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The Munake grape cultivar produces uniquely flavored and high-quality fruits. Despite
the numerous beneficial agronomic traits of Munake, there are few genetic resources
available for this cultivar. To address this knowledge gap, the entire genome was
sequenced using whole-genome sequencing approaches and compared with a Vitis
vinifera L. reference genome. This study describes more than 3 million single nucleotide
polymorphism (SNP), 300,000 insertion and deletion (InDel), 14,000 structural variation
(SV), and 80,000 simple sequence repeat (SSR) markers (one SSR per 4.23 kb),
as well as their primers. Among the SSRs, 44 SSR primer pairs were randomly
selected and validated by polymerase chain reaction (PCR), allowing discrimination
between the different Munake cultivar genotypes. The genetic data provided allow a
deeper understanding of Munake cultivar genomic sequence and contribute to better
knowledge of the genetic basis behind its key agronomic traits.

Keywords: genome-wide identification, sequence variations, SSR marker development, munake grape, cultivar

INTRODUCTION

In recent years, genomic studies on grapevine cultivars have provided a significant quantity
of genomic information, including evolution and domestication processes (Zhou et al., 2019),
molecular markers and transferability (Li et al, 2017; Zou et al., 2020), sex determination
(Massonnet et al., 2020), and population genetics (Zhou et al., 2019). Furthermore, V. vinifera
cultivar genomic information has been utilized as evidence to support ancestral hexaploidization
in major angiosperm phyla. This information has been applied both to scientific research and
biotechnological development of new grapevine cultivars. China is one of the largest grape-
producing countries in the world, with a cultivation area of 809,600 hm? that mainly produces
table grapes. There are many table grape, high quality grapevine cultivars with a long history
of cultivation in China, in particular the Munake cultivar, which is native to Xinjiang Province
(Zhang et al., 2010). This cultivar germinates in early April, blossoms in mid-May, and ripens
in early October. It produces uniquely flavored, thin-skinned, sweet fruits with a crispy texture
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(Pang et al, 2015; Keriman et al, 2016; Xu et al, 2018;
Supplementary Figure 1), with a berry weight of 5 to 10 g and
grape cluster weight from 600 to 1,000 g.

Several unsuccessful attempts have been made to introduce the
Munake cultivar to other Chinese provinces. With the exception
of a few areas in the Hexi Corridor of Gansu province, it is
mainly cultivated and narrowly distributed around the Atushi
area of Xinjiang province. This is because the Munake cultivar
requires particular weather conditions to grow, such as an average
temperature of 12 to 13°C, a frost-free period of more than
220 days, an effective accumulated temperature greater than
4,200°C, and less than 120 mm rainfall per year (Keriman
et al., 2016). Despite its numerous, desirable agronomic traits,
this cultivar is not widely grown (Biagini et al., 2016; Zhang
et al., 2016), creating challenges associated with its storage and
transport (Yang et al., 2009; Zhang et al., 2016; Xu et al., 2018).
Breeding programs thus aim to transfer the beneficial agronomic
traits of the Munake cultivar into other hardier cultivars, or breed
a more climatically versatile Munake cultivar to overcome the
storage and transport problems. However, there are currently few
genetic resources available for this cultivar, which hinders such
breeding programs.

The completion of genome sequencing of the Munake cultivar
is necessary for comparative and functional genomics studies of
table grapes, and the resulting genetic and genomic data will be a
valuable resource for Munake cultivar breeding programs (Zhang
et al., 2017; Karastan et al., 2018; Minio et al., 2019). This study
describes whole-genome sequencing of the Munake cultivar and
compares it with a V. vinifera L. reference genome (Jaillon
et al., 2007). A significant number of effective DNA markers
were developed for exploring agronomic trait-related genes by
comparing the sequences obtained with the reference genome of
V. vinifera, as well as some specific simple sequence repeat (SSR)
markers. The SSR markers have the advantages of accurate and
rapid cultivar detection even with the existence of co-dominance,
multiple alleles, high polymorphism, and variability, and hence
can be used for species identification, establishment of well-
known varieties of germplasm resources, and determination of
differences between varieties (Patzak et al., 2019; Prysiazhniuk
etal, 2019). The knowledge gained will create a large tag library
and the foundation for future genetic studies, enabling molecular
breeding and species resource protection of the Munake cultivar
and its relatives.

