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Different models of community dynamics, such as the MacArthur–Wilson theory of
island biogeography and Hubbell’s neutral theory, have given us useful insights into
the workings of ecological communities. Here, we develop the niche-hypervolume
concept of the community into a powerful model of community dynamics. We describe
the community’s size through the volume of the hypercube and the dynamics of the
populations in it through the fluctuations of the axes of the niche hypercube on different
timescales. While the community’s size remains constant, the relative volumes of the
niches within it change continuously, thus allowing the populations of different species
to rise and fall in a zero-sum fashion. This dynamic hypercube model reproduces several
key patterns in communities: lognormal species abundance distributions, 1/f-noise
population abundance, multiscale patterns of extinction debt and logarithmic species-
time curves. It also provides a powerful framework to explore significant ideas in ecology,
such as the drift of ecological communities into evolutionary time.

Keywords: dynamic population model, extinction, biodiversity, community model, 1/f noise, hypervolume,
Hutchinsonian niche

INTRODUCTION

Empirical studies of ecological communities often call for a greater emphasis on time and on longer
time intervals (Ripa and Lundberg, 2000; Hastings, 2004; Magurran, 2007). This call is urgent as we
live in an age of major changes in biodiversity across the Earth via landscape transformation or
migration (Dornelas et al., 2014). Additionally, in the last 50 years, there has been a reassessment of
the dominant paradigm of community organization. The “balance of nature” paradigm has receded
somewhat (Cuddington, 2001; Ergazaki and Ampatzidis, 2012; Simberloff, 2014) and we now have
a more dynamic conception of persistence in natural ecosystems (Pimm, 1991). Variability exists on
all timescales both within the ecological community itself (Pimm and Redfearn, 1988; Halley, 1996)
and in the environment to which it responds (Wunsch, 2003; Franzke et al., 2020). Thus, we expect
ecological equilibria to be more dynamic, more provisional and more diffuse (Halley and Inchausti,
2004). The simplifications of assuming an equilibrium will remain useful and compelling, such as
for flux calculations and for the species-area relationship. That said, the greater attention to time
calls for model development to help insights specifically into dynamic effects in communities.

The basis of most modeling in community ecology is the Lotka–Volterra model. This pair
of equations with four interaction terms can describe relationships of competition, predation,
herbivory and mutualism. While the Lotka–Volterra system is phenomenological, it can also be
related to more mechanistic resource models (Schoener, 1973). A natural development for dynamic
community modeling is to generalize this system to S species described by a set of first-order non-
linear coupled differential equations. This generalized Lotka–Volterra system has had enormous
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impact on community ecology, including classical treatments
such as that of May (May, 1973) and continues to be the subject
of novel approaches (Forte and Vrscay, 1996; Bertuzzo et al.,
2011; Fisher and Mehta, 2014; Kessler and Shnerb, 2015). The
growth in computing power has circumvented many of the
obvious technical difficulties of solving a system of this size.
A more persistent challenge is how to populate the S2 interaction
terms with plausible parameter values. Assigning interaction
strengths in an ecological community of hundreds of species
remains a formidable problem and drives the development of
various other community models, though these could arguably
be seen as special cases of the generalized Lotka–Volterra system
(Kessler and Shnerb, 2015).

One of the most widely applied community theories is
that of island biogeography (MacArthur and Wilson, 1967).
It ignores interactions entirely, so extinction and colonization
processes drive the system’s biodiversity. The simplicity of
this theory (MacArthur and Wilson, 1967) allowed many
developments using metapopulation-type communities (Tilman,
1994; Matter et al., 2002). Another development for biodiversity
ecology was Hubbell’s unified neutral theory of biodiversity
(NTB). Hubbell’s model made the remarkable assumption of
following Kimura’s model of genetic neutral evolution (Kimura,
1955), considering species to be ecologically indistinguishable
from one another and then assuming that all stochasticity
is demographic (Hubbell, 2001). This model violated obvious
ecological realities. Nonetheless, it explained a wide variety of
ecological patterns and processes such as near-lognormal species
abundance distributions (McGill, 2003), Fisher’s α-parameter
(Chave, 2004), and spatial clumping (Chave and Leigh, 2002).
The application of neutral theory to extinction debt (Halley and
Iwasa, 2011) that specifically used its dynamics was probably its
first potential use in conservation. The NTB has since stimulated
much theoretical work in community ecology — including
this special issue. Nevertheless, limitations in the NTB (Clark
and Mclachlan, 2003; Ricklefs, 2006; Leigh, 2007) show that it
cannot be a useful tool for all phenomena. Its most obvious
violation of ecological reality is it ignores niches. Various attempts
have been made to merge these. Proposals combining niche
and neutral models explore community dynamics (Adler et al.,
2007; Zillio and Condit, 2007; Chisholm and Pacala, 2010).
Since stochasticity is crucial to the operation of the NTB, the
need to involve environmental stochasticity has been noted as
particularly important (Kalyuzhny et al., 2015; Engen et al., 2017).
Species-area relations have also been a problem. The neutral
model found it difficult to reproduce observed spatial patterns
such as the Arrhenius species-area relationship (Leigh, 2007;
Halley et al., 2014).

Hutchinson’s niche-hypervolume concept (Hutchinson, 1957)
has been an attractive and popular approach because of
its intuitive simplicity and because it is readily visualized
(e.g., Figures 1, 2 below). Interest in Hutchinson’s model
is resurging recently (Barros et al., 2016; Díaz et al., 2016;
Blonder, 2018). This growing popularity links to research
contexts such as niche envelope models (Thomas et al.,
2004; Soberón, 2010; Barros et al., 2016) and functional
ecology (Lamanna et al., 2014; Díaz et al., 2016; Pigot et al.,

2016). It drives considerable methodological research, mainly
in the description and parameterisation of the hypervolumes
(Blonder et al., 2018; Carvalho and Cardoso, 2021). There
has also been progress in relating the niche to ideas of
coexistence. Concepts of stable coexistence have evolved from
strict associations with stable equilibria in the Lotka–Volterra
system to concepts of invasibility (Chesson and Warner, 1981;
Chesson, 2000). Theoretical developments have refined the
relation between limiting similarity and competitive exclusion
(Leibold, 1995; Chase and Leibold, 2003; Meszéna et al., 2006;
Barabás et al., 2018).

In this paper, we develop a dynamic model, using
Hutchinson’s hypervolume concept in a hypercube configuration.
Much of the research on niche-related issues, as in community
ecology generally, focuses on non-dynamic issues, seeking
to explain patterns in space or in community organization.
For example, in McGill’s (2010) survey of unified biodiversity
models (McGill, 2010), only two of the six models feature
dynamic descriptions of biodiversity. In seeking a model that is
dynamic, we mean a model that can predict the time evolution
of communities explicitly, something that has also been noted by
others generally (Hastings, 2004; Magurran, 2007; Engen et al.,
2017) and in hypervolume theory in particular (Holt, 2009).
Many of the emerging problems in community ecology, such
as extinction debt and colonization credit or the response of
communities to climate change are dynamic in nature. They
require the model to predict the state of the community at some
specified time into the future. In addition, we sought a model
that would generate several desirable features.

The Lognormal species-abundance distribution. Within a
community, there are many rare species and a few common
ones. The ensemble species abundance distribution at any time
is often observed to be lognormal. Preston (1962) argued that a
specific lognormal predominates — the “canonical” lognormal.
It means, broadly, that most individuals in a community belong
to the most abundant species, rather than, for example, to
a large set of less abundant ones. Preston showed that this
was consistent with the Arrhenius species-area curve having an
exponent of 1/4, — a pattern frequently observed (Sugihara,
1980). McGill (2003) and others have shown that many theories
generate such distributions, such as the zero-sum multinomial for
the neutral model.

Lognormal distributions in time. Species abundance varies
through time because of interactions with other species,
demographic stochasticity, and in response to environmental
stochastic factors (Halley and Iwasa, 1998; Engen et al., 2005).
This variation can be considerable. Not surprisingly, species that
vary most are at greater risk of extinction than those that are most
constant. This is unless the variability is non-stationary (Halley
and Kunin, 1999). Species abundances over time are typically
distributed lognormally (Halley and Inchausti, 2002). Thus, as a
species traces its trajectory of abundance X(t), its histogram tends
to be lognormal.

