue generally faced by passive acoustic studies
is correcting for detectability in estimates of occupancy and
community composition (Darras et al., 2016). This is particularly
relevant for bats and dolphins, whose ultrasonic signals attenuate
quickly over distance in a frequency-dependent manner. Low
signal-to-noise ratios further accentuate this problem, reducing
detectability of calls (Sugai et al., 2019a). Thus, false absences
of higher-frequency species must be accounted for in any study,
potentially by correcting the data to account for differences
in detectability (Meyer et al., 2011) or by matching visual
and acoustic survey data (Richman et al., 2014). Playback
experiments using speakers may provide a detection space for
each species in an environment, which can then be implemented
in an occupancy-based model. Combining this method with
triangulation, as described earlier, may help refine estimates
and even provide relative abundance data for each species
in a community (Mennill et al., 2012). This is an important
area of future research into expanding the possibilities of
acoustic monitoring.

SYNTHESIS: COMMUNITY
BIOACOUSTICS IN LONG-TERM
BIODIVERSITY MONITORING AND
CONSERVATION

As the Anthropocene brings with it rapid changes in the earth’s
biodiversity, long-term biodiversity monitoring is the need of the
hour to inform policy and conservation (Magurran et al., 2010).
Non-invasive monitoring methods, in particular, are powerful
sources of continuous ecological data. For this reason, passive

acoustic monitoring has increased in popularity both in marine
and terrestrial environments. Human activities such as land-
use change could fundamentally alter spatiotemporal acoustic
community structure (Zuk et al., 2006; Gasc et al., 2018; Torrent
et al., 2018; Pillay et al., 2019), at the extreme resulting in the
loss of natural sounds (Pijanowski et al., 2011a; Sueur et al.,
2019). Quantifying these effects is very important in developing
conservation policy for diverse ecosystems, from forests and
deserts to the ocean depths. Studying how anthropogenic change
influences spatiotemporal community composition could inform
conservation planning and management, by serving both as
an early warning system and as a barometer of the extent of
ecological change.

As recorders become increasingly cost-effective (Hill et al.,
2019), the potential for acoustic monitoring, particularly in
tropical countries that harbor most of the world’s biodiversity,
is tremendous (Wrege et al., 2017). With these developments
comes a need for capacity-building not just in the collection
of data, but also in building robust analytical frameworks
that support science and conservation planning. As a highly
biodiverse tropical country, the example of India serves to
illustrate the global promise of community bioacoustics, and
the need for more studies utilizing these methods. There are
still relatively few passive acoustic studies in India (Diwakar
et al., 2007; Buxton et al., 2018a; Krishnan, 2019a; Lahiri et al.,
2021), and most acoustic sampling relies on call counts or focal
recordings (Khaling et al., 1998; Ghose et al., 2003; Agnihotri
et al., 2014; Purushotham and Robin, 2016). For lesser-known
Indian taxa such as bats, comprehensive call libraries are few
(Raghuram et al., 2014; Wordley et al., 2018; Chakravarty
et al., 2020). Expanding the study of acoustic community
structure will thus be extremely valuable in understanding
and conserving global biodiversity. The ability to rapidly
collect large amounts of data in the absence of observers
sets passive acoustics apart from focal community sampling
(Haselmayer and Quinn, 2000; Abrahams, 2019). Even when
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deploying passive recorders for single-species surveys, a wealth
of community-level information may be obtained. Most studies
we have illustrated in this review, however, focus largely either
on single species, or use indices for broader comparisons. By
studying acoustic community dynamics, deriving a community
signal space based on acoustic parameters, and quantifying
the diversity of communities in different habitats, we can
build a comprehensive tapestry of signaling species across
landscapes. This enables us to obtain information both on
individual species, as well as entire communities, using the
same datasets as other passive acoustic studies. For example,
by recording the acoustic community, we may identify the
habitat preferences of each individual species (as detailed
above), compare different sites to measure differences in
community composition and diversity across different habitat
types, and also track change in the overall community (and
individual species) over time. Therefore, if anthropogenic
activity alters the distribution of a certain species, this will be
detected by passive recorders, and will also change community
composition over time. By measuring the effect of anthropogenic
changes on community turnover (for example, beta-diversity

as a response variable), we can obtain valuable ecological
information across scales.

For threatened species, acoustic community structure,
diversity and dynamics at known sites is a useful barometer
of ecosystem health. Studies using acoustics to date primarily
focus on presence-absence of specific species, or on occupancy
patterns, as detailed earlier. However, community-level data
provides considerably more in the way of potential opportunities
for conservation insight. For example, we can identify what
species typically co-occur with a certain threatened species in the
acoustic community, and the patterns of community structure in
its preferred habitat. This could potentially be used to identify
new priority sites for survey, reintroduction or conservation
of these species, and to evaluate the success of reintroduction
and restoration efforts (Lewis et al., 2021). Sites that possess
the requisite suite of co-occurring species may be suitable for
reintroduction of a threatened species, and community structure
may be monitored after reintroduction, to measure whether it
returns to a pattern similar to the source site. Such efforts are
particularly relevant in insular ecosystems, where eradication
of invasive species and translocation of native species is being

FIGURE 4 | A generalized work flow highlighting the utility of community bioacoustics in long-term monitoring and conservation. By combining a quantification of
community signal space with phylogenetic analyses and passive acoustic census of spatiotemporal community diversity, we may track ecological changes, inform
conservation measures and also gauge their success over time.
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undertaken to restore ecological communities (Borker et al.,
2020). Acoustic community structure could provide a well-
defined, easily quantified metric of the success of these efforts in
restoring native insular communities of birds, frogs, insects, and
other signaling animals.

Community bioacoustics will further enable quantification
of long-term change in global ecosystems. This, in turn, will
help understand how human-induced environmental changes
impact global biodiversity, from densely populated cities to
the ocean depths. Although approaches driven by indices
are gaining popularity in passive acoustic studies, there is
also great benefit in approaches that provide species-level,
natural history-driven information that is of direct use in
informing conservation policy. Community bioacoustics, and
specifically acoustic community structure, is an approach that
provides this information, from the entire community down
to individual species (Krishnan, 2019a; Pillay et al., 2019). By
quantifying the distributions and volume occupied by species
in community signal space, together with phylogenetic diversity
(Lahiri et al., 2021; Figure 4), field researchers may compare them
across environmental conditions or grades of anthropogenic
impact. For instance, we can compare signal spaces across
different land-use types, to examine how the distributions of
species within signal space change. This enables a non-invasive
estimate of how land-use change impacts community diversity,
phylogenetic diversity and the composition of communities
of sound-producing species. The same data can also be used
to track how detections of individual species change across
land-use types. These comparisons thus provide critical data
on acoustic community structure, which reflects the ecological
impacts of anthropogenic change. By broadening the use of

community bioacoustics, we can thus apply an interdisciplinary
understanding of acoustic signaling to inform effective global
biodiversity monitoring and conservation.
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