MATERIALS AND METHODS

Sample Preparation, DNA Isolation, and
Genome Sequencing

A Munake cultivar sample was selected from its primary
production area of Artux City, Xinjiang, China. Genomic DNA
was extracted from young leaves using the modified cetyl
trimethylammonium bromide method (Doyle and Doyle, 1990).
The extracted DNA was randomly iron fragmented at 95°C,
and 350-bp fragments were gel-purified. These fragments were
used to construct DNA libraries by cutting the genomic DNA
using a Covaris M220 Focused-ultrasonicator. The HiSeq X-Ten

platform (Illumina, Inc., San Diego, CA, United States) was
used for adaptor ligation and DNA cluster preparation. Only
high-quality data were used for mapping by filtering the low-
quality reads (single reads <20 bp)’, in order to reduce the error
probability in the mapping process. The clean reads were used
for subsequent analyses and were stored in the National Center
for Biotechnology Information database under the BioProject
accession number PRJNA632683.

Mapping Reads to the Referenced

Genome

The Burrows-Wheeler alignment (BWA) software was used
to align the paired-end (PE) sequences of the Munake
cultivar to V. vinifera reference genomes® based on default
parameters (Li and Durbin, 2010; Table 1). Reads that could
be aligned to more than one position in the referenced genome
were filtered (Subbaiyan et al, 2012). The alignment results
were used to calculate the average sequencing depth and
coverage of mapped reads (Li et al,, 2012). Single nucleotide
polymorphisms (SNPs), insertions and deletions (InDels), and
structural variation (SV) polymorphisms were detected in
the mapped reads.

Detection of SNPs, InDels, and SVs

Variants were identified using the Unified Genotyper application
of the Genome Analysis Toolkit (DePristo et al, 2011),
programmed to detect SNPs and InDels. Based on the nucleotide
substitutions, the SNPs detected were classified as transitions
(Ti) (C/T and G/A) or transversions (Tv) (C/G, T/A, A/C, and
G/T) (Table 2). SAM files generated by BWA were converted
to BAM format using SAMtools (Li et al., 2009), duplicates
were marked first, and local realignment and base recalibration
were completed using the Picard tool to ensure correction
of the clean reads. The Haplotype Caller method was then
used to detect SNPs and InDels. All results were shown as
gVCF files, which were prepared for joint-genotype analysis and
reads filtering. The filtered parameters were: varFilter -w 5 -
W 10 (vcfutils. pl), QUAL < 30, QD < 2.0, MQ < 40, and
FS > 60.0 (Fisher test); the other parameters were executed using
the default values.

SV detection was performed using the Breakdancer Max.
pl software with default parameters (Chen et al, 2009). To
obtain reliable SVs, the detected SVs must be returned to
the PE alignments between the Munake cultivar and the
reference genome. Six SV types were detected: insertion (INS),
deletion (DEL), interchromosomal translocation (CTX), deletion
including insertion, intrachromosomal translocation (ITX), and
inversion (INV).

Annotation of SNPs

Single nucleotide polymorphisms were detected using the
SnpEff software (Cingolani et al., 2012). The polymorphisms
in the genes and other genomic regions were annotated
as: Intergenic, Intragenic (without transcript information),

1http:/ /hannonlab.cshl.edu/fastx_toolkit/
Zhttp://ftp.ensemblgenomes.org/pub/plants/release-25/fasta/vitis_vinifera/

Frontiers in Ecology and Evolution | www.frontiersin.org

April 2021 | Volume 9 | Article 664835


http://hannonlab.cshl.edu/fastx_toolkit/
http://ftp.ensemblgenomes.org/pub/plants/release-25/fasta/vitis_vinifera/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Zhong et al.

Genome-Wide SNPs and SSR in Munake

TABLE 1 | Summary of original re-sequencing data of Munake cultivar.

Total_reads PE SE Total_map (%)

Unique_map (%) Multiple_map Depth Cover _ratio (%)

111,846,066 55.9 x 108 50.1 x 108 94.79%

85.40% 16.3 x 108 22.71 95.14%

Intron, Upstream, Downstream, Utr_5_prime (within 5UTR),
Utr_3_prime (within 3'UTR), Splice_site_acceptor (<2 bp,
before the exon), Splice_site_donor (<2 bp, after exon),
Splice_site_region (1-3 bp in an exon or 3-8 bp in an intron),
Start_gained, Start_lost, and coding sequence region (CDS).
SNPs in the CDS were separated into Synonymous_start, Non-_
synonymous_start, Synonymous_coding, Non-_synonymous
_coding, Synonymous_stop, Stop_gained, and Stop_lost.