More time, more variance. In this model, each species’
abundance responds entirely to the environmental pressures on
that niche. According to Pimm (1991), the ecological community
is fundamentally non-stationary. This is equivalent to saying that
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FIGURE 1 | (A) Environmental configurations and niche widths in a two-axis hypercube. In this picture, the current configuration (position of partitions) favors
species-2, which likes a cool but moist environment, since this has the largest area. In our graphic notation, note that the position of the environmental configuration,
does not mean exactly temperature relative to the axis, but means that degree to which the environment favors hot or cold adapted species. (B) While the full niche
hypercube cannot be depicted for more than 3 dimensions, the structure of the community can be depicted by “unfolding” the higher-dimensional hypercube into
lower dimensions. Here, a six-dimensional community with 64 species is represented by 8 by 2 × 2 × 2 sub-cubes stacked to form a single “super-cube” of size
4 × 4 × 4. In turn this may be nested within another cube of size 8 × 8 × 8, and so on. This requires, that changes in the faster processes are mirrored in all
super-cubes.

variability increases with time — the “more time means more
variation” effect (Pimm and Redfearn, 1988; Inchausti and Halley,
2002). A series of studies using the Global Population Dynamics
Database (GPDD) that examined the relation of variance to time
systematically found that this increase of variance was universal
(Inchausti and Halley, 2001, 2002). The spectral analysis showed
that the model most consistent with this was a 1/f -noise model
for which variance increases linearly with the logarithm of time
(Halley, 1996; Halley and Inchausti, 2004).

Energy conservation: zero-sum properties. Since only a fixed
amount of energy arrives in an ecosystem of fixed area, there is
a limit on the number of organisms of a given size that can live
there. This is an implied property of many models through the
assumption of a constant number of individuals. This leads to a
corresponding zero-sum principle, that populations add up to a
constant community size in the absence of extinction-speciation
and that all changes in populations sum to zero.

Below, we describe its outline and some properties. We then
apply it to four different situations, showing how it can be useful
in ecological research and applications.

MATHEMATICAL DESCRIPTION AND
PROPERTIES

We assume the simplified geometry of Hutchinson’s
hypervolume to have the geometry of a hypercube, where
there are many axes, each of which describes an environmental

resource or limitation (We call these niche factors). The set of
preferences for the various factors defines each niche. Only one
species can occupy it, following Gause’s principle of competitive
exclusion. After Hutchinson’s conception (Hutchinson, 1978),
the niche is usually defined as the environmental conditions
under which a given population has a positive growth rate. The
volume of that niche is the probability that an individual can
reproduce, if the state of the environment is picked randomly.
However, if the area is large and it contains a large community,
then we may interpret hypervolume as a number of individuals
that can reproduce, and hence as a carrying capacity or ceiling for
population. The intended target of our model is the community
in a relatively large area. So, for both the niche and community
hypervolumes (referred to J) the units of hypervolume (usually
shortened hereafter to volume) are individual organisms. We
interpret it as a ceiling on population for a species or for the
community overall. This may be an issue when we have species
of different sizes in the community (and hence different energy
requirements) but refinements of this type are beyond the
scope of this paper.

To simplify this model, our model has additional assumptions.
(a) The world is binary. This includes binary niche factors: each
factor can only be either “high” or “low.” Species responses are
also binary: each species occupies only the position on the axis
associated with its preferred level. Recognizing the existence
of more developed concepts of limiting similarity (Leibold,
1995; Meszéna et al., 2006), we assume limited niche overlap is
necessary and sufficient to avoid competitive exclusion. Thus,
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FIGURE 2 | (A) Dynamics of the environmental variation in time for six steps (position of partitions, as in Figure 1A). Note that the partition for axis k assumes a new
state at random every 2k units of time, in this case one and two time steps, respectively. (B) Six time-steps of model dynamics for the four species. (C) Six panels
showing the changes in niche-size (Vs) for consecutive time steps. Colors denote occupation by the corresponding population (Xs). Note the extinction of X2

(species 2) at time t = 1 due to population falling below viability (‘†’), followed by two steps at zero and then at time t = 4, recolonization (‘∗’).

we do not consider hypervolume overlaps nor the possibility
of morphological displacements as, for example, in Carvalho
and Cardoso (2021). This also means that species do not evolve
within our community, a statement of strong niche conservatism
(Holt, 2009). (b) In addition, we assume that each factor
fluctuates independently and on a different timescale. (c) The
different timescales are spaced equally in log-time. (d) Population
responds proportionally to changes in niche volume. These are
the only drivers of population. Thus, we do not explicitly include
population growth, species interactions or density dependence.
The exception is that if the population goes extinct it remains
extinct until recolonisation. (e) Species do not influence each
other nor the niche structure.

The Niche as a Product of Traits
The axes of the niche hypercube are associated with niche factors.
There are only two available positions on any axis, and these
reflect corresponding traits to respond to this factor. The axis
may be a niche factor such as moisture, in which case the
organism is either moisture-loving or dry-loving, but it cannot
be both. In Hutchinson’s perspective, each organism “chooses”
an approach for each axis. We assume that each combination
of all traits together generates one species associated with a
single niche. Every such niche can be modeled by a corner on

the hypercube. By Gause’s principle of competitive exclusion,
two different species with the same traits cannot occupy the
same niche. In our model, two species with the same traits are
considered as the same species having the same traits.

Every niche, and so every species, is defined by K separate
traits, one for each of the K dimensions. Thus, the species identity
s can be associated with a binary number:

s = (o0, o1, o2, ...oK−1)

The index ok is 0 or 1 depending on the trait, the position of
the species relative to axis k, which can also be associated with
a unique decimal number s, where 0 ≤ s ≤ 2K

− 1.
Thus, for any species, s, its functional relationships can be

obtained by converting to binary. If the binary kth digit is ‘0’
then species-s likes a low value of niche factor k and if it is a ‘1’
then species-s likes a high value of niche factor k. When drawing
diagrams, we follow matrix convention where the first index
refers to the row number and the second to the column number.
Thus, for K = 2, 01 is found on the lower row, rightmost column.

While the corners of the hypercube define the species traits,
the dividing lines define the volumes of niches and reflect
the environment (Figure 1A), which changes with time (see
next section). The most obvious “visual” representation of the
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TABLE 1 | Niche representations for two niche factor axes (K = 2) in the example of Figure 1 and the corresponding niche sizes when the environment is warm and
moist.

Species number, s Species name (Binary, s) Description of traits Niche sizes under given environmental conditions

0 00 Prefers cold, prefers dry (0.9) × (0.8) = 0.72

1 01 Prefers cold, prefers wet (0.9) × (0.2) = 0.18

2 10 Prefers warm, prefers dry (0.1) × (0.8) = 0.08

3 11 Prefers warm, prefers wet (0.1) × (0.2) = 0.02

Suppose we specify B0 = 3 and B1 = 2. From this it follows that 00 = 0.3 and 01 = 0.4 that U0 = 0.9 and U1 = 0.8, respectively. This clearly defines one large and one
small niche width on each axis, one “friendly” the other “unfriendly” to a given species.

niche is as a hypercube in K-dimensional space. However, this
excludes actual visual representation for K > 3. An alternative
representation is through a series of nested cubes (Figure 1B).

The community hypercube is assumed to have a hypervolume
of unity that is the sum of all the different niche hypercubes. For
species-s the width on axis k is Lsk (see Appendix A for a list of
symbols). The niche hypervolume of a species, is the product of
its widths on all axes:

Vs = Ls0 · Ls1 · Ls2 · ... · Ls,K−1 =

K−1∏
k=0

Lsk (1)

Given this potential community of 2K species, the environment
will select the species that flourish. At any time, the environment
has a configuration for each niche factor k. Axes may also
represent stresses, such as radiation, or chemical pollution.
A positive trait for a stress means the species is tolerant and has
a potential advantage over other species. An example with two
factors is given in Table 1.

The niche width, Lsk, is the outcome of the interaction of
species orientation with the environmental configuration. We
assume each niche’s width on axis k has two possibilities:

Lsk =

{
Uk
1− Uk

(2)

Since we are working on the unit hypercube the total width of
the two traits on any axis must add to unity. In general, Uk is
different for each axis.

As an alternative way to quantify the two states on an axis,
we introduce the constant B, such that Uk∝B and 1−Uk∝1/B.
This, together with (2), and introducing a normalizing constant
0k, leads to the values for traits on each axis k:

Lsk =

{
0k · Bk
0k/Bk

, 0k = 1/(Bk + 1/Bk) (3)

The reason for this alternative representation is that when dealing
with populations it is often preferable to work with logarithms.
When we take logarithm of Equation (3), it assumes a simple
symmetric form:

λsk = ln Lsk =

{
γk + ak
γk − ak

(4)

We calculate the factors ak = lnBk and γk = ln0k through the
formulas

γk = ln
√

Uk(1− Uk) , ak = ln

√
Uk

1− Uk
(5)

Niche Factors and the Environmental
Configuration
Clearly the configuration of the niche factors
U0,U1,U2, ...,UK−1 depends on the environment. In this paper,
we will assume that Uk is an instance of a random variable taken
from a distribution f (u). All the Uk’s are assumed independent
and identically distributed. Note that even if the distribution is
the same for all axes, any realization of the hypercube will in
general have different configurations on each axis.