The positions of small InDels in the Munake cultivar
were also located using the SnpEff software, and described
using the same main polymorphism types as annotated for
SNPs, except that the InDels in the CDS were separated into
Start_Lost, Frame_Shift, Codon_Deletion, Exon_Deleted,
Codon_Insertion, Codon_Change_Plus_Codon_Deletion,
Codon_Change_Plus_Codon_Insertion,  Stop_Gained, and
Stop_Lost. The genic SVs were classified as either CDS,
untranslated regions (UTR), or introns, according to their
localization (Birney et al., 2004). The gene ontology (GO)/Pfam
annotation data were further used to functionally annotate each
gene, including non-synonymous SNPs —10 to 10-bp in length.

Designation of SSR Markers

In the Microsatellite identification tool’, clean reads were used
to identify and localize microsatellite motifs. Only the SSRs,
including mono-, di-, tri-, tetra-, penta-, and hexanucleotide
motifs with numbers of uninterrupted repeat units exceeding 10,
7, 6, 5, and 4 were selected. The selected SSR loci for developing
genetic markers should include a perfect repeat motif and two
unique flanking sequences with 150 bp on each side of the repeat
(Varshney et al., 2005). Primer 3 software’ was used to design
unique flanking sequences with three parameters: (1) primer
length ranging from 20 to 26 bases with an optimal size of 23 bp;
(2) melting temperature between 58 and 63°C, with an optimum
annealing temperature of 6 0°C; (3) a guanine-cytosine content
of 40-60%, with an optimum content of 50%. To validate the
new SSRs, a few primer pairs were chosen for polymerase chain
reaction (PCR) amplification.

A DNA Engine thermal cycler (Bio-Rad, Hercules, CA,
United States) was used for amplification with the following
program: 94°C for 4 min; 35 cycles of 94°C for 45 s, 52°C for
1 min, and 72°C for 45 s; and a final extension at 72°C for 10 min.
The PCR products were checked by electrophoresis in 1.5%
agarose gels containing 1:20 GoldView in our lab and analyzed
with fluorescent primers on ABI instrumentation (Shanghai SBS,
Biotech Ltd., China), and photographed with a Photoprint 215 SD
(Vilber Lourmat Co., Marne la Vallée, France).

PCR products were sequenced to obtain the fluorescence
absorption peak pattern and peak value. GenALEx 6.5 was used to

3http://pgrc.ipk-gatersleben.de/misa
“http://primer3.sourceforge.net/

calculate the number of alleles, effective allele number, observed
heterozygosity (Het), expected heterozygosity, Shannon’s index,
primer polymorphism information at the locus level, and
polymorphic information content (PIC) (Mahmood et al., 2019).

RESULTS

Mapping of Re-sequencing Reads to the

Reference Genome

A total of 111,846,066 short reads of 111 nucleotides (1.12 x 107
reads) were generated in this study. 1.06 x 10® short reads were
successfully matched to V. vinifera (accession GCF_000003745.3
at the International Grape Genome Program and GenBank?). The
average sequencing depth was approximately 22.71x coverage
of the reference genome, and the resulting consensus sequences
covered approximately 94.79% of the reference genome (Table 1).
Among them, 5.59 x 107 PE reads and 5.01 x 107 single-end (SE)
reads were mapped to chromosomes corresponding to 111.8 Mb
of the reference genome (Table 1 and Figure 1). Although the
percentage of sequenced reads from the Munake cultivar aligned
with the reference genome was above 90%, the PE reads aligned
with V. vinifera exceeded the SE reads. Furthermore, a total of
9.5 x 10° reads were uniquely (85.4%) mapped to the reference
genome, and the remaining 1.63 x 107 reads were mapped to
multiple locations (Table 1).

Detection and Distribution of Variation
A total of 3,628,662 SNPs were detected, including
2,446,163 Ti, 1,182,499 Tv, and a 64.1% Het-ratio
(Heterozygosity/homozygosity (Homo) x 100%). A total of
26,802 InDels of <10-bp in length were detected. This included
9,551 InDels in the CDS, and the main concentration of InDels
were —1 and 1-bp in length both genome-wide and in the CDS.
The proportion of SNPs is shown in Figure 1.