Special Case A: Broken stick model. If U is a realization of a
uniform random variable:

f (u) = 1, ∀0 ≤ u ≤ 1
= 0, elsewhere

This has important similarities to the “broken stick” model used
by MacArthur (1957) but differs in that we break each axis only
once. Sugihara introduced a “sequential broken stick” model
to model the community that would have a lognormal species
abundance distribution (Sugihara, 1980). Our model also has
important similarities to Sugihara’s model. The corresponding
distribution for the niche factor is:

fλ(x) = ex x ≤ 0

Note that here λ is the niche width in log space, so that this
distribution comes simply from a change of variable.

Special Case B: Symmetric alternating states for all axes. An
important special case, that will be explored in this paper, is
when all traits have two possible values, so f (u) is a dichotomous
distribution. This may be written as follows:

f (u) =
δ(u− u0)

2
+

δ(u− (1− u0))

2

where the function δ(x) is the Dirac delta function. In this case,
u0 is the same for all axes, which means that also B is the same for
all axes, so that u0 = 0B and 1–u0 = 0/B. Also, the distribution of
log of niche factor, λsk, will be similarly dichotomous:

fλ(x) =
δ(x− γ0 + a0)

2
+

δ(u− γ0 − a0)

2
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Since B is the same for all axes, the unit volume of the community
hypercube can be written as:

1 =
[
0B+

0

B

]K
= 0K

[
BK
+ KBK−2

+ K(K − 1)BK−4
+ ...+

CK
k BK−2k

+ ...+
1

BK

]
revealing the states of the community: the volume of any

niche is 0KBK−2k for any k ∈ {0, 1, 2, ...,K}, while there are CK
k

niches of that size in the community hypercube. There are thus
maximum and minimum values for niche volume:(

0

B

)K
≤ VS ≤ (0B)K

Special Case C: Asymmetric alternating states for all axes. This is
the same as Special Case B, except that the two states between
which a niche factor can alternate, are not equally probable. This
may be written as follows:

f (u) = q · δ(u− u0) + (1− q) · δ(u− (1− u0))

In this case too, B will be the same for all axes, with u0 =0B and 1-
u0 = 0/B. For q = 0.5, special case C is the same as Special Case B.

In general, to relate the niche widths of Equation (4) in a more
precise way to the environment, we introduce the matrix term csk
and the vector element ak:

λsk = γk + csk · ak (6)

Here, we have defined ak as the environmental configuration of
the kth niche factor, ak = ln

√
Uk/(1− Uk) , with Uk a realization

of the random variable f (x). We define csk as the orientation
of species-s to niche factor-k: if species-s responds positively to
niche factor-k then csk = +1 and if it responds negatively to niche
factor-k then csk =−1. Specifically, csk = +1 if the kth digit of s (in
binary) is 1, otherwise it is−1.

In the logarithmic domain, the niche volume of Equation (1),
becomes a sum and, for species-s, the overall niche volume can be
written by substituting (6) as follows:

vs = ln Vs =

K−1∑
k=0

λsk =

K−1∑
k=0

γk +

K−1∑
k=0

cskak (7)

The community niche volume can be written in matrix form:

v = Kγ̄+C · a (8)

Where γ̄ = 1/K
∑

γk. Thus, the log-hypervolume of the niche is a
constant plus the product of a matrix representing species traits
with a vector representing the environmental configuration.

Population Dynamics and Turnover
We associate the niche hypervolume with population size. So,
if the entire community size is J, the number of individuals in
species-s is the niche hypervolume times J, so Xs = JVs and for the
dynamics of the log-population vector x = lnJ+v we have:

x(t) = ln J + v(t) = ln J + Kγ̄(t) + C · a(t) (9)

The time-dependent environmental configuration vector, a(t) of
size K, expresses the changing environment, while the orientation
matrix C (of size S × K) describes the association between
the species traits and this changing environment. This matrix
is constant and is easy to construct. Its rows are simply all
the numbers 0 to 2K , written in binary form, with the ones
remaining as +1 and the zeroes replaced by −1. The dimensions
of this matrix are 2K

× K. Each species occupies one row
and each column is a niche factor axis. Each column of
C (or each row of CT) has a sum of zero.

An important question is how we describe environmental
changes that drive a(t), the niche factor axes. The elements of a
are the configurations of the niche factors of each axis. At each
time-step, each component of ak(t) is based on Uk a realization
of the random variable from the distribution fU (x), specifically
ak(t) = ln

√
Uk/(1− Uk). We assume that axes have separate

timescales, namely each axis has different timescale of change,
τk, see Figure 2A. Moreover, we will assume that timescales
are equally spaced logarithmically, such as τk∈{1, 2, 4, 8, . . .,
2K−1} time units. We label the axes with indices 0,1,2,3,. . .,K−1
associated with the respective timescales 1, 2, 4, 8, . . ., 2K−1 units.
We will write the vector as follows:

a(t) = [a0(t), a1(t), ..., aK−2(t), aK−1(t)]

Thus, the element ak(t) of a(t) assumes a new state every
2k units of time.

In this theory, we suppose that species’ own population
dynamics are not important — they respond to the changes
in the environment and reach equilibrium rapidly. Certainly,
within this framework, starting from Equation (8), more detailed
population dynamics could be constructed at the price of
greater complexity.

Figure 3 shows the typical pattern of fluctuations of the
model. This is significantly different from the pattern where
populations fluctuate within a basin of attraction around a fixed
equilibrium. Here, the population remains within a “basin” only
within a timescale. Long-term it departs from any basin of
attraction. It is also different from populations in the neutral
theory, where population trajectories that are essentially random
walks (Brownian motion) that can drift anywhere within the
bounds [0,J]. In the 1/f model (Halley and Inchausti, 2004), the
populations can also drift but require a much longer time to
depart far from the initial value.

The abundance for species-s is given by (8) as:

xs(t) = Kγ̄(t)+ ln J +
K−1∑
k=0

cskak(t) (10)

Equations (8) and (10) describes the dynamics of all the
populations in the community in the absence of extinction
and colonization or speciation. However, we can include local
extinction or extirpation, which plays a major role in the
ecological community, as a form of ecological turnover, offset
by colonization. The population is extirpated if it falls below
a minimum viable population, if xs(t) < m, creating an empty
niche. Recolonisation of an empty niche can be modeled by a
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FIGURE 3 | Population dynamics of four randomly chosen species in the community model generated using Special case B, with parameters K = 7, with
J = 5 × 106 for 200 time-steps. The dynamics are according to Equation (10) and thus do not include extinction-colonization.

constant probability. Thus, the overall population dynamics can
be expressed in island-biogeographical terms. For any species s,
the probability that the species is present at any time t changes
as follows:

p(t + 1) = c+ [1− c− es(t)] p(t) (11)

Here c is the probability of colonization per unit time and p
is the probability that the species is not extinct at time t. The
probability of extirpation at time t is es(t) is the probability of
the log-population being less than m, namely:

es(t) =
∫ m

−∞

fxs(z)dz (12)

This equation differs from the usual equation of island-
biogeography because es is time dependent. If extinction occurs,
then the niche becomes empty. Thus, in the presence of
extinction, we rewrite Equation (10) as:

xs(t) =

Kγ̄(t)+ ln J +
K−1∑
k=0

cskak(t) , ∀xs(t − 1) ≥ m

< m , ∀xs(t − 1) < m
(13)

Example. Suppose K = 3, J = 1000, B0 = B1 = B2 = 3 (Special Case
B). Then there are 8 species, Γ = B/(1+B2) = 0.3, and the two
values of niche width are Ls(t0) = 0.9 or 0.1, from Equation (2A).
The 8 niches have 4 possible sizes: 729, 81, 9 and 1 with one, three,
three and one species, respectively. Thus, at any time there will be
one niche with 729 individuals, three with 81, three with 9 and a
single niche with one individual. The identities of the niches will
move around according to the environmental signal, which we
assume to be at t = t0 and a(t0) = lnB× (−1,−1,−1)T . In the log
domain, we have lnB = 1.10 and γ≈−1.20, while the orientation
matrix C is:

C =

−1 +1 −1 +1 −1 +1 −1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 −1 −1 −1 +1 +1 +1 +1

T

Thus, using Equation (8), the population vector x at time t, is
given by:

x(t) ∼= 3.30+ (1.10) [−3,−1,−1,+1,−1,+1,+1,+3]T

Note, that no reference is required to the previous states of the
population here. Thus, in the absence of extinction, the states of
the population are given entirely by the environmental process
vector a(t).

The Zero-Sum Property and Linearity
One of the desirable properties for a model of the ecological
community is the zero-sum property. This means that changes in
populations add up to a constant community size. For example,
this is also an implied property of neutral model that also has the
attribute of a constant number of individuals. Here, as all niches
are a partition of the unit hypercube then, by definition, the total
hypervolume of all niches is unity. Thus, in Equation (8) even
though the relative sizes of niches change, the overall community
size always adds up to J individuals.

Surprisingly, the log-populations in this niche-space may also
have the zero-sum property. Even if the abundances themselves
are zero-sum, there is usually no reason for the log-populations
to follow suit. To see how this second zero-sum property may
emerge, we find the total community size by summing Equation
(10) over all species:

S−1∑
s=0

xs(t) =
S−1∑
s=0

(
Kγ̄(t)+ ln J

)
+

S−1∑
s=0

K−1∑
k=0

cskak(t)

=
(
Kγ̄(t)+ ln J

)
S +

K−1∑
s=0

ak(t)
s−1∑
k=0

csk (14)

= K · S · γ̄(t) + S · In J

The final term, in the second line of (14), disappears
because we have a summation over a column of the orientation
matrix, which sums to zero (see section “Population Dynamics
and Turnover”), something that pertains irrespective of which
distribution f (x) holds for niche factors. The second term on the
last line of (14) is constant in time, but not the first term. This
means that, in general, the total community size changes with
time and therefore there is no zero-sum property. For Equation
(14) not to change, γk should remain constant. The form of
γk, given by Equation (5), shows that γk will remains constant
in time provided U(t)[1−U(t)] does not change. This happens
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FIGURE 4 | Pattern of variance growth in the model with observation time for Special Case B for species #3 (chosen at random) of the community, with parameters
K = 7 and B = 1.9, J = 4 × 104 for 256 time steps. The lines indicate the median, minimum, maximum and the two hinges (25th and 75th percentiles) for 1,000
replicates. The dynamics proceed as for Equation (10) and do not include extinction or colonization.

for a restricted class of distributions, including the dichotomous
distributions of Special cases B and C. For such distributions, all
population changes can be expressed relative to the mean log-
population, Kγ̄+ ln J, so that Equation (10) can be written as:

z(t) = C · a(t), z(t) = x(t)−
(
Kγ̄+ ln J

)
(15)

This is important because it means that for this class of
distributions of environmental change, population changes
in the community can be related linearly to changes in
the environment through Equation (15), which is a major
mathematical simplification.

Variance in Time
According to Pimm (1991), the ecological community is
fundamentally non-stationary. Subsequent studies of variance
as a function of time in ecological populations found that this
increase of variance was universal (Inchausti and Halley, 2001,
2002). The model of variability most consistent with ecological
time-series was a 1/f -noise model for which variance increases
linearly with the logarithm of time (Halley, 1996; Halley and
Inchausti, 2004). It is thus important to see if such a pattern can
arise in a community model (Figure 4).

Here, the relevant question is how the population will fluctuate
on short timescales (1t << 2K). Let us now consider the time
series of length T << 2K for species-s with log-population {xs(1),
xs(2),. . ., xs(t),. . .,xs(T)}. Let us assume that each niche-factor has
the same variance Var{Uk(t)} = V0. The variance of this time
series is the expected value of the variance of (10), which is:

Var {xs(t)} = Var

{
ln J + Kγ̄(t)+

K−1∑
k=0

cskak(t)

}
=

K−1∑
k=0

Var {γk(t)+ cskak(t)}
(16)

Our problem reduces to finding the variance of one of the
components γk(t)+ cskak(t). This is done rigourously for Special
Case B in Appendix B but the following more general argument
holds for all kinds of distributions.

If the cycle time is very long there is no variance because the
series length is much shorter than the cycle time, that is T << τ k,
so the components associated with axis-k are unchanging and so
the variance contribution is zero. At the other extreme, if the cycle
time is very short, shorter than the distance between successive
samples, then τ k << T and we have:

Var {γk(t)+ cskak(t)}

=
1
2 Var

{
ln Uk + ln(1− Uk)+ csk ln Uk − csk ln(1− Uk)

}
=

1
2 Var

{
(1+ csk) ln Uk)+ (1− csk) ln(1− Uk)

}
= Var

{
ln Uk

}
= V0

The last line results because, since all the c’s are ±1, then
either we have Var{lnUk} or Var{ln(1−Uk)}, so provided the
distribution of Var{lnUk} and Var{ln(1−Uk)} are the same, we
have the simple result for τk << T. Thus,

Var {γk(t)+ cskak(t)} = 0, τk >> T
= V0, τk << T

Thus, as a series gets longer, as it reaches each time-constant
τk = 2k, its variance increases by V0. In the case where the
time-constants are arranged uniformly on the log-axis, then the
variance increases linearly in logarithmic time, as is the case for
1/f noise (Inchausti and Halley, 2001):

Ws ≈
∑

2k<T

V0 ≈ V0 log2 T (17)

This is equivalent to saying that variability increases with
time — the “more time means more variation” effect
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(Pimm and Redfearn, 1988; Inchausti and Halley, 2002).
This log-pattern is characteristic of 1/f -noise, which was the
model most consistent with ecological time series, for which
variance increases linearly with the logarithm of time (Halley,
1996; Halley and Inchausti, 2004). This result can be used, if we
have an empirical time-series, to estimate V0 from the rate of
increase of variance. However, if the time constants are arranged
otherwise, we could observe other patterns of variance increase
(Halley and Inchausti, 2004).

The Species Abundance Distribution
Within real communities, there are many rare species and
a few common ones. The ensemble species abundance
distribution at any fixed time is often observed to be lognormal.
Some have questioned the suitability of the lognormal
(Williamson and Gaston, 2005). McGill (2003) argued that
many theories generate such bell-shaped distributions and
having a lognormal species abundance distribution is a weak
test for a model. Nevertheless, the lognormal pattern is so
frequently encountered in field data (Ulrich et al., 2010)
that it constitutes an important model property. The niche-
hypercube model leads naturally to a lognormal species
abundance distribution.

In our model, the cube is divided into two pieces at a random
point, 0 < U1 < 1. Then the process is repeated independently
along a second axis to get 0 < U2 < 1 (Figure 1). At this point,
the cube contains four sub-cubes. Repeating the process in higher
dimensions creates new sub-cubes, 8, 16 and so on. For a process
of k repetitions, we have 2k segments in total. Without loss of
generality, a sub-cube has a volume given by Equation (1). Since
the Uk’s are random variables, it follows from Equation (2) that
each Lsk is a random variable on [0,1]. If we take logarithms, we
get Equation (7), where each λsk = ln(Lsk) is a random variable
with a distribution g(x) on (−∞,0). Suppose this distribution has
an expected mean of µ and an expected variance of σ2. Then we
can use the central limit theorem, provided all the moments of
the distribution g(x) are finite, to show that the sum of k of these
(for large k) will be approximately normal, with mean kµ and
variance kσ2, so that:

vs ∼ N(kµ, kσ2) (18)

The fragments may be considered as species and their size the
number of individuals of that species. If there are J individuals
in the community any species has a population Jez . This is a
lognormal random variable.

In Special Case A, the distribution f (x) is uniform on [0,1],
while the distribution of the logarithm of this is exponential with
a mean of −1 and a variance of +1. Thus, the distribution of the
niche hypervolume vs is expected to be normal:

fvs(x) =
√

2
πK

exp
[
−
(x− K)2

2K

]
(19)

This means, from Equation (9), that xs is also distributed
normally and hence that Ns has a lognormal distribution.

In Special Case B, the distribution f (x) has an expected mean
of γ and an expected variance β2. Thus, the distribution of the
niche hypervolume is expected to be:

fvs(x) =

√
2

πβ2K
exp

[
−
(x− Kγ)2

2Kβ2

]
(20)

Again, xs will be distributed normally, so Ns has a
lognormal distribution.

Both the species abundance distribution and the distribution
of abundance in time are shown in Figure 5. The time
series for a fixed species s at different times, namely of
the set {xs(1), xs(2), xs(3), . . ., xs(T)} is found to be
lognormal. This might be expected because each species
in time traces out a sort of random course within the
niche space defined by the species abundance distribution.
However, in this case, the variables are not independent
between different time-steps. Clearly, if T is very large, then
the time-series will yield a distribution following (23), so
we should expect this limit of the distribution in time to
follow a lognormal.

APPLICATIONS USING SIMULATION

The examples in this section all use Special Case B. The
biodiversity of the community typically determines the number
of dimensions K that must be used, since S = 2K . The central
parameter B is the measure of the fundamental variability of each
niche factor and of the community. We can estimate this from
the scaling behavior of population fluctuations. Together, these
parameters describe the community and how it interacts with
the environment.