Among the variations detected, the highest numbers of SNPs
(n = 397,613), InDels (n = 81,801), and SVs (n = 1,473) were
observed in chromosome 14. Contrarily, the lowest numbers of

TABLE 2 | The classification of nucleotide substitutions in the SNPs detected and
summary of SVs identified in Munake cultivar aligned with the reference genomes.

SNPs number Ti Tv Ti/Tv Het Homo  Het-ratio
3628662 2446163 1182499 2.06 2325985 1302677 64.1%
SVs number INS DEL INV ITX CTX UN
28795 1 16409 692 9002 2618 73

SNF, single nucleotide polymorphism; Ti, transition; Tv, transversion,; Het,
heterozygosity; Homo, homozygosity; SV, structural variation; INS, insertion;
DEL, deletion; INV, inversion; ITX, intro-chromosomal translocation; CTX, inter-
chromosomal translocation.

Frontiers in Ecology and Evolution | www.frontiersin.org

April 2021 | Volume 9 | Article 664835


http://pgrc.ipk-gatersleben.de/misa
http://primer3.sourceforge.net/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles

Zhong et al.

Genome-Wide SNPs and SSR in Munake

INTERGENIC

SPLICE_SITE_ACCEPTOR

START_GAINED

DOWNSTREAM

UPSTREAM

CDS:160543(4.42%)
SPLICE_SITE_DONOR:389(0.01%)
INTERGENIC:1284122(35.39%)
SPLICE_SITE_ACCEPTOR:396(0.01%)
INTRON:827657(22.81%)
START_GAINED:2379(0.07%)
UPSTREAM:723825(19.95%)

Other:5925(0.16%)
DOWNSTREAM:571770(15.76%)
B SPLICE_SITE_REGION:7601(0.21%)
UTR_5_PRIME:12744(0.35%)
UTR_3_PRIME:31310(0.86%)

s NON_SYNONYMOUS_START:38(0.02%)

FIGURE 1 | Proportions of the various SNPs in the Munake cultivar and the reference genome of V. vinifera.
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SNPs (n = 216,848), InDels (n = 43,668), and SVs (n = 1,287)
were observed in chromosome 17. The average density of
detected polymorphisms was 7,462.2 SNPs per Mb (Table 2).
The density of SNPs in the different chromosomes is shown
in Figure 2. Chromosome 14 had the highest density of
SNPs (3,251.7 SNPs per Mb), and chromosome 10 had the
lowest SNP density (1,014.9 SNPs per Mb) (Table 2). The
distribution of polymorphisms was uneven within chromosomes.
All chromosomes comprised a mixture of dense and sparse SNP
regions (Figure 2).

The distribution patterns of InDels and SVs densities were
similar to those of SNPs (Table 2). The proportion of Ti was larger
than that of Tv, with a Ti/Tv ratio of 2.06. A total of 772,885
InDels were detected, with the Genome-Deletion type (52.3%)
more abundant than the Genome-Insertion type (47.7%), and the
genome Het number (66.5%) was significantly higher than the
genome Homo number (33.5%) (Figure 3).

A total of 28,795 SVs were detected, including 16,409 DEL
(57.0%), 9,002 ITX (31.3%), 692 INV (2.4%), and 2,618 CTX
(9.1%), and one insertion (Table 2). The majority of DEL were
less than 1,000 bp (65.6%), and 25.6% of them were between
1,000 and 10,000 bp. The largest DEL was 927,523 bp. Numerous
ITXs were detected, at up to 984,059 bp in length, while most
of them were less than 1,000 bp (79.6%). Although there were
numerous SNPs (3,628,662 bp), InDels (n = 772,885), and SVs
(n = 28,795) located in gene regions, only 160,543 SNPs, 9,512

InDels, and 9,798 SVs were found in the CDS (Figures 2, 3
and Table 2).

Annotation and Effect of SNPs

The ratio of non-synonymous-to-synonymous SNPs (1.01) was
calculated based on all gene models. There were 6,828 InDels
and 21,153 SNPs annotated according to the two gene functional
databases (GO and Cluster of Orthologous Groups of proteins).

Using the GO database (Figure 4), the SNPs were classified
as those involved in biological processes, cellular components, or
molecular functions. The majority of SNPs (n = 3,067) appeared
to be involved in a biological process, including reproduction,
metabolic processes, cellular processes, and response to a
stimulus. Many SNPs (n = 2,353) annotated as involved in a
molecular function were detected, mainly annotated as having
catalytic activity and involved in molecular binding. There were
only 558 SNPs classified as being associated with a cellular
component, in which the gene participates as a component of the
cell, cell membrane, or organelle.

According to the Cluster of Orthologous Groups of proteins
database (Figure 5), the gene annotations were mainly
concentrated on general function prediction only (n = 2,510),
gene transcription (n = 1,287), and replication, recombination,
and repair (n = 1,202). By comparing the SNPs in the Kyoto
Encyclopedia of Genes and Genomes database (Figure 6), 2,733
were annotated, mainly referencing the plant hormone signal
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FIGURE 2 | Distribution of SNPs and InDels detected in the Munake cultivar and the reference genome of V. vinifera L. in the 19 chromosomes (outside, green
lines = number of SNPs; inside, red lines = InDels).

transduction (n = 146), RNA transport (n = 136), and oxidative
phosphorylation (n = 125).

Development and Potential Applications

of the New SSR Markers

A total of 87,872 SSRs with a genome frequency of one SSR
per 4.32 kb were identified. Di-nucleotide repeats were the most
abundant type followed by tri-nucleotide repeats. AG/CT was the
most frequent di-nucleotide motif, while AAG/CTT was the most
abundant (5.40%) tri-nucleotide motif.

Forty-four pairs of primers were designed based on the
sequences flanking the SSRs to validate the markers by the PCR
experiments (Supplementary Table S1), and clear bands were
produced (Figure 7). Using 12 of the 44 pairs of SSR primers
to analyze the genetic diversity of 57 Munake cultivar samples,
a total of 168 alleles were detected with an average of 44 for
each pair of primers. In this study, only MNG15, MNG18, and
MNGI1314 showed low variation (PIC < 0.25), MNG6666 and
MNG9999 had medium variation (0.25 < PIC < 0.5), while
in MNGO03, MNG10, MNG14, MNG23, MNG26, MNG29, and
MNGS35 the degree of variation was high (PIC > 0.5). The PIC
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FIGURE 7 | Genetic diversity of 44 genomic SSR loci in four or six Munake cultivar accessions.
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of MNG29 was the highest, reaching 0.842 (Table 3). The SSR  which can be used for species identification, establishment of
markers have the advantages of codominance, multiple alleles, well-known varieties germplasm resources and determination of
high polymorphism and variability, accurate and rapid detection,  differences between varieties.
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TABLE 3 | Genetic diversity of 12 genomic simple sequence repeat SSR loci in 57
Munake cultivar samples.

Primers Na Ne | Ho He PIC

MNGO3 11 1.817 0.689 0.717 0.435 0.552
MNG10 15 2.049 0.695 0.147 0.367 0.66

MNG14 19 3.291 1.2 0.921 0.663 0.75

MNG15 5 0.65 0.088 0.018 0.044 0.103
MNG18 7 1.068 0.102 0.029 0.051 0.071
MNG23 17 2.884 1.103 0.767 0.634 0.694
MNG26 21 3.136 1.202 0.95 0.661 0.77

MNG29 26 3.751 1.35 0.564 0.627 0.842
MNG35 14 2.28 0.854 0.933 0.553 0.509
MNG1314 6 1.049 0.07 0 0.04 0.046
MNG6666 15 1.98 0.736 0.848 0.476 0.465
MNG9999 12 2.16 0.789 0.992 0.532 0.439
Mean 14 2176 0.740 0.574 0.424 0.492

Na, average number of alleles; Ne, number of effective alleles; I, Shannon’s
information index; Ho, observe the heterozygosity;, He, expected heterozygosity;
PIC, primer polymorphism information content.