In problems involving population dynamics, we can define the
number of individuals in the community, J. We can calculate
this for various types of organisms as a density of individuals
per unit area. Thus J0 = ρA0. However, the magnitude of
J becomes important mainly when relating problems such
as extinction, for which we must also choose a value for
the minimum viable population, m. Given the choices of the
parameters above, this fixes the number of extinctions expected
in each time-step of the model. It is also possible to choose the
colonization probability.

Once the foregoing parameters have been chosen, the
others follow and further changes in the model relate to
the specific questions being asked. In problems involving
community dynamics, one of the most difficult tasks is
fitting the community observed to the niche hypercube.
Although the explicit correspondence of the axes to specific
species traits is not needed, it is seldom possible to find
an integer K corresponding to the known species in the
community. Provided that 2K

≥ S0, there are more niches
in the hypercube than species, so some cells have zero
population (empty niches).

For the applications which follow, we parameterised
simulation models in C++ and an abridged version on an
Excel spreadsheet.

Response to Habitat Reduction and
Extinction Debt
When human actions reduce the size of a habitat, there follows
a decrease in the overall population in the community. This
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FIGURE 5 | (A) Species abundance distribution for a single community in one run of the model. (B) Histogram of population size in time for a run covering
2,000 years for a randomly chosen species from the community. The parameters of the model were J = 105, K = 9, B = 1.5 and MVP = 2. The dynamics are
according to Equation (10) and do not include extinction or colonization.

leads to a decrease in the number of species, as reflected in the
species-area relationship. This loss of species does not follow
immediately. The community may appear to get along for a
while without the loss of any species. Later, however, these
extinctions will happen – this is the phenomenon of extinction
debt. Extinction debts have been observed or inferred over a
range of scales from months to thousands of years and depend on
various covariates of which the strongest is the area of the habitat
(Halley et al., 2016). One of the challenges of modeling extinction
debt is this range of timescales, from a few weeks to thousands of
years, virtually into evolutionary time.

From a theoretical perspective, two types of community
mechanism explain extinction debt. One of these features in the
original extinction debt study by Tilman et al. (1994) based on
a Tilman’s spatial competition model (Tilman, 1994). In this
model, the delay arises from the combined decline of various
species found with metapopulations below the threshold when
habitat is lost. An alternative approach was based on neutral
drift (Halley and Iwasa, 2011). In a neutral model, all species
perform random walks due to demographic stochasticity. When
habitat is lost and the community shrinks, the locus of each
species’ walk is forced closer to zero. As a result, species all have
a higher probability of extinction, not matched by colonization.
While this forces the community to lose species, it takes time.
The dynamic hypercube model in this paper provides a third
theoretical mechanism that leads to delayed extinctions. We
can view the loss of area of a community as a general loss of
hypercube volume. This reduces the populations of all species
proportionally, including a loss of the lower limit. In our model,
at any time, there is a species at the minimum population
size, where it is vulnerable to extinction. As in the neutral-drift
mechanism, this is a stochastic mechanism.

Delayed extinction has major implications for conservation.
For example, how much time will pass before the extinctions
start to happen? How long before the extinction debt is “paid”?

Typically, we try to predict the rate of loss of species after
a sudden loss of area, assuming we know the initial number
of species. This problem has been addressed for the neutral
model several times (Gilbert et al., 2006; Halley and Iwasa, 2011;
Hugueny, 2017). The advantage of the model presented here for
this kind of problem is that it is suitable for looking at a wide
range of timescales.

We can model extinction debt by simulation. For this, the key
question is the relationship between minimum viable population,
m, and the minimum niche size, xmin. If m > xmin, then the
characteristic timescale is a single time-step since every time-
step a different species is potentially subject to the minimum
niche size. On the other hand, if m < xmin then extinction never
happens (without an extra noise term). It thus makes sense that
m is related to xmin. We will assume that if m = xmin then there
is a probability of extinction ε, the probability of extinction at the
minimum viable population.

Figure 6 shows the results for a specific set of parameters,
depicting the decay in species number over time. Compared
to the simplest expectation — exponential decrease in the
number of species — the trajectories we predict are substantially
different. An exponential curve that had the same expected
number of species losses at the mid-point of the time considered
(i.e., 50 years) suggests more species would survive in the
short-term, but few in the long-term. Put another way, our
model suggests a transient rapid loss of species, followed by a
deceleration with eventually few losses. The trajectory is also
different from the neutral model because the dynamic hypercube
model yields losses on a relatively short timescale. It is notable
that, overall, the pattern of biodiversity decrease follows the
logarithm of time.

It is worth noting that our model is like that Hubbell’s neutral
theory, as model of unstable coexistence, where species eventually
drift to zero unless there is a process of speciation or colonization
(Huston, 1979; Chesson, 2000).
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FIGURE 6 | Pattern of survival as a function of time after habitat is reduced suddenly (at t = 0). The area initially has 123 species in broken-stick configuration with
each species having a large population. The reduction in area is such that the reduced total number of individuals is 13,000 so the average population falls to just
above 100. The model has K = 8 with B = 1.5 and the minimum viable population is set at M = 2. This figure summarizes 1,000 simulations. The curves correspond
to the five quartiles of species richness at each year. Notice that decay occurs approximately linearly on a logarithmic scale. The black line is the median and the gray
lines the hinges (25th and 75th percentiles). The other curves are the equivalent exponential decay (blue) and hyperbolic decay (brown, for neutral theory) with the
same S0 and the same t50. The dynamics are according to Equations (11)–(13) and thus includes extinction. However, colonization is assumed to be zero.

FIGURE 7 | Four realizations of the species-time relationship for the community, with parameters K = 7 and B = 1.7, J = 4 × 104 for 256 time-steps and the
minimum viable population is M = 11. Notice the near linearity of the rise on a logarithmic scale of time (years). The probability of colonization is constant at 0.007 per
species per year. The dynamics are according to Equations (11)–(13) and thus include extinction-colonization.

A Species-Time Relationship
The species-time relationship describes the increase in the
number of species recorded at a site as that site is observed
for increasingly long periods of time (Rosenzweig, 1995). In
some ways the species-time relationship is the reverse of the
species relaxation curve discussed above, though typically the
emphasis is on the sampling aspects of the problem rather
than recolonisation issues. This is because a process of Poisson
sampling a fixed community at regular intervals will yield
a steadily increasing cumulative number of observed species.
For example, the corresponding author’s interest in Greek
endemic orchids resulted in a collection of species on the
University of Ioannina campus beginning with 5 in 2008.

Thereafter sequence of annual new species was {0, 0, 4, 0, 1,
0, 4, 1, 1, 1} reaching a cumulative total of 17 in 2018. The
randomness of a Poisson process does not convincingly explain
this increase. The increase in species richness is clearly being
driven by a combination of sampling processes and ecological
processes on various scales (Preston, 1960; White et al., 2005).
In contrast to the well-known species-area relationship, the
species-time relationship has received relatively little attention.
The evidence from wider studies of ecological communities
suggests that species-time relationships are well fit either
by power functions or by logarithmic functions. Large-scale
analyses of species-time relationships have revealed both of these
(White et al., 2005).
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FIGURE 8 | The number of common species between two instances of a community separated by 1t years for different values of 1t. The parameters were K = 6
and B = 1.5, J = 104, and the simulation covered 750 time-steps. Initially, the community was unoccupied, but each niche was subject to a colonization probability
of 0.02/year with an MVP of 22. The average diversity in any year (for the interval t = 50 to t = 750) was 21.3 ± 4.4 species, and the population was on average
4,000. The lines indicate the median, minimum, maximum and the two hinges (25th and 75th percentiles) for 1,000 replicates. The dynamics are according to
Equations (11)–(13) and thus include extinction-colonization.

FIGURE 9 | On a short timescale, the initial three axes are represented by a
set of species in a compact niche, this changes and the cube moves around
the hypercube on longer timescales.

The species-time relationship is also very important in
cases of real ecosystem restoration. For example, taking the
case of the restoration of European forests after the ice age,
Clark and Mclachlan (2003) showed that variance associated
with population and species drift slows down or appears to

reach an asymptote. In contrast the neutral model exhibits
variance increasing almost linearly with time. A more niche-
based model is thus needed to investigate problems like this.
Clark and Mclachlan (2003) attributed the diminishing growth
to a mechanism of density dependence and stabilization, other
mechanisms may also contribute to this effect. Our model can
explore this — it provides a powerful but simple niche-based
dynamic framework to explore problems of this type. Figure 7
here shows a species-time curve for an environment that begins
with no species but allows colonization to happen.

The above pattern exhibits a logarithmic type of increase in
species richness with time. It demonstrates that a decelerating
incidence of new species with time need not only imply a
stabilization toward an asymptote or an equilibrium of the
logistic variety. A slowing increase in species numbers also
has a non-stationary interpretation because the 1/f community
embodied in this model is non-stationary.

Community Turnover, Speciation and the
Drift Into Evolutionary Time
One of the most interesting predictions of MacArthur
and Wilson’s theory of island biogeography is that island
communities, due to their rapid rates of extinction and
recolonisation, are in a permanent state of flux regarding
community composition. An observer returning to a small
island, after a long absence, should find the new community
virtually unrelated to the previous one. Similar community drift
is also predicted in the neutral model because the species are
constantly drifting in abundance relative to one another. Thus, in
neutral theory, due to internal drift and lack of niche definition,
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any species can come to dominate the community. In fact, the
drift associated with neutral dynamics has been used as a null
model to calibrate the significance of changes attributed to global
warming (Sgardeli et al., 2016). Both models feature community
drift by virtue of their neutrality by virtue of not having niches.
The absence of niches means that the community is not fixed and
may drift between different structures.

The current model also generates community drift, but the
drift means something different in this niche-based case. The
model is neutral in a sense that no trait is associated with
dominance, and so any of its species can dominate. It depends on
which niche is pushed to the largest size by the environment. The
drift of the community between different species compositions
is also here. Figure 8 shows the average overlap as a function of
time-separation.

In this figure K = 6, so In this case the trait vector has the
form (c1,c2,c3,. . .,c6) and the community has a potential size of
64 species and 10,000 individuals. Due to a high value of B, which
leads to a high variability, coupled with a high value of minimum
viable population (M = 22), the extinction rate was high. As a
result, there were only ∼20 species present at any time, and so
the average population was only ∼4,000, well below the carrying
capacity of 10,000.

As the environment changes, different groups of species are
favored. We can associate the twenty species in the community
with a cluster of niches with larger volume. Each year the
environment changes and causing some niches to shrink and
others to grow. As this happens, those that shrink become more
likely to lose their population while those that grow can be
recolonised. The slowest of the processes changes on a scale of
64 years. Thus, on scales greater than 64 years, changes in the
environment just retrace at random the previous configurations;
there is no real evolution in the environment. So, for time
separations above 64 the difference between the two communities
does not decline further.

However, we can extend the current model to include
variability on longer timescales. We can associate the still-longer
timescales of environmental forcing in the evolution of other
traits, ones that appear fixed on shorter timescales (Jackson and
Overpeck, 2000). Thus, a system with a 25 traits and a vector
(c1,c2,c3,. . .,c25) and a maximum timescale of 3.35 M years,
reaches deep into evolutionary time. This includes a space of
many millions of possible niches, which may be much larger than
the community that interests us. The active community may be
large enough to support only a thousand species. How can we
visualize this? The initial community is inhabiting a hypercube in
10 dimensions, in which the traits are all changing, resulting in
changing dominance hierarchies. However, on timescales above
a thousand years, other traits will start to change too. What will
happen, is that the initial community is no longer so competitive
relative to some other species whose niche lies outside the
initial hypercube. These species were not initially present in the
community, but now there is an incentive for them to colonize or
be created. Thus, the community will tend to drift according to
the changing environment. Thus, if we fast-forward a few million
years, the initial community moves within the larger hypercube
to a different center (Figure 9). We still have a community whose

short-term variability involves traits c1–c10 but other traits c10–
c25 will also have changed so that very few species remain the
same as for t = 0. This reflects the adaptive landscape of Wright
as noted by Holt (2009) and Blonder (2018), but this is a dynamic
adaptive landscape.

Thus, we can see the ecological community slowly drifts away
from its initial configuration. This shows that the current model
can look at the ecological community in evolutionary time also.
Hutchinson’s concept unifies ecological and evolutionary time.
So, the community 1/f model described in this paper also predicts
community drift on a longer evolutionary timescale. In contrast
to the McArthur–Wilson and neutral model models, it is possible
to identify traits. Part of this model is that there are processes in
the environment that impact organisms that are stationary on a
short timescale. They only change on longer timescales. But as
they do, their influence is to change the balance toward organisms
that were previously marginal. In contrast, organisms that were
previously well-suited to the environment now find themselves
“on the margins.”

GENERALITY OF RESULTS

An important question that should be asked is how robust are
the results we have obtained in the face of structural changes?
The model we have developed rests on some fundamental
assumptions that cannot be changed and other assumptions that
are less critical which affect in different ways the results obtained
for lognormality, variance growth and linearity.

The model is based on four fundamental structural
assumptions. Foremost is the conception of Hutchinson’s
niche itself, namely that the space in which a species operates
can be defined by an area of hyperspace. A discussion by Leibold
covers many of the difficulties this implies (Leibold, 1995). Most
important among these is: since so many aspects of any species
requirements are tied to interactions with other organisms,
how can it be tied instead to a relatively fixed structure like
a hypervolume? The main justification has always been that
the simplification enabled by Hutchinson’s conception brings
worthwhile results. Secondly, we have assumed a cuboidal
geometry for niches. This contrasts with much of the work
being carried out by researchers who are trying to build up a
picture of the niche in more applied contexts such as discussed
in the Section “Introduction.” Thirdly, we have assumed that
organisms respond to each niche factor in a binary way: either
a positive niche factor helps or hinders each species. This is
obviously a simplification for the nuanced way that organisms
respond to changing environment – real responses are rarely
binary in this way. Finally, we assume that the states of the axes
of the hypercube change independently. This too might seem
restrictive for things like temperature and moisture that clearly
influence one another. We argue that all these fundamental
assumptions enable major simplifications in tractability, in
parameterization and also enable intuitive understanding
and visualization.

The most important additional assumption of the model
is the choice of the distribution of niche factors, Uk on
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FIGURE 10 | Population dynamics of four randomly chosen species in the community model generated using different distributions with parameters K = 7, with
J = 5 × 106 for 512 time-steps. (A) Special case B with B = 1.15. (B) Special case B with B = 1.73. (C) Special case A (uniform distribution for U). (D) Special case
C with B = 1.73, with asymmetry q = 0.2. The dynamics are according to Equation (10) without extinction-colonization.

FIGURE 11 | (A) Species abundance distribution for a single community in one run of four different models taken at time t = 511 in each case. The models were:
Special case A, Special Case B with B = 1.15, Special Case B with B = 1.73 and Special Case C with q = 0.2 and B = 1.73. (B) For the same four models, the
histogram of population size over time for a run covering 512 years for species number 126 in each case. The other parameters of the models were J = 105, K = 7,
and MVP = 2. The dynamics are according to Equation (10) without extinction-colonization.

TABLE 2 | The main additional assumptions required to produce the results in this paper.

Result Required assumption

Identical f(u) Dichotomous f(u) Timescale
separation

Timescale geometric
spacing

Extinction-
colonization

Lognormal SAD (Equation 18) X

Lognormal in time (Figure 5B) X

Zero sum for log-populations. Linearity
(Equation 15)

X X

1/f noise type variance increase X X

Extinction debt (see section “Response to
Habitat Reduction and Extinction Debt”)

X

Log species time increase (see section “A
Species-Time Relationship”)

X X X

Community turnover (see section “Community
Turnover, Speciation and the Drift Into
Evolutionary Time”)

X

An ‘X’ in any box implies that the associated assumption is required to produce the result.

[0,1], for the different axes. The distributions have been
assumed to be the same for all axes, though this could
be relaxed at the expense of losing some results (e.g.,
for lognormality). The choice of distribution affects the
dynamics considerably.

From Figure 10, It is notable that in the case of the models
of Special Case B, the parameter B is an asymmetry parameter,
increasing B increases the difference between species population
sizes and the variability in time. In special cases A and B, there
is no asymmetry between states of the niche factors. This means
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that every species, long-term, has the same average population;
there are no privileged species. Introducing asymmetry between
states (q6=0.5) means that the environment spends longer in some
states than in others. Ecologically, this is clearly possible, as with
moisture in an extreme desert, for example. Asymmetry, in this
model, causes some states to have a greater average population
size than others.

When deriving Equations (1–12), we made no special
assumptions about the distribution of Uk, so these will hold in
general. This is also true for Equation (18), the lognormality
for species abundance distributions, which emerges from the
central limit theorem. This only requires that there be a large
number of axes and that the moments of ln(Uk) are finite. Thus,
lognormality is a very general property of this model. Figure 11
shows this through the results of running different models.

In Figure 11, it is worth noting that the species abundance
distribution (distribution of species population sizes in the
community) conforms to a lognormal as shown by Equation
(18). In simulations, this was also found for the distribution
of species population sizes in time. It is also worth noting
that in simulations, these two types of distribution were
indistinguishable except in Special Case C, for which the
distribution in time has a higher average value. This can be
explained by the fact that in this asymmetric model, species
have different distributions; some species have higher average
populations than the overall community average.

The zero-sum property of log populations and the linear
dependence of population on the environment, Equation (15),
represent an important analytical simplification. This depends
on the term γ̄(t) being constant or not changing much. This
only holds for a restricted set of models. For example, it
does not hold for Special Case A but it does for Special
cases B and C. In general, to secure constancy in time for
γ̄(t), we need U(t)[1− U(t)] to remain constant in time,
which is true for models where f (u) has a dichotomous
distribution. From a biological perspective there is usually
no reason to expect environmental variables to have a
dichotomous distribution, although we often experience things
this way (temperature is “cold” or “hot”, weather is “wet”
or “dry”). The dichotomous distribution is thus a gross
simplification for any environmental variable, but because of
the Central Limit Theorem this may not matter too much.
Even with such unrealistic distributions, model trajectories for
populations are not so different from one using more biologically
reasonable distributions.

The logarithmic increase of variance with time, as explained
in Section “Variance in Time,” does not arise from intrinsic
structure of the hypercube but is related to the arrangement of
time-constants on the different axes, with each axis having a
separate and unique timescale of switching and with timescales
spaced geometrically. This assumption reflects that fact that
often environmental changes themselves occur evenly across
octaves. Other arrangements, with the time-constants spaced
differently would produce patterns of variance increase more like
fractional Brownian motion or fractional Gaussian noise (Halley
and Inchausti, 2004). This is also the case for the manner of
increase of the species-time curve.

A summary of the results in this paper, regarding the model,
and the assumptions required to produce them, is given in
Table 2 below.

While the simple switching between two states, producing
“square” pulses (Figure 2B), may seem highly artificial, the
resulting population changes, once all the niche factors are acting
together, the artificial geometry of square pulses is no longer in
evidence (Figure 3).

Equation (10) describes the population constraint caused by
the environment but not the population response. The only
part of this we have included is the extinction-colonization
process modeled through Equations (11)–(13). Apart from these
processes, this model does not include population dynamics,
either interspecific or intraspecific. An easily envisaged extension
of the model would be to include a demographic model in
each niche, such as a simple discrete growth process with
a carrying capacity, where the capacity value is equal to
the niche hypervolume. The population dynamics within the
niche would respond to changes in carrying capacity but there
would be a delay due to the population dynamics. Interspecific
interactions would be more challenging to incorporate but could
be incorporated by including interactions between the species in
different niches.

DISCUSSION AND CONCLUSION

We extend the niche-hypercube model of Hutchinson to form
a niche-based dynamic hypercube (DH) model. This model is
well-suited to exploring the dynamics of ecological communities
from a niche-based perspective. The model has several features
that make it desirable as a model of the community.

By dividing an ecosystem into a hypercube of finite size with
a fixed number of organisms, the model reflects the fundamental
limitation of energy input. Since only a fixed amount of energy
arrives in an ecosystem, only a limited number of organisms of a
given size can live there. Thus, when all niches are occupied, the
populations add up to a constant community size. For a restricted
class of niche fluctuations, this also holds for the logarithm of
population; the fluctuations of the logarithm of population can
then be expressed as a linear combination of the environmental
fluctuations: z(t) = C.a(t), where z is a vector of all species’
populations and a represents environmental fluctuations and C
is a constant orientation matrix.

The zero-sum principle is shared with the Hubbell’s neutral
model among others. However, this model is not neutral in the
same way as Hubbell’s, since each species occupies a fixed place
in the community “hypercube.” Our model is still neutral with
respect to biotic interactions. That is, competition is completely
absent from this model and species do not interact in any other
way. Their fitness is simply a by-product of their fundamental
niche area, and there are no direct interactions between species.

For a very wide range of environmental fluctuations, this
dynamic hypercube model generates a lognormal species-
abundance distribution. Many theories generate similar
distributions, bell-shaped on an octave scale, such as the zero-
sum multinomial of the neutral model. Importantly, the dynamic
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hypercube reproduces the widespread observation that most
individuals in the community belong to a small number of
abundant species. This model also produces time-series for
populations that are lognormally distributed in time, something
observed as the most common distribution for a large number of
ecological communities. Thus, as a species traces out its trajectory
of abundance, the resulting histogram will tend to be lognormal.

As presented here, one of the most important features
of the dynamic hypercube model is that it need not be
stationary in time, depending on the environmental fluctuations
on the niche factors. Studies of ecological time-series have
shown that the “more time means more variation” effect
is almost universal and is most consistent with a 1/f -
noise model, where variance increases linearly with the
logarithm of time. This type of environmental variability
was used in the examples of this paper. The dynamic
hypercube model provides a means to describe this variance
growth in a community context. It shows that there is no
balance of nature in one sense — as there is no permanent
community. Nevertheless, neither is balance “discredited,”
because communities remain similar for a long time and because
certain quantities such as species richness and energy flow are
conserved long-term.

This paper outlines three different applications in ecology,
where the dynamic hypercube model provides results and
new insights. One of the obvious applications of such as
model, with conservation implications, is studying the dynamics
of extinction. In recent years, because of the biodiversity
crisis, there has been great interest in extinction risk. For
example, species distribution models may be used to estimate
extinction risk without a population-level model of the
actual process of extinction. This has meant that things
like extinction debt get overlooked. Certainly, the neutral
model has been used to address the problem. Nevertheless,
arguably the neutral model and its modifications cannot
address issues on all timescales because they do not take
environmental variability into account. The model described
here spans both ecological and evolutionary time by taking
into account the drift of the environment itself. Theoretical
studies such as ours still have “barely scratched the surface
of the universe of possible genetic architectures, landscape
geometries, and demographic scenarios at play in niche
evolution” (Holt, 2009). Nevertheless, by characterizing
the drift of selective forces by an environment fluctuating
on many scales as (Jackson and Overpeck, 2000) we are
opening a bridge.

It is also worth noting that the dynamic hypercube model may
be used to throw light on functional diversity. Since each axis
of the model can be associated with a trait, it fits in with this
perspective by dividing the ecosystem according to functional
axes. The usefulness of a trait to any species changes in response
to environmental changes. In this picture, the importance of
different ecological traits rises and falls on different timescales.

Some do so very rapidly but others change so slowly as the be
imperceptible in most ecological studies. They correspond to
the invisible long-term axes of our model, which only reveal
themselves on longer scales, reaching into evolutionary time.

In constructing our model, we made several assumptions.
The binary aspect, that each niche factor changes in a strictly
binary fashion, is an obvious limitation relative to the real
world. Another important limitation is the requirement that
that each niche factor axis changes according to a specific and
limited timescale. As we know that all niche factors tend to
fluctuate over a range of timescales, a more realistic assumption
would be for this to describe all axes, but that would severely
limit the mathematical tractability of the system. Also, there are
challenges with the interpretation of the size of the system we are
describing. It is not obvious how the hypercube should interact
with population size. Suppose we change the ecosystem’s size.
Should this change the number of niches or just the size of
number of individual organisms in the community? A change
in the size of an ecosystem should immediately cause a loss of
population, but should it lead to a contraction of the number of
axes? Leaving aside the feedback element, we could associate a
reduction of the axes with some physical reduction of the size
of an ecosystem (e.g., a sea-level rise on an island), whereas the
loss of the community within the hypercube reflects the killing of
organisms without loss of habitat (e.g., a forest fire).

This model is a natural extension of the classical theory of the
niche and of functional traits and brings many of the advantages
of other dynamical theories such as the neutral model. It can
be applied to numerous problems of community ecology to
improve both explanatory and predictive power. It reveals how a
community can have 1/f noise fluctuations and still be zero-sum.
It is perhaps the first dynamic theory that links ecological time
with evolutionary deep time.
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APPENDIX A. LIST OF SYMBOLS

a, Vector of environmental configurations of niche factors in logarithmic space.
ak, Environmental configuration of the kth niche factor in log-space (k∈0,1,2,. . ., K−1).
Bk, A constant related to Uk, such that Uk = 0k Bk and 1-Uk = 0k/Bk and with 0k = 1/(Bk + 1/Bk) =

√
Uk(1− Uk).

C, The orientation matrix (S× K).
csk, Element of the orientation matrix C for species (row) s and niche factor (column) k. All csk =±1.
es(t), Probability of extirpation of the species s at time t.
f (u), Probability distribution function of the random variable Uk (assumed independent and identically-distributed on all axes).
fxs(x), Probability distribution function of the log-population of species s.
fvs(x), Probability distribution function of the log-hypervolume of species s.
g(x), Probability distribution function of the niche width λsk = ln(Lsk).
J, The size of the community (sum of all individuals from all species).
K, Number of niche factors (dimension of niche hypercube, number of axes)
k, Niche-factor index, k∈0,1,2,. . ., K−1.
Lsk, The niche width of species s for factor k.
M, Minimum viable population (assumed same for all species in the community).
m, Natural logarithm of M.
ok, The kth digit of the binary representation of species.
p, Probability that a given species is present in the community.
q, Probability that Uk takes value u0 for the asymmetric dichotomous distribution of Special Case C, while 1−q is the probability

that Uk takes the value 1−u0.
S, The total number of possible species in the community (S = 2K).
s, Species index (in decimal), s∈0,1,2,. . ., S−1.
s, Species index (in binary).
T, Length of time series T∈1,2,3. . .
t, Time: t∈0,1,2,3. . .
Uk, The random variable representing the division of axis for factor k.
u0, The value defining the dichotomous distribution on Special Case B. In this case the random variable. Uk, can take only the

values u0 and 1−u0.
V0, Variance of random variable Uk.
Vs, Niche hypervolume of species s.
v, Vector of niche hypervolumes for all species in the community.
vs, Natural logarithm of niche hypervolume of species s.
Ws, Total variance for time series of species s.
Xs, Population of species s.
x, Vector of log-populations of species in the community.
xs, Logarithm of the population of species s.
z, Vector of deviations from the mean log-population, Kγ̄+ ln J, for the case where the mean is constant in time.
β2, Expected variance of f (x) for Special Case B.
Γ k, A constant related to Uk and Bk. It is the geometric mean of the two partition sizes (Uk and 1−Uk) on axis-k:.

i.e., Γk =
√

Uk(1− Uk).
γk, A constant γk = ln(0k). It is mean of the logarithms of the two partition sizes (Uk and 1−Uk) of the axis k.
γ̄, The average value of γk over all niche factors, namely γ̄ = 1/K

∑
γ k.

λsk = lnLsk.
µ, Expected mean of g(x).
ρ, Number of individuals per unit area.
τ k, Timescale of changes happening for niche factor k.
σ 2, Expected variance of g(x).
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APPENDIX B. MATHEMATICAL PROOFS

Relation Between the Spectrum of Population and Environmental Forcing
We are interested in the relationship between the spectra of the environmental vector ak(t) and that of the population response xs(t).
In the case of distributions for which Kγ̄(t) is constant (e.g., Special Cases B and C) we may express the dynamics in Equation (15) as:

zs(t) =
∑

k

cskak(t), zk(t) = xk(t)−
(
Kγ̄+ ln J

)
(A1)

If we take the Fourier transform of both sides, we get the Fourier coefficient of z in the domain of frequency, ω, namely:

z̃s(ω) =
∑

k

cskãk(ω) (A2)

Since both a and z are random variables, it makes sense to find the power spectrum z. The power spectrum of the Fourier coefficient
of zs(t) is found by finding the norm of it. Thus:

Szs(ω) = z̃∗s (ω) · z̃s(ω) = ||z̃s(ω)||
2 (A3)

Where the z∗ refers to the complex conjugate of z. If we substitute into this the Equation (A2) we get:

Sz(ω) =
∑

i

∑
k

csi · csk · ã∗i (ω) · ãk(ω)

=
∑
k

c2
sk ·

∣∣∣∣ã2
k(ω)

∣∣∣∣ (A4)

In A4, the interaction terms are zero because the components are independent. Noting also that all components of the orientation
matrix are±1, we get:

Sz(ω) =
∑

k

Sak(ω) (A5)

Thus, at least in cases where Kγ̄(t) is constant (e.g., Special Cases B and C), the spectrum of the species population is simply the
sum of the spectra of its niche factors.

Variance of Sequence of Square Pulses
This shows, for Special Case B, that the variance goes to zero if the length of the series T is much less than the time-constant of the
pulses and that it converges to a finite value as T heads to infinity.

We note that here Var{ak(t)} is a sample variance in time rather than an ensemble variance, so the expected value of the variance
estimator for the time series in question is:

E

[
1

T − 1

T∑
t=1

(at − ā)2
]
, ā =

1
T

T∑
t=1

at

Here, we use the notation ak(t) = at and τk = τ for simplicity. Following the approach of Halley and Kunin (1999), this can be
expressed as:

Var{a} =
1

T2(T − 1)

T∑
i,j,k

E
[
1aji1ajk

]
, 1aji = aj − ai

Note that the random variable aj = ±1 and that aj changes state at random every τ time steps (at times j = τ , 2τ , 3τ ,. . .). So, when
they are well separated in time the expected correlation is zero. Conversely, if the time difference is small enough then aj and ai are the
same then1aji = 0 and similarly if aj and ak are the same. Thus:

Var{a} =
1

T2(T − 1)

T∑
i,j,k

[
E[a2

j ] − E[aiaj] − E[ajak] + E[aiak]
]

We note that:
T∑

i,j,k
E
[
1aji1ajk

]
=

T∑
i,j,k

[
E[a2

j ] − E[aiaj] − E[ajak] + E[aiak]
]
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=

T∑
i,j,k

E[a2
j ] −

T∑
i,j,k

E[aiaj] −

T∑
i,j,k

E[ajak] +

T∑
i,j,k

E[aiak]

= T3
− T

T∑
i,j

E[aiaj] − T
T∑
i,j

E[ajak] + T
T∑
i,j

E[aiak]

Note that the last three terms on the r.h.s. are identical by symmetry among the indices. Thus, we can write:

T∑
i,j,k

E
[
1aji1ajk

]
= T3

− T
T∑
i,j

E[aiaj]

The value of E(ai.aj) depends on | i-j| because for a square-wave of the type of ai, the following holds for a wave with period length τ

:
E[aiaj] = 1− |i−j|

τ
∀|i− j| < τ

= 0, otherwise

Therefore, we arrange the summation by | i-j|. There are T diagonal elements so E(ai.aj) = 1 here. There are 2(T−1) off-diagonal by
one step, for which E(ai.aj) = 1−1/τ, then 2(T−2) off-diagonal by two steps, for which E(ai.aj) = 1−2/τ and so on.

T∑
i,j,k

E
[
1aji1ajk

]
= T3

− T [T + 2(T − 1)(1− 1/τ)+ 2(T − 2)(1− 2/τ)++2(T − 3)(1− 3/τ)+ ...+]

= T3
− T [Tτ+ 2(T − 1)(τ− 1)+ 2(T − 2)(τ− 2)+ 2(T − 3)(τ− 3)+ ...+] /τ

= T3
− 2

(
T
τ

)min(T,τ)∑
j=0

(T − j)(τ− j) − T2

= T2
− (T − 1)2

(
T
τ

)min(T,τ)∑
j=0

(T − j)(τ− j)

Thus,

Var{a} = 1
T2(T−1)

[
T2(T − 1)− 2

(
T
τ

)min(T,τ)∑
j=0

(T − j)(τ− j)

]

= 1−
(

2
T(T−1)τ

)min(T,τ)∑
j=0

(T − j)(τ− j)

For short series, T << τ so then:

Var{a} ≈ 1−
(

2
T(T − 1)τ

) T∑
j=0

(T − j)τ = 1−
(

2
T(T − 1)

) T−1∑
j=1

j = 0

On the other hand, if T >> τ then the summation

Var{a} ≈ 1−
(

2
T(T − 1)τ

)
T

τ∑
j=0

(τ− j) = 1−
(

2
(T − 1)τ

)
τ(τ− 1)

2
≈ 1−

τ− 1
T

When T = τ then,

Var{a} = 1−
(

2
T2(T − 1)

) T−1∑
j=1

j2 = 1−
(

2
T2(T − 1)

)(
T(2T − 1)(T − 1)

6

)
= 1−

2T − 1
3T

=
T + 1

3T

Frontiers in Ecology and Evolution | www.frontiersin.org 21 October 2021 | Volume 9 | Article 686403

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	The Dynamic Hypercube as a Niche Community Model
	Introduction
	Mathematical Description and Properties
	The Niche as a Product of Traits
	Niche Factors and the Environmental Configuration
	Population Dynamics and Turnover
	The Zero-Sum Property and Linearity
	Variance in Time
	The Species Abundance Distribution

	Applications Using Simulation
	Response to Habitat Reduction and Extinction Debt
	A Species-Time Relationship
	Community Turnover, Speciation and the Drift Into Evolutionary Time

	Generality of Results
	Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References
	Appendix A. List of Symbols
	Appendix B. Mathematical Proofs
	Relation Between the Spectrum of Population and Environmental Forcing
	Variance of Sequence of Square Pulses