DISCUSSION

There are numerous genomic resources available for grapevines.
Publication of the V. vinifera genome accelerated the genetic
research of this valuable crop, including analyses of its genetic
structure, construction of genetic maps, assessment of genetic
diversity, detection of genotype/phenotype associations, and
marker-assisted breeding (Chen et al., 2015; Mercati et al., 2016;
Money et al., 2017). Due to its clonal mode of propagation
and genomic complexity, there was limited genomic information
available for grapevines before the publication of the V. vinifera
reference genome (Lijavetzky et al., 2007; Guo et al., 2015; Xu
et al,, 2016, Zhou Y. et al, 2017). Massonnet et al. (2020)
studied the structure and evolution of the sex-determining region
in Vitis species and reported an improved, chromosome-scale
Cabernet Sauvignon genome sequence. Zou et al. (2020) added
shotgun genome sequences from 40 grapevine accessions to
enable the identification of conserved core PCR primer binding
sites flanking polymorphic haplotypes with high information
content. From these target regions, Zou et al. developed 2,000
rhAmpSeq markers as a PCR multiplex and validated the panel
in four biparental populations, spanning the diversity of the Vitis
genus and showing transferability increases to 91.9%. Munake
grape, as a specific cultivars with high superior for table (Wu
et al., 2011), were still kept in nothing referring its genomic
studies (Guo et al., 2014; Ma et al., 2018; Xu et al., 2018). Its
germplasm reservation and other applications were depending
on the traditional agriculture as far (Keriman et al., 2016), the
availability of its whole genome sequence can allow a positional
selection of DNA fragments to be re-sequenced, enhancing the
usefulness of the discovered and efficient implementation on its
SNPs and other information (Magris et al., 2019).

Multiple whole-genome sequencing projects of grapevines
have contributed to the efficient implementation of SNP
discovery in key cultivars (Tanksley et al., 1981; Berry et al., 1992;
Wang et al., 2015), such as the Franco-Italian sequencing project

and the JASMA sequencing project, both of which focused on
the Pinot Noir (PN40024) cultivar (Roach et al., 2018). However,
there have been few such projects conducted in China (Bai et al.,
2013; Zhou J. et al.,, 2017; Mu et al., 2018). SSR markers have
been applied to all Chinese grapevine landraces, which confirmed
that the Munake cultivar was clustered in the Oriental cultivars
group (Li et al., 2017), which includes the most ancient Chinese
accessions. However, the origin of the Munake cultivar still
requires further evidence. Here, the whole-genome sequence of
the Munake cultivar was described with more than 3 million
SNPs, more than 300,000 InDels, and more than 14,000 SVs
reported. Li et al. (2017) analyzed 61 Chinese grapevine cultivars
and 33 foreign grapevine cultivars using nine SSR markers and
found that Munake and Lvmunage cultivars distributed in the
Xinjiang Province (China) are the same cultivar. The present
study also described more than 80,000 SSR markers. Of these,
44 SSR pairs were randomly selected and validated by PCR;
all tested SSR pairs were able to discriminate between Munake
cultivar genotypes.

The SNP and InDel molecular markers are useful alternatives
to SSR markers in high density marker studies, such as
quantitative trait locus identification, genetic map construction,
and fine genetic mapping (Song et al, 2015; Nicolas et al,
2016). The statistical findings of the detected SNPs and InDels
showed that there are more than 3 million SNPs, 300,000 InDels,
and 10,000 SVs (Table 2). These variations constitute useful
genomic resources for future studies of genetic differentiation.
SSR markers were widely and randomly distributed throughout
the genome, presenting several advantages (i.e., co-dominance,
hypervariability, polymorphism, and ease and reliability of
scoring) (Figure 7). SNP markers serve as effective markers
for high-throughput mapping and for studying complex genetic
traits. Our study contributes a considerable amount of genomic
resources, including SNPs, InDels, SVs and genomic SSRs for
the Munake grape, which all identification in our study can
offer some genetic methods for the geneticists and breeders.
The improvement application of the Munake grape can be
facilitated on the utilization of this genomic information in
linkage mapping, comparative genomics and molecular breeding
based on the considerable efforts in future.

CONCLUSION

The Munake grape cultivar is a prime example of a species
that is critically endemic because of invasive cultivar, diseases
and habitat degradation. As a typical late-matured and unique
tasted variety, its genetic analyses are an essential prerequisite
for implementing effective management strategies. The provided
genomic resources (SNPs, InDels, SVs, and genomic SSRs) for
the Munake cultivar in here will be useful for geneticists and
grape breeders to construct linkage mapping, apply genomic
comparisons, and assist in molecular breeding for grape, and
will expedite plant breeding programs of the Munake cultivar. In
its exist populations, despite the threats the species faces, with
adequate management, it is still possible to prevent its genetic
resources in future.
